Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 3 listopada 2025 23:00
  • Data zakończenia: 3 listopada 2025 23:24

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na ilustracji przedstawiono fragment stropu

Ilustracja do pytania
A. Teriva.
B. Akermana.
C. Fert.
D. Kleina.
Strop Kleina stanowi jedno z bardziej klasycznych rozwiązań w budownictwie, które zyskało popularność dzięki swojej solidności oraz prostocie konstrukcyjnej. W jego budowie wykorzystuje się stalowe belki, co pozwala na znaczne zmniejszenie ciężaru całej konstrukcji, a jednocześnie zapewnia wysoką nośność. Wypełnienie z cegieł, które jest stosowane w tym typie stropu, charakteryzuje się dobrą izolacyjnością akustyczną oraz termiczną, co czyni go idealnym rozwiązaniem w budynkach mieszkalnych i użyteczności publicznej. Strop Kleina jest również zgodny z normami budowlanymi, co czyni go bezpiecznym i trwałym rozwiązaniem. Z punktu widzenia inżynierii, ważnym aspektem jest możliwość dostosowania tego typu stropu do różnych warunków oraz obciążeń, co czyni go elastycznym rozwiązaniem w projektowaniu budynków. Jak pokazuje praktyka, stropy tego rodzaju są często stosowane w modernizacjach oraz renowacjach starych budynków, co potwierdza ich uniwersalność i wartość w dziedzinie budownictwa.

Pytanie 2

Z jakiego materiału można budować przewody dymowe i wentylacyjne?

A. pustaków żużlobetonowych
B. cegły pełnej
C. cegły wapienno-piaskowej
D. cegły dziurawki
Cegła pełna jest materiałem budowlanym o wysokiej odporności na działanie wysokich temperatur oraz agresywnych substancji chemicznych, co czyni ją idealnym wyborem do budowy przewodów dymowych i wentylacyjnych. Dzięki swojej gęstości i jednorodnej strukturze, cegła ta skutecznie izoluje oraz chroni przed rozprzestrzenianiem się ognia. W praktyce, przewody dymowe wykonane z cegły pełnej zapewniają nie tylko bezpieczeństwo, ale także długotrwałość, co jest kluczowe w kontekście przepisów budowlanych i norm bezpieczeństwa. Cegła pełna może być również stosowana w miejscach narażonych na intensywne działanie spalin, zapewniając ich prawidłowe odprowadzanie. W wielu krajach, zastosowanie cegły pełnej w takich konstrukcjach jest zgodne z obowiązującymi normami budowlanymi oraz zaleceniami, co dodatkowo podkreśla jej przydatność w budownictwie.

Pytanie 3

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 5 pojemników cementu i 2,5 pojemnika wapna.
B. 5 pojemników wapna i 2,5 pojemnika cementu.
C. 4 pojemniki wapna i 2 pojemniki cementu.
D. 4 pojemniki cementu i 2 pojemniki wapna.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 4

W murarskich mieszankach, które są narażone na działanie wilgoci, powinno się używać wapna

A. hydratyzowane
B. gaszone
C. palone
D. hydrauliczne
Wapno palone, gaszone oraz hydratyzowane to różne formy wapna, które nie są wystarczająco odporne na działanie wilgoci w kontekście zapraw murarskich. Wapno palone, uzyskiwane poprzez wypalanie węgla wapiennego, jest materiałem o wysokiej reaktywności, ale nie ma zdolności do wiązania w obecności wody. W sytuacji, gdy jest narażone na wilgoć, jego właściwości wiążące mogą być znacznie ograniczone, co prowadzi do osłabienia struktury murów. Wapno gaszone natomiast, które powstaje z reakcji wapna palonego z wodą, również nie jest odpowiednie w warunkach wilgotnych, gdyż jego wiązanie jest znacznie mniej efektywne w obecności dużej ilości wody. Z kolei wapno hydratyzowane, mimo że jest bardziej stabilne, nie zapewnia odpowiednich właściwości hydraulicznych. Kluczowym błędem myślowym jest przekonanie, że wszystkie formy wapna mają podobne właściwości i mogą być stosowane zamiennie, co jest dalekie od rzeczywistości. Tylko wapno hydrauliczne gwarantuje właściwe wiązanie w obecności wody, co jest istotne w kontekście trwałości i bezpieczeństwa konstrukcji budowlanych. Zrozumienie tych różnic jest kluczowe dla efektywnego stosowania materiałów budowlanych w praktyce.

Pytanie 5

Jaką grubość powinny mieć spoiny wsporcze (poziome) w tradycyjnych murach wykonanych z cegły ceramicznej?

A. 6 - 9 mm
B. 15 - 20 mm
C. 10 - 17 mm
D. 3 - 5 mm
Spoiny wsporne w murach tradycyjnych z cegły ceramicznej powinny mieć grubość od 10 do 17 mm, co wynika z różnych standardów budowlanych oraz praktycznych aspektów konstrukcyjnych. Grubość spoiny ma kluczowe znaczenie dla właściwego łączenia elementów murarskich, co wpływa na stabilność i wytrzymałość całej konstrukcji. Między innymi, każda spoiny powinny być wystarczająco szerokie, aby umożliwić odpowiednią aplikację zaprawy, co z kolei zapewnia solidne połączenie pomiędzy cegłami. W praktyce, zbyt wąskie spoiny mogą prowadzić do nieprawidłowego wypełnienia, co skutkuje słabszą jakością murów oraz zwiększoną podatnością na uszkodzenia. Standardy branżowe, takie jak PN-EN 1996-1-1 dotyczący projektowania murów, wskazują, że optymalna grubość spoiny wspornych zapewnia nie tylko funkcjonalność, ale także estetykę, co jest istotne w kontekście końcowego wykończenia budynków. W związku z tym, należy przestrzegać zalecanych wartości, aby uzyskać odpowiednią jakość i trwałość konstrukcji.

Pytanie 6

Jaki jest minimalny czas, po którym można zaczynać budowę muru na zaprawie cementowo-wapiennej, nad świeżo wykonaną kondygnacją?

A. 7 dni
B. 3 dni
C. 10 dni
D. 5 dni
Czas, po którym można wznosić mur na zaprawie cementowo-wapiennej, jest ściśle związany z jej procesem wiązania i twardnienia. Odpowiedzi sugerujące dłuższe okresy, takie jak 7, 10 dni, a nawet 3 dni, opierają się na niepełnym zrozumieniu procesu budowlanego oraz specyfiki materiałów. W przypadku zaprawy cementowo-wapiennej, zbyt długi czas oczekiwania na rozpoczęcie budowy murów może być nieefektywny z punktu widzenia harmonogramu robót budowlanych. Z drugiej strony, zbyt krótki czas, jak sugerują odpowiedzi 3 dni, może prowadzić do problemów z wytrzymałością konstrukcji. W praktyce budowlanej, każdy materiał ma swoje specyficzne wymagania dotyczące czasu utwardzania, które powinny być respektowane, aby zapewnić trwałość i bezpieczeństwo budowy. Zastosowanie niewłaściwego czasu oczekiwania prowadzi często do typowych błędów, takich jak pęknięcia w murach, które mogą powstać na skutek niepełnej reakcji chemicznej w zaprawie. Kluczowe jest również uwzględnienie zmiennych warunków otoczenia, które mogą wpływać na czas wiązania, co pokazuje, że nie każdy materiał zachowuje się w ten sam sposób w różnych warunkach. Dlatego też, znajomość standardów dotyczących czasu technologicznego jest niezbędna dla każdego, kto pracuje w branży budowlanej.

Pytanie 7

Jakie będzie łączne wynagrodzenie pracownika za tynkowanie 2 powierzchni o wielkości 50 m2 oraz 3 powierzchni po 30 m2, jeśli cena za 1 m2 tynku wynosi 8 zł?

A. 1 600 zł
B. 1 280 zł
C. 290 zł
D. 1 520 zł
Żeby policzyć całkowite wynagrodzenie za otynkowanie, musisz najpierw ustalić, ile masz powierzchni do pokrycia. Mamy dwie powierzchnie po 50 m2, co daje nam 100 m2 oraz trzy po 30 m2, czyli dodatkowe 90 m2. Jak to zsumujemy, to dostajemy 190 m2. Koszt za 1 m2 tynku to 8 zł, więc całość wyniesie 190 m2 razy 8 zł, co daje 1 520 zł. Takie obliczenia są mega ważne w budowlance, bo dokładne oszacowanie kosztów to klucz do sukcesu projektu. Z własnego doświadczenia wiem, że warto też pomyśleć o dodatkowych wydatkach, jak materiały pomocnicze czy transport. Posiadanie odpowiednich narzędzi do kalkulacji może naprawdę przyspieszyć te obliczenia. Zrozumienie tych podstawowych zasad ułatwia później planowanie i zarządzanie projektami budowlanymi.

Pytanie 8

Jaka jest proporcja objętościowa gipsu i piasku w zaprawie gipsowej M 4?

Marka zaprawyZaprawa gipsowa
gips : piasek
Zaprawa gipsowo-wapienna
gips : wapno : piasek
M11: 41: 1,5: 4,5
M21: 31: 1: 3
M31: 21: 0,5: 2
M41: 11: 0,5: 1
A. 1:2
B. 1:1
C. 1:4
D. 1:0,5
Proporcja objętościowa gipsu i piasku w zaprawie gipsowej M4 wynosi 1:1, co oznacza, że na jedną jednostkę objętości gipsu przypada jedna jednostka objętości piasku. Taki dobór składników jest kluczowy dla uzyskania optymalnych właściwości zaprawy, w tym jej wytrzymałości i elastyczności. W praktyce, równomierne połączenie tych dwóch materiałów pozwala na uzyskanie jednorodnej masy, która dobrze przylega do powierzchni oraz zapewnia odpowiednią trwałość. Zgodnie z normami budowlanymi, szczególnie tymi związanymi z wykończeniem wnętrz, zachowanie tej proporcji jest istotne dla efektywności procesu aplikacji oraz trwałości powłok gipsowych. Przykładowo, stosując tę proporcję w renowacji starych budynków, można uzyskać lepsze rezultaty estetyczne i funkcjonalne, niż w przypadku stosowania innych proporcji, co potwierdzają liczne badania i doświadczenia specjalistów w dziedzinie budownictwa.

Pytanie 9

Cena jednego 25-kilogramowego worka suchej zaprawy tynkarskiej wynosi 9 zł. Jaka będzie suma wydatków na zaprawę potrzebną do otynkowania 52 m2ściany, jeśli jeden worek wystarcza na wykonanie tynku na powierzchni 1,3 m2ściany?

A. 360 zł
B. 468 zł
C. 225 zł
D. 625 zł
Koszt zaprawy tynkarskiej obliczamy na podstawie powierzchni ściany, którą chcemy otynkować, oraz wydajności jednego worka. W tym przypadku mamy 52 m² do otynkowania, a jeden worek wystarcza na 1,3 m². Aby obliczyć liczbę worków potrzebnych do pokrycia całej powierzchni, dzielimy 52 m² przez 1,3 m²: 52 / 1,3 ≈ 40 worków. Koszt jednego worka wynosi 9 zł, więc całkowity koszt uzyskujemy mnożąc liczbę worków przez cenę jednego worka: 40 * 9 zł = 360 zł. W praktyce, przy zakupach materiałów budowlanych, zazwyczaj warto uwzględnić dodatkową ilość materiału na ewentualne straty, co również potwierdza, że dobrze jest mieć zapas. Warto także zwrócić uwagę na to, że ceny materiałów budowlanych mogą się różnić w zależności od dostawcy i lokalizacji, dlatego zawsze warto porównać oferty przed zakupem. Standardy budowlane wskazują na konieczność przemyślanej kalkulacji kosztów, co jest kluczowym elementem zarządzania projektem budowlanym.

Pytanie 10

Zgodnie z zaleceniami producenta, zużycie gipsowej zaprawy tynkarskiej wynosi 6 kg/m2/10 mm. Oblicz, ile
30-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na ścianach o łącznej powierzchni 200 m2.

A. 10 worków
B. 20 worków
C. 40 worków
D. 80 worków
Żeby policzyć, ile gipsowej zaprawy potrzebujemy do tynku grubości 20 mm na powierzchni 200 m², najpierw musimy przeliczyć zużycie zaprawy przy tej grubości. Z tego, co mówi producent, potrzebne jest 6 kg/m² dla 10 mm grubości, więc dla 20 mm będziemy potrzebować już 12 kg/m². Potem mnożymy to przez powierzchnię ścianek: 12 kg/m² * 200 m² daje nam 2400 kg zaprawy. Następnie musimy podzielić tę wagę przez wagę jednego worka, czyli 30 kg: 2400 kg / 30 kg = 80 worków. Przy takich obliczeniach warto pamiętać o zaleceniach producenta i standardach budowlanych, bo to naprawdę kluczowe, żeby tynk był odpowiedniej jakości i trwałości.

Pytanie 11

Grupa złożona z 6 pracowników prowadziła prace rozbiórkowe budynku przez 5 dni roboczych, każdego dnia pracując 8 godzin. Jaki był całkowity koszt robocizny, jeżeli cena za 1 roboczogodzinę wynosiła 10 zł?

A. 400 zł
B. 2 400 zł
C. 240 zł
D. 480 zł
Aby obliczyć całkowity koszt robocizny w tym przypadku, musimy najpierw ustalić całkowitą liczbę roboczogodzin przepracowanych przez brygadę. Znamy liczbę robotników, dni pracy oraz czas pracy w ciągu jednego dnia. Brygada składa się z 6 robotników, którzy pracowali przez 5 dni po 8 godzin dziennie. Możemy to obliczyć jako: 6 robotników * 5 dni * 8 godzin = 240 roboczogodzin. Następnie, aby uzyskać całkowity koszt robocizny, mnożymy liczbę roboczogodzin przez stawkę za 1 roboczogodzinę, która wynosi 10 zł. Zatem 240 roboczogodzin * 10 zł = 2400 zł. Prawidłowa odpowiedź to 2400 zł, co jest zgodne z praktykami w branży budowlanej, gdzie precyzyjne obliczenia kosztów robocizny są kluczowe dla efektywnego zarządzania budżetem projektu oraz ustalania stawek wynagrodzeń. Tego typu kalkulacje są powszechnie stosowane w ofertach przetargowych oraz w budżetowaniu projektów budowlanych, co pozwala na lepszą kontrolę kosztów oraz optymalizację wydatków.

Pytanie 12

Czym jest spoiwo mineralne hydrauliczne?

A. cement hutniczy
B. wapno hydratyzowane
C. wapno dolomitowe
D. gips hydrauliczny
Cement hutniczy jest spoiwem mineralnym hydraulicznym, co oznacza, że ma zdolność do twardnienia pod wpływem wody, nawet w warunkach wilgotnych. Jest to szczególnie ważne w budownictwie oraz inżynierii lądowej, gdzie często mamy do czynienia z konstrukcjami narażonymi na działanie wody. Cement hutniczy, zwany również cementem żużlowym, powstaje z mieszania klinkieru cementowego z żużlem wielkopiecowym, co nadaje mu wyjątkowe właściwości, takie jak zwiększona odporność na działanie wody i chemikaliów. W praktyce, cement hutniczy jest stosowany do budowy fundamentów, konstrukcji podziemnych oraz obiektów hydrotechnicznych, takich jak tamy i zbiorniki. Ponadto, jego właściwości pozwalają na zmniejszenie emisji CO2 w procesie produkcji, co jest zgodne z aktualnymi trendami zrównoważonego budownictwa oraz standardami ekologicznymi. Wybór cementu hutniczego jako spoiwa hydraulicznego jest zatem uzasadniony zarówno z punktu widzenia technicznego, jak i ekologicznego.

Pytanie 13

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 15,00 m
B. 1,50 m
C. 0,75 m
D. 7,50 m
Aby obliczyć rzeczywistą długość ściany na podstawie rysunku wykonanego w skali 1:50, należy zastosować zasadę proporcji. Skala 1:50 oznacza, że 1 cm na rysunku odpowiada 50 cm w rzeczywistości. W tym przypadku długość ściany wynosi 15 cm, więc rzeczywista długość można obliczyć mnożąc długość na rysunku przez współczynnik skali: 15 cm * 50 = 750 cm, co jest równoznaczne z 7,50 m. Tego typu obliczenia są niezwykle istotne w branży budowlanej oraz architektonicznej, gdzie precyzja jest kluczowa. Używanie odpowiednich skal i umiejętność przeliczania wymiarów to podstawowe umiejętności, które pozwalają na dokładne planowanie oraz realizację projektów budowlanych. W praktyce, znajomość zasad przeliczania skali jest niezbędna do interpretacji rysunków technicznych oraz tworzenia kosztorysów, które są oparte na rzeczywistych wymiarach obiektów. Dodatkowo, znajomość skali umożliwia dokonanie właściwych pomiarów i planów, co jest kluczowe w procesach projektowych oraz budowlanych.

Pytanie 14

Jaką wytrzymałość ma klasa zaprawy na

A. ugięcie
B. przesuwanie
C. ściśnięcie
D. rozciąganie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 15

Która z metod osuszania mokrych ścian nie wymaga ingerencji w ich strukturę?

A. Umieszczanie blachy falistej lub fałdowej w spoinie, pod kątem do lica ściany
B. Wykonanie tynku renowacyjnego po usunięciu starego tynku
C. Podcinanie muru strugą mieszanki cieczy z piaskiem kwarcowym
D. Iniekcja krystaliczna w nawiercone w murze otwory
Wykonanie tynku renowacyjnego po usunięciu tynku istniejącego jest metodą, która nie wymaga naruszania konstrukcji ściany. Tynk renowacyjny ma na celu odbudowę warstwy ochronnej muru oraz poprawę jego właściwości higroskopijnych. Dzięki temu procesowi, wilgoć zgromadzona w murze może być efektywnie odprowadzana na zewnątrz. Tynki renowacyjne są specjalnie zaprojektowane, aby współpracować z materiałem, z którego wykonane są ściany, zapewniając jednocześnie ich wentylację. Przykładowo, w przypadku murów historicznych, zastosowanie tynku wapiennego, który ma zdolność do 'oddychania', pozwala zachować integralność strukturalną budowli. Dodatkowo, stosowanie tynków renowacyjnych jest zgodne z normami konserwatorskimi, co jest niezwykle ważne w przypadku obiektów zabytkowych.

Pytanie 16

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. 15o - 20o
B. w dowolnej
C. < 10o
D. 25o - 30o
Odpowiedź 15o - 20o jest uważana za optymalną temperaturę do prowadzenia robót tynkarskich, ponieważ w tym zakresie można zapewnić odpowiednią plastyczność zaprawy tynkarskiej. W zbyt niskich temperaturach, poniżej 10o, proces wiązania zaprawy jest spowolniony, co może prowadzić do problemów z przyczepnością oraz pęknięć. Z kolei przy temperaturach przekraczających 20o, zwłaszcza w zakresie 25o - 30o, woda w zaprawie może zbyt szybko parować, co skutkuje niepełnym wiązaniem i osłabieniem struktury tynku. Dobry praktyką jest także monitorowanie wilgotności powietrza oraz stosowanie odpowiednich dodatków, które mogą poprawić właściwości zaprawy w trudnych warunkach atmosferycznych. Warto również pamiętać, że zgodnie z normą PN-B-10101, minimalne i maksymalne temperatury dla robót tynkarskich powinny być przestrzegane, aby zapewnić długotrwałość i jakość wykonania.

Pytanie 17

Określona stawka robocizny za 1 m2wykonania tynku maszynowego cementowo-wapiennego wynosi 20 zł, natomiast koszt materiałów to 15 zł/ m2. Oblicz całkowity wydatek na tynkowanie 300 m2ścian?

A. 6 000 zł
B. 15 000 zł
C. 4 500 zł
D. 10 500 zł
Aby obliczyć całkowity koszt tynkowania 300 m² ścian, należy uwzględnić zarówno stawkę robocizny, jak i koszt materiału. Stawka robocizny za 1 m² wynosi 20 zł, co w przypadku 300 m² daje 300 m² * 20 zł/m² = 6000 zł. Koszt materiału wynosi 15 zł za m², co dla 300 m² daje 300 m² * 15 zł/m² = 4500 zł. Sumując te dwa koszty, otrzymujemy całkowity koszt tynkowania: 6000 zł + 4500 zł = 10500 zł. Taki sposób obliczeń jest zgodny z praktykami budowlanymi, gdzie często dzieli się koszty na robociznę i materiały. Wiedza o tym, jak obliczać całkowite koszty projektów budowlanych, jest niezwykle ważna dla planowania budżetu oraz negocjacji z podwykonawcami. Pozwala to na precyzyjne oszacowanie wydatków oraz optymalizację kosztów, co jest kluczowe w branży budowlanej.

Pytanie 18

Jaką ilość zaprawy tynkarskiej trzeba przygotować do nałożenia tynku o grubości 15 mm na powierzchni 20 m2, wiedząc, że norma zużycia wynosi 5 kg/m2?

A. 15 kg
B. 30 kg
C. 50 kg
D. 100 kg
Aby obliczyć ilość zaprawy tynkarskiej potrzebnej do wykonania tynku o grubości 15 mm na powierzchni 20 m2, należy zastosować normę zużycia, która wynosi 5 kg/m2. Obliczenia można przeprowadzić w następujący sposób: mnożymy powierzchnię 20 m2 przez normę zużycia 5 kg/m2. To daje nam 20 m2 * 5 kg/m2 = 100 kg. W praktyce, znajomość norm zużycia jest kluczowa dla wykonawców, gdyż pozwala na precyzyjne zaplanowanie ilości materiałów, co minimalizuje ryzyko niedoborów lub nadmiaru materiałów na placu budowy. Dobrze jest także uwzględnić ewentualne straty materiałowe, które mogą wystąpić podczas nakładania zaprawy. Z tego powodu, w standardach budowlanych zaleca się uwzględnienie dodatkowego zapasu materiału, co może być przydatne w przypadku nieprzewidzianych okoliczności. Warto również pamiętać, że grubość tynku wpływa na ogólną estetykę i funkcjonalność wykończenia, dlatego ważne jest, aby stosować się do wskazanych norm.

Pytanie 19

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 2 520 zł
B. 1 680 zł
C. 3 600 zł
D. 1 800 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 20

Tynk zwykły w trzech warstwach, którego powierzchnia jest gładka, równomierna i ma połysk w ciemnym odcieniu, klasyfikuje się jako tynk kategorii

A. IV
B. III
C. IV f
D. IV w
Tynk kategorii IV w charakteryzuje się równością, gładkością oraz połyskiem, co czyni go idealnym rozwiązaniem w przypadku powierzchni, które mają być estetyczne i łatwe w utrzymaniu. Tynki te są często stosowane w obiektach o wysokich wymaganiach estetycznych, takich jak biura, hotele czy galerie sztuki. Gładka, lśniąca powierzchnia tynku IV w nie tylko podkreśla walory wizualne pomieszczenia, ale także ułatwia konserwację i czyszczenie. Warto dodać, że tynki te mogą być dostępne w różnych odcieniach, co pozwala na łatwe dopasowanie ich do koncepcji aranżacyjnej wnętrza. W branży budowlanej tynki klasy IV w są zgodne z normami jakościowymi, które zapewniają ich trwałość oraz odporność na uszkodzenia. W zastosowaniach praktycznych, ich wykorzystanie w miejscach o dużym natężeniu ruchu oraz narażeniu na zanieczyszczenia jest szczególnie korzystne, ponieważ gładka struktura ogranicza osadzanie się brudu.

Pytanie 21

Izolacje przeciwwilgociowe lekki typ dla ściany piwnicy powinny być wykonane

A. z folii kubełkowej
B. z dwóch warstw lepiku asfaltowego
C. z papy asfaltowej
D. z pojedynczej warstwy folii PVC
Izolacje przeciwwilgociowe w piwnicach to ważny temat, bo przecież wilgoć potrafi naprawdę zaszkodzić budynkom. Lepik asfaltowy jest naprawdę dobrym wyborem, bo tworzy mocną barierę przed wodą. Jak się zastosuje dwie warstwy tego lepiku, to nawet jak jedna się uszkodzi, to druga wciąż działa. Dzięki temu cała izolacja jest dużo trwalsza. Lepik jest dość łatwy w aplikacji, więc nie dziwi mnie, że jest popularny w budownictwie. Normy budowlane, jak PN-EN 13967, podkreślają, że dobrze dobrane materiały do izolacji są kluczowe dla trwałości konstrukcji. Przy aplikacji lepiku ważne jest też, żeby przygotować podłoże i zabezpieczyć je przed uszkodzeniami mechanicznymi, bo to wpływa na jakość wykonania całej izolacji.

Pytanie 22

Tynk dekoracyjny, będący gładką warstwą zaprawy gipsowej na podstawie wapienno-gipsowej, to

A. sztablatura
B. tynk zmywalny
C. sgraffito
D. tynk cyklinowany
Sztablatura to technika wykończeniowa, która polega na nałożeniu gładkiej warstwy zaczynu gipsowego na podkład wapienno-gipsowy. Jest to dość popularna metoda w architekturze wnętrz, szczególnie w obiektach zabytkowych, gdzie ważne jest zachowanie estetyki i tradycyjnego rzemiosła. Warto zaznaczyć, że sztablatura charakteryzuje się wysoką odpornością na wilgoć oraz zdolnością do regulacji mikroklimatu pomieszczeń, co czyni ją idealnym rozwiązaniem do stosowania w różnorodnych warunkach. Zastosowanie sztablatury umożliwia uzyskanie jednolitej, gładkiej powierzchni, która może być następnie malowana lub dekorowana innymi technikami, co podnosi walory estetyczne wnętrza. W praktyce, tynk sztukatorski w formie sztablatury jest często wybierany w projektach, które nawiązują do klasycznych stylów architektonicznych, gdzie szczególnie istotne jest zachowanie autentyczności i detali wykończeniowych.

Pytanie 23

Jaką ilość zaprawy należy przygotować do otynkowania sufitu o wymiarach 4,0 m x 5,0 m, jeśli zapotrzebowanie na zaprawę tynkarską wynosi 4,5 kg na 1 m2?

A. 18,0 kg
B. 94,5 kg
C. 90,0 kg
D. 22,5 kg
Aby obliczyć ilość zaprawy potrzebnej do otynkowania sufitu, najpierw musimy obliczyć jego powierzchnię. Sufit o wymiarach 4,0 m x 5,0 m ma powierzchnię równą 20 m². Następnie, wiedząc, że zużycie zaprawy tynkarskiej wynosi 4,5 kg na 1 m², możemy pomnożyć tę wartość przez powierzchnię sufitu. Wzór na obliczenie zaprawy to: 20 m² x 4,5 kg/m² = 90 kg. Takie obliczenia są kluczowe w pracy budowlanej, ponieważ pozwalają na precyzyjne planowanie materiałów, co z kolei wpływa na efektywność i oszczędności w projekcie. W praktyce, znajomość kosztów materiałów i ich ilości pozwala na lepsze zarządzanie budżetem oraz uniknięcie nadmiarowych wydatków na niepotrzebne zakupy. Ważne jest także, aby przy planowaniu zaprawy tynkarskiej uwzględnić dodatkowe czynniki, takie jak rodzaj podłoża czy technika tynkowania, które mogą wpływać na rzeczywiste zużycie zaprawy. W związku z tym, zawsze warto konsultować się z fachowcami w tej dziedzinie oraz korzystać z wytycznych producentów materiałów budowlanych.

Pytanie 24

Oblicz wydatki na materiał do tynkowania ściany o powierzchni 40 m2, gdy koszt jednego 25-kilogramowego worka suchej mieszanki tynku mineralnego wynosi 35,00 zł, a zużycie tej mieszanki to 2,5 kg/m2?

A. 1 000,00 zł
B. 140,00 zł
C. 100,00 zł
D. 1 400,00 zł
Aby obliczyć koszt materiału do tynkowania ściany o powierzchni 40 m², należy najpierw określić całkowite zużycie suchej mieszanki tynku mineralnego. Skoro zużycie wynosi 2,5 kg/m², to dla powierzchni 40 m² potrzebujemy 40 m² * 2,5 kg/m² = 100 kg tynku. Następnie musimy obliczyć, ile worków tynku potrzebujemy. Ponieważ jeden worek ma 25 kg, dzielimy 100 kg przez 25 kg/worek, co daje nam 4 worki. Koszt jednego worka wynosi 35,00 zł, więc całkowity koszt to 4 worki * 35,00 zł/worek = 140,00 zł. Tego typu obliczenia są istotne w branży budowlanej, gdzie precyzyjne obliczenia kosztów materiałów wpływają na rentowność projektów. Dobrze zrozumiane zasady zużycia materiałów i ich kosztów są kluczowe dla efektywnego planowania budowy i utrzymania budżetu.

Pytanie 25

Tynk dekoracyjny o wielu warstwach i różnorodnych kolorach, w którym barwę wzoru uzyskuje się poprzez skrobanie lub wycinanie odpowiednich górnych warstw to

A. stiuk
B. sztablatura
C. sgraffito
D. sztukateria
Sgraffito to technika zdobnicza, która polega na tworzeniu wzorów w wielowarstwowym tynku poprzez wyskrobanie lub wycięcie wierzchniej warstwy, co pozwala na odsłonięcie dolnych, różnokolorowych warstw. Jest to metoda, która cieszy się dużą popularnością w architekturze i sztuce dekoracyjnej, szczególnie w regionach o bogatej tradycji rzemieślniczej, takich jak Włochy czy Hiszpania. Przykładem zastosowania sgraffito mogą być elewacje budynków, gdzie twórcy wykorzystują tę technikę, aby dodać unikalny charakter i głębię wizualną. Dzięki zastosowaniu różnych kolorów tynku, artyści mogą tworzyć skomplikowane wzory i kompozycje, które przyciągają uwagę przechodniów. Sgraffito może być wykorzystane nie tylko w architekturze, ale również w sztukach plastycznych, takich jak ceramika czy malarstwo, gdzie technika ta pozwala na osiągnięcie złożonych efektów wizualnych. W kontekście standardów budowlanych, ważne jest, aby stosować materiały o wysokiej jakości, co zapewnia trwałość i estetykę wykonania tego typu zdobień.

Pytanie 26

Jeśli wydano 1 000 zł na materiały, a wydatki na robociznę stanowią 80 % kosztów materiałów, to całkowite koszty robocizny i materiałów wynoszą

A. 1 800 zł
B. 1 200 zł
C. 1 020 zł
D. 1 080 zł
Aby obliczyć łączne koszty robocizny i materiałów, należy najpierw określić wysokość kosztów robocizny, które wynoszą 80% od wartości zakupionych materiałów. Koszty materiałów wynoszą 1 000 zł, więc 80% z tej kwoty obliczamy jako 0,8 * 1 000 zł, co daje 800 zł. Następnie dodajemy te koszty do kosztów materiałów, co daje 1 000 zł + 800 zł = 1 800 zł. Takie podejście jest zgodne z dobrymi praktykami w zakresie zarządzania kosztami, które zalecają dokładne wyliczanie wszystkich wydatków związanych z projektem. W kontekście budżetowania, istotne jest uwzględnianie nie tylko bezpośrednich kosztów materiałów, ale także kosztów robocizny, co pozwala na uzyskanie pełnego obrazu finansowego projektu. Przykładem zastosowania tego typu obliczeń jest planowanie budowy, gdzie można oszacować całkowite wydatki przed rozpoczęciem prac, co wpływa na lepsze zarządzanie budżetem.

Pytanie 27

Odpady, które powstają w wyniku demontażu ścian działowych na piętrze w budynku, powinny być

A. składowane w jednym miejscu wewnątrz budynku
B. usuwane na zewnątrz, przy użyciu zbudowanych zsypów
C. układane na stropach w sąsiedztwie okien
D. transportowane na zewnątrz przez okna do podstawionych pojemników
Jasne, że usuwanie gruzu z budowy przez obudowane zsypy to świetny pomysł, zwłaszcza z punktu widzenia bezpieczeństwa i efektywności. Dzięki tym zsypom wszystko odbywa się w uporządkowany sposób. W praktyce to zmniejsza ryzyko, że coś się rozleci i będzie niebezpieczne na placu budowy. Można by powiedzieć, że to wręcz kluczowe, żeby wszystkie prace były dobrze zorganizowane, co z kolei jest zgodne z przepisami BHP. Warto też pomyśleć o przeszkoleniu pracowników, by wiedzieli, jak z tego korzystać, bo to na pewno pomoże uniknąć zagrożeń. No i wszyscy wiemy, że standardy dotyczące zarządzania odpadami są ważne, więc szybkie i bezpieczne usuwanie gruzu to na pewno dobry ruch. Generalnie, obudowane zsypy nie tylko pomagają w porządku, ale także przyspieszają transport materiałów, co wpływa na to, jak szybko skończymy robotę.

Pytanie 28

Na podstawie receptury roboczej oblicz, ile żwiru potrzeba do sporządzenia mieszanki betonowej C12/15, jeżeli pojemność robocza betoniarki wynosi 200 litrów.

Receptura robocza
Składniki na 1 m3 mieszanki betonowej
Beton C12/15
cement:275 kg
piasek:590 kg
żwir:1375 kg
woda:165 l
A. 118 kg
B. 55 kg
C. 33 kg
D. 275 kg
Poprawna odpowiedź to 275 kg, co wynika z obliczeń opartych na recepturze roboczej dla mieszanki betonowej C12/15. W przypadku betoniarki o pojemności 200 litrów, musimy przeliczyć ilość żwiru z przelicznika 1 m³ mieszanki betonowej. Według standardów, ilość żwiru w mieszance C12/15 wynosi 1375 kg na 1 m³. Przeskalowując to do pojemności betoniarki, stosujemy proporcję objętości: 0,2 m³ (200 litrów) razy 1375 kg, co daje 275 kg. Takie obliczenia są istotne w praktyce budowlanej, aby zapewnić właściwe proporcje składników, co wpływa na jakość i trwałość betonu. Zrozumienie receptur betonowych oraz umiejętność przeliczania ich na mniejsze objętości jest kluczowa dla każdego inżyniera budowlanego czy wykonawcy, co pozwala na efektywne i oszczędne gospodarowanie materiałami.

Pytanie 29

Czym charakteryzuje się tynk trójwarstwowy, który składa się z następujących po sobie warstw?

A. 1. narzut, 2. obrzutka, 3. gładź
B. 1. gładź, 2. narzut, 3. obrzutka
C. 1. obrzutka, 2. narzut, 3. gładź
D. 1. gładź, 2. obrzutka, 3. narzut
Tynk trójwarstwowy rzeczywiście składa się z trzech podstawowych warstw: obrzutki, narzutu oraz gładzi. Obrzutka, będąca pierwszą warstwą, ma za zadanie stworzyć odpowiednią przyczepność dla kolejnych warstw tynku. Zwykle jest wykonywana z materiałów o większej ziarnistości, co pozwala na lepsze związywanie się z podłożem. Następnie nakładany jest narzut, który jest warstwą o bardziej jednolitej strukturze, co zapewnia dodatkową izolację i estetykę powierzchni. Gładź, stanowiąca ostatnią warstwę, ma na celu wygładzenie powierzchni oraz nadanie jej odpowiednich właściwości dekoracyjnych. Przykładem zastosowania tynku trójwarstwowego może być renowacja budynków zabytkowych, gdzie zachowanie odpowiednich technik nakładania tynku jest kluczowe dla ochrony oryginalnych elementów architektonicznych. W praktyce, przestrzeganie tej kolejności warstw jest niezbędne do uzyskania trwałej i estetycznej powierzchni, co wpisuje się w standardy budowlane oraz zalecenia producentów materiałów budowlanych, które wskazują na konieczność stosowania się do powyższej technologii.

Pytanie 30

Jakie jest spoiwo w zaprawach mineralnych?

A. silikon
B. cement
C. żywica
D. akryl
Cement jest podstawowym spoiwem zapraw mineralnych, które jest powszechnie stosowane w budownictwie. Jest to materiał wiążący, który po zmieszaniu z wodą i kruszywem tworzy masę, która twardnieje w czasie. W praktyce, zaprawy mineralne, takie jak zaprawy murarskie czy tynkarskie, wykorzystują cement jako kluczowy składnik, ponieważ zapewnia on doskonałą wytrzymałość oraz trwałość konstrukcji. Przykładowo, cement portlandzki, najczęściej stosowany w budownictwie, jest niezbędny do produkcji betonu, który znajduje zastosowanie w fundamentach, stropach oraz innych elementach budowlanych. Zgodnie z normami PN-EN 197-1, cement klasowy CEM I jest najczęściej używany w budownictwie, co potwierdza jego wysoką jakość i funkcjonalność. Dobre praktyki w zakresie stosowania zapraw mineralnych z cementem obejmują odpowiednie przygotowanie podłoża, właściwe proporcje składników oraz zapewnienie odpowiednich warunków do wiązania i twardnienia masy, co ma decydujący wpływ na trwałość i bezpieczeństwo konstrukcji.

Pytanie 31

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. niskich.
B. średniowysokich.
C. wysokich.
D. wysokościowych.
Budynek biurowy, który ma 9 kondygnacji i każda z nich mierzy 3 metry, osiąga całkowitą wysokość 27 metrów. To sprawia, że możemy go uznać za budynek wysoki według przepisów. Wysokie budynki to te, które mają więcej niż 25 metrów, ale mniej niż 55. Dlatego klasyfikacja budynków pod względem ich wysokości jest ważna, zwłaszcza przy projektowaniu lub budowie. Np. odpowiednie normy budowlane, jak PN-EN 1991-1-4, mówią o tym, jak budynek powinien znosić siłę wiatru, co jest mega istotne dla bezpieczeństwa. W przypadku wysokich budynków trzeba też zwrócić uwagę na ewakuację i instalacje przeciwpożarowe, a także na to, jak budynek jest zaprojektowany w kontekście ochrony środowiska czy efektywności energetycznej. Dobrze jest zrozumieć te zasady, bo pomagają one architektom i inżynierom w tworzeniu bezpiecznych i funkcjonalnych konstrukcji.

Pytanie 32

Podczas budowy ściany o wysokości do 2,5 m konieczne jest użycie rusztowania

A. na wysuwnicach
B. na kozłach
C. ramowego
D. wiszącego
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowania tego typu są najczęściej stosowane przy murowaniu ścian o wysokości do 2,5 m. Kozły zapewniają stabilność i umożliwiają swobodne poruszanie się pracowników podczas prac budowlanych. W przypadku murowania, gdzie precyzja i kontrola są kluczowe, kozły umożliwiają łatwe dostosowanie wysokości oraz zapewniają wystarczającą powierzchnię roboczą na materiał. Dobrze zbudowane kozły powinny posiadać odpowiednie certyfikaty zgodności z normami bezpieczeństwa, takimi jak PN-EN 12811, co gwarantuje ich wytrzymałość i bezpieczeństwo użytkowania. Przykładem zastosowania może być budowa domu jednorodzinnego, gdzie robotnicy mogą łatwo ustawiać kozły w różnych miejscach, co przyspiesza i ułatwia proces murowania. Dodatkowo, korzystając z kozłów, można efektywnie wykorzystać przestrzeń roboczą, co jest niezwykle istotne na małych placach budowy.

Pytanie 33

Tynki, które nie są przeznaczone do malowania na całej powierzchni, powinny

A. być wolne od smug i plam, dopuszczalne są niewielkie różnice w intensywności koloru.
B. posiadać jednolitą barwę, dopuszczalne są niewielkie plamy.
C. posiadać jednolitą barwę, dopuszczalne są niewielkie smugi.
D. posiadać jednolitą barwę bez smug i plam.
Odpowiedź 'mieć barwę o jednakowym natężeniu bez smug i plam' jest prawidłowa, ponieważ tynki, które nie są przewidziane do malowania, powinny charakteryzować się równomierną barwą na całej powierzchni. W praktyce oznacza to, że wszelkie niedoskonałości, takie jak smugi czy plamy, mogą wskazywać na niewłaściwe nałożenie tynku, co może prowadzić do estetycznych defektów końcowego wykończenia. W standardach budowlanych oraz w dobrych praktykach związanych z wykończeniem wnętrz, zapewnienie jednolitego wykończenia powierzchni jest kluczowe dla uzyskania wysokiej jakości estetycznej. W przypadku tynków, które mają być później malowane, konieczne jest, aby ich powierzchnia była idealnie gładka i jednolita, co pozwala na równomierne wchłanianie farby i zapobiega powstawaniu plam. Przykładem zastosowania tej zasady może być tynk dekoracyjny, który po nałożeniu powinien być dokładnie wygładzony, aby nie powodować różnic w odcieniach przy późniejszym malowaniu.

Pytanie 34

Jakie narzędzie jest używane do aplikacji tynków cienkowarstwowych na ścianie?

A. kaelnia trójkątna
B. kaelnia trapezowa
C. paca ze stali nierdzewnej
D. paca stalowa z ząbkami
Paca ze stali nierdzewnej jest narzędziem specjalistycznym, które znajduje zastosowanie w nakładaniu tynków cienkowarstwowych na ściany. Wykonana ze stali nierdzewnej, charakteryzuje się odpornością na korozję oraz trwałością, co sprawia, że jest idealna do pracy z materiałami tynkarskimi, które mogą zawierać substancje chemiczne. Jej gładka powierzchnia pozwala na równomierne rozprowadzanie tynku, co jest kluczowe dla uzyskania estetycznego i funkcjonalnego wykończenia. W praktyce, użycie pacy ze stali nierdzewnej umożliwia precyzyjne wygładzanie i formowanie tynku, co ma bezpośredni wpływ na jakość powierzchni ściany oraz jej trwałość. Zgodnie z najlepszymi praktykami w branży budowlanej, należy także pamiętać o regularnym czyszczeniu narzędzi, aby uniknąć zanieczyszczeń, które mogą wpłynąć na końcowy efekt pracy. Dodatkowa wiedza na temat różnorodnych rodzajów tynków oraz technik ich aplikacji może jeszcze bardziej usprawnić proces tynkowania, a odpowiedni dobór narzędzi jest kluczowy dla osiągnięcia pożądanych rezultatów.

Pytanie 35

Ile zaprawy do cienkowarstwowego murowania należy zastosować przy budowie ściany o wymiarach 3 m × 12 m z bloczków Silka Tempo o szerokości 24 cm, jeżeli zużycie zaprawy dla muru o tej grubości wynosi 1,2 kg na 1 m2?

A. 43,2 kg
B. 28,8 kg
C. 86,4 kg
D. 10,4 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania ściany o wymiarach 3 m × 12 m, najpierw musimy obliczyć powierzchnię ściany. Powierzchnia ta wynosi 3 m × 12 m = 36 m². Znając zużycie zaprawy wynoszące 1,2 kg na 1 m², możemy obliczyć całkowitą ilość zaprawy: 36 m² × 1,2 kg/m² = 43,2 kg. To obliczenie opiera się na standardach budowlanych, które zalecają przestrzeganie określonych wartości zużycia materiałów w zależności od ich grubości i rodzaju. W praktyce, odpowiednie obliczenia pozwalają uniknąć niedoborów materiałów podczas budowy oraz zapewniają odpowiednią jakość muru. Warto również pamiętać, że różne rodzaje zaprawy mogą mieć różne właściwości, co wpływa na ich zużycie, dlatego zawsze warto posiłkować się danymi producenta. Wymagania te są szczególnie istotne w przypadku budowy obiektów, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla bezpieczeństwa i trwałości konstrukcji.

Pytanie 36

Który z elementów budynku przedstawiono na rysunku?

Ilustracja do pytania
A. Attykę.
B. Gzyms.
C. Pilaster.
D. Cokół.
Pilaster to element architektoniczny, który łączy w sobie cechy kolumny i ściany. Na przedstawionym rysunku widzimy pilaster, który jest wtopiony w mur i pełni zarówno funkcję dekoracyjną, jak i nośną. Pilastry są często stosowane w architekturze klasycznej, aby wzmocnić wizualnie budynek oraz podkreślić jego pionowe akcenty. W praktyce, pilastry mogą być używane do podtrzymywania belkowania bądź jako elementy dekoracyjne w elewacjach, co wpisuje się w zasady harmonii i proporcji w architekturze. Dobrą praktyką jest stosowanie pilastrów w proporcjach zgodnych z zasadami złotego podziału, co pozwala na osiągnięcie estetycznego i zrównoważonego efektu. Warto również zauważyć, że pilastry mogą mieć różne formy, w tym różne stylizacje kapiteli, co czyni je wszechstronnym elementem w projektowaniu budynków, od klasycznych po nowoczesne. Dlatego odpowiedź 'Pilaster' jest jak najbardziej trafna.

Pytanie 37

Jeśli w dokumentacji technicznej stwierdzono: "(...) ściany zewnętrzne jednowarstwowe z ceramiki poryzowanej łączonej na pióro i wpust na zaprawie ciepłochronnej (T)(...)", to co to oznacza dla wykonywanego muru w kontekście spoin?

A. pionowe w każdej warstwie
B. poziome oraz pionowe w pierwszej warstwie, a w wyższych jedynie pionowe
C. poziome w każdej warstwie
D. poziome oraz pionowe w miejscach łączenia bloczków
Analizując inne odpowiedzi, można zauważyć kilka nieporozumień dotyczących wykonania spoin w murze z ceramiki poryzowanej. Wskazanie jedynie spoin pionowych we wszystkich warstwach jest niewystarczające, gdyż nie uwzględnia kluczowej roli spoin poziomych, które są istotne w kontekście stabilności budowli. Spoina pionowa w każdej warstwie może sugerować, że nie ma potrzeby zapewnienia dodatkowej odporności na czynniki zewnętrzne, takie jak wilgoć czy zmiany temperatury, co jest błędnym założeniem. Ponadto, odpowiedź mówiąca o wykonaniu wyłącznie spoin poziomych we wszystkich warstwach pomija aspekt docięcia bloczków, co znacząco wpływa na charakterystykę muru. Miejsca, w których bloczki są cięte, wymagają staranniejszego podejścia, aby zapewnić ciągłość konstrukcyjną, co oznacza potrzebę wykonania zarówno spoin poziomych, jak i pionowych. Również wskazanie, że w pierwszej warstwie powinny być wykonane spoiny poziome, a powyżej jedynie pionowe, jest mylące, ponieważ w każdej warstwie należy dbać o zarówno typy spoin, co jest zgodne z zasadami budownictwa. Ważne jest, aby podczas budowy stosować się do standardów, które zapewniają nie tylko stabilność, ale także efektywność energetyczną budynku.

Pytanie 38

Jak należy przygotować suchą zaprawę murarską do użycia?

A. spoiwo, piasek oraz ewentualne dodatki są odmierzane na sucho w betoniarni, a na miejscu budowy trzeba jedynie dodać wodę i wymieszać
B. wszystkie składniki zaprawy są odważane i mieszane w betoniarni
C. piasek i woda są odmierzane w betoniarni, a na miejscu budowy należy dodać spoiwo i wymieszać
D. wszystkie składniki zaprawy są odważane i mieszane na miejscu budowy
Wiele z błędnych koncepcji dotyczących przygotowania suchej zaprawy murarskiej wynika z niepełnego zrozumienia procesu technologicznego i wymagań dotyczących jakości materiałów budowlanych. Odmierzanie wszystkich składników na placu budowy, jak wskazuje jedna z odpowiedzi, może prowadzić do niejednorodności mieszanki i błędów w proporcjach, co negatywnie wpłynie na wytrzymałość i trwałość zaprawy. Na placu budowy trudniej jest osiągnąć spójność, ponieważ warunki atmosferyczne mogą wpłynąć na sposób mieszania oraz na ilość wody dodawanej do mieszanki. Ponadto, pominięcie etapu wcześniejszego wymieszania wszystkich składników w betoniarni, gdzie można kontrolować jakość piasku i spoiwa, zwiększa ryzyko wykorzystania materiałów o różnej granulacji czy zanieczyszczeń, co może być szkodliwe dla konstrukcji. Inne nieprawidłowe podejście, polegające na dodawaniu piasku i wody w betoniarni, a następnie dołożeniu spoiwa na placu budowy, prowadzi do problemów z jednorodnością zaprawy. W takiej sytuacji spoiwo może nie zostać dokładnie wymieszane z pozostałymi składnikami, co skutkuje niespójną jakością zaprawy. Kluczowe jest zrozumienie, że każda zmiana w procesie przygotowania materiałów budowlanych może wpłynąć na finalny wynik, a tym samym na bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 39

Perlit to lekki materiał stosowany w mieszankach tynkarskich?

A. termicznych
B. wzorzystych
C. odpornościowych
D. przestrzennych
Perlit to kruszywo lekkie, które jest wykorzystywane w budownictwie, szczególnie w zaprawach tynkarskich, ze względu na swoje doskonałe właściwości termoizolacyjne. Dzięki swojej strukturze, perlit posiada niską przewodność cieplną, co sprawia, że idealnie nadaje się do stosowania w systemach ociepleń budynków. Przykładowo, tynki z dodatkiem perlitu mogą znacznie zwiększyć efektywność energetyczną budynku, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska. W praktyce, perlit jest często stosowany w mieszankach tynkarskich, które są nakładane na ściany wewnętrzne i zewnętrzne, a także w systemach ociepleń zewnętrznych. Standardy budowlane często zalecają wykorzystanie takich materiałów do poprawy komfortu cieplnego oraz redukcji kosztów ogrzewania. Dodatkowo, perlit wykazuje również wysoką odporność na działanie ognia, co czyni go jeszcze bardziej atrakcyjnym w zastosowaniach budowlanych.

Pytanie 40

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Gipsu budowlanego
B. Wapna pokarbidowego
C. Wapna hydraulicznego
D. Gipsu szpachlowego
Wybór wapna hydraulicznego do wykonania tynku zewnętrznego w miejscach narażonych na działanie wilgoci jest uzasadniony jego właściwościami. Wapno hydrauliczne jest spoiwem, które w przeciwieństwie do wapna gaszonego, może twardnieć zarówno na powietrzu, jak i pod wodą, co czyni je idealnym do zastosowań na zewnątrz budynków. Działa to na korzyść trwałości tynku, który musi znosić zmienne warunki atmosferyczne, w tym deszcz i wilgoć. Przykładem zastosowania wapna hydraulicznego może być tynkowanie fundamentów budynków oraz murów piwnicznych, gdzie narażenie na wodę gruntową jest intensywne. W obiektach zabytkowych, gdzie zachowanie tradycyjnych metod budowlanych jest niezwykle istotne, wapno hydrauliczne jest również preferowane ze względu na swoje właściwości paroprzepuszczalne, co pozwala na odprowadzanie wilgoci bez uszkadzania struktury budynku. Warto również wspomnieć, że zgodnie z normami budowlanymi, stosowanie wapna hydraulicznego spełnia wymogi dotyczące ochrony przed wilgocią, co potwierdzają odpowiednie badania i certyfikaty. Dlatego wapno hydrauliczne stanowi najlepszy wybór do tynków w trudnych warunkach atmosferycznych.