Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 4 lutego 2026 21:44
  • Data zakończenia: 4 lutego 2026 21:54

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. układanie w pozycji bocznej
B. udrożnienie dróg oddechowych
C. sztuczne oddychanie
D. masaż serca
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 2

Luty miękkie obejmują luty

A. srebrne
B. miedziano-fosforowe
C. cynowo-ołowiowe i bezołowiowe
D. mosiężne
Odpowiedź dotycząca lutów cynowo-ołowiowych i bezołowiowych jako luty miękkie jest prawidłowa, ponieważ te materiały są powszechnie stosowane w procesach lutowania ze względu na swoje właściwości. Luty cynowo-ołowiowe zawierają stop cynku i ołowiu, co sprawia, że mają niską temperaturę topnienia, co czyni je łatwymi w użyciu w elektronice, gdzie precyzyjne połączenia są kluczowe. Luty bezołowiowe, stosowane w odpowiedzi na regulacje dotyczące ograniczenia użycia ołowiu, zyskały popularność w branży elektronicznej, a ich zastosowanie jest zgodne z normami RoHS. W praktyce, proces lutowania tymi materiałami wymaga odpowiednich technik, aby zapewnić trwałość i elektryczną ciągłość połączeń. Dodatkowo, w ramach standardów IPC, określono wytyczne dotyczące stosowania lutów, co zabezpiecza jakość komponentów elektronicznych oraz ich odporność na czynniki zewnętrzne. Zrozumienie typów lutów i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w obszarze elektroniki.

Pytanie 3

Awaria telewizora, manifestująca się brakiem możliwości regulacji geometrii, balansu bieli oraz zniknięciem niektórych opcji w menu użytkownika (np. brakiem opcji zmiany systemu odbioru dźwięku) wskazuje na

A. utracie z pamięci danych.
B. pęknięciu ścieżek łączących.
C. zimnych lub przegrzanych lutach.
D. braku kontaktu w złączach typu wysuwanego.
Wybór odpowiedzi dotyczącej pęknięcia ścieżek połączeniowych wskazuje na błędne zrozumienie przyczyn problemów z regulacją geometrii oraz balansu bieli. Pęknięcia w ścieżkach mogą prowadzić do całkowitego braku sygnału, ale niekoniecznie powodują utratę funkcji w menu, jak w przypadku opisanego problemu. Zimne lub przegrzane luty są inną powszechną przyczyną awarii, jednak objawy, które opisano w pytaniu, są bardziej zgodne z uszkodzeniem pamięci niż z problemem lutowniczym. Zimne luty mogą powodować niestabilność w działaniu, ale nie prowadzą do całkowitej utraty danych z pamięci. Brak kontaktu w złączach typu wysuwanego może wprawdzie wpływać na odbiór sygnału, ale również nie powinien wpływać na funkcje w menu. Wybierając błędne odpowiedzi, można wpaść w pułapkę myślenia przyczynowo-skutkowego, gdzie błędnie interpretowane objawy prowadzą do niewłaściwych diagnoz. Kluczowe jest zrozumienie, że problemy z pamięcią mogą być wywołane przez kilka różnych czynników, a ich efekty będą się różnić od symptomów wskazujących na uszkodzenia fizyczne połączeń. Umiejętność poprawnego identyfikowania tych symptomów jest niezbędna w diagnostyce sprzętu RTV.

Pytanie 4

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Montażu wtyków RJ na przewodach typu skrętka.
B. Zaciskania konektorów na przewodach elektrycznych.
C. Usuwania warstwy ochronnej z włókien światłowodowych.
D. Usuwania izolacji z końców przewodów koncentrycznych.
Niepoprawne odpowiedzi wskazują na pewne nieporozumienia dotyczące zastosowań narzędzi do obróbki przewodów. Opcje związane z montażem wtyków RJ oraz zaciskaniem konektorów odnoszą się do zupełnie innych działań i narzędzi. Montaż wtyków RJ wymaga wykorzystania specjalnych zaciskarek, które są zaprojektowane w celu trwałego połączenia żył miedzianych z wtykiem. Te narzędzia mają za zadanie zapewnić solidne połączenie elektryczne, które jest niezbędne w sieciach komputerowych, ale nie mają zastosowania w kontekście usuwania izolacji. Z kolei zaciskanie konektorów dotyczy przewodów elektrycznych, gdzie konektory są zakładane na końce przewodów w celu zapewnienia prawidłowego połączenia w obwodach elektrycznych. Te procesy są istotne, ale nie są związane z funkcją strippera, którego głównym zadaniem jest usuwanie izolacji. Odpowiedzi sugerujące usuwanie warstwy ochronnej z włókien światłowodowych również dowodzą braku zrozumienia, ponieważ technologia włókien światłowodowych wymaga zupełnie innych narzędzi, takich jak striptizer do włókien, który jest zaprojektowany do delikatnej obróbki włókien optycznych. Te różnice w narzędziach i ich zastosowaniach podkreślają znaczenie znajomości specyfiki narzędzi i ich przeznaczenia w pracy z różnymi rodzajami przewodów.

Pytanie 5

Jakiego typu złącza mogą być zaciskane przy pomocy narzędzia przedstawionego na zdjęciu?

Ilustracja do pytania
A. TNC
B. HDMI
C. RJ-45
D. BNC
Zrozumienie zastosowania różnych typów złącz jest kluczowe dla skutecznego zarządzania infrastrukturą sieciową. Odpowiedzi takie jak BNC, TNC czy HDMI mogą wzbudzać pewne zamieszanie w kontekście użycia narzędzi do zaciskania, jednak każda z nich ma swoje specyficzne zastosowania, które różnią się znacząco od RJ-45. Złącza BNC i TNC są często wykorzystywane w systemach telewizyjnych oraz komunikacji radiowej, gdzie kluczowe staje się połączenie sygnałów analogowych, a ich instalacja odbywa się przy użyciu innych metod, takich jak lutowanie. Z kolei złącze HDMI jest standardem dla cyfrowego przesyłu dźwięku i obrazu, które nie wymaga zaciskania, lecz korzysta z gotowych kabli i wtyków, co czyni jego użycie wygodnym, ale nie związanym z procesem zaciskania. Typowe błędy myślowe, które prowadzą do pomyłek w wyborze odpowiednich narzędzi, związane są często z brakiem zrozumienia różnic technologicznych między tymi złączami. Każde złącze ma swoje unikalne właściwości i wymagania dotyczące instalacji, co powinno być uwzględniane w praktyce inżynieryjnej. Zrozumienie tych różnic nie tylko zwiększa efektywność pracy, ale również zapobiega problemom związanym z niekompatybilnością.

Pytanie 6

Jaki układ pracy wzmacniacza przedstawiono na schemacie?

Ilustracja do pytania
A. Całkujący.
B. Sumujący.
C. Różniczkujący.
D. Nieodwracający.
Wybór odpowiedzi nieprawidłowej dla tego pytania może wynikać z nieporozumienia dotyczącego różnicy między układami sumującymi, różniczkującymi a całkującymi. Układ sumujący, który mógł zostać pomylony z całkującym, ma na celu dodawanie kilku sygnałów wejściowych, co różni się od integracji sygnału. W praktyce, wzmacniacze sumujące są używane w zastosowaniach, gdzie konieczne jest łączenie różnych źródeł sygnału, co nie ma związku z charakterystyką całkowania. Z kolei układ różniczkujący, również nieprawidłowy w tym kontekście, działa na zasadzie obliczania pochodnej sygnału wejściowego, co prowadzi do generowania wyjścia proporcjonalnego do szybkości zmian sygnału. Wzmacniacze różniczkujące są stosowane w systemach, które wymagają pomiaru zmian wartości sygnału, co znów nie jest zgodne z działaniem układu całkującego. Warto również zauważyć, że wybór odpowiedzi 'nieodwracający' jest błędny, ponieważ układ ten nie zmienia charakterystyki czasowej sygnału, a jedynie powiela go w fazie. Kluczowe jest zrozumienie, że różne układy wzmacniaczy operacyjnych mają swoje specyficzne zastosowania i różnice w działaniu. Dlatego tak istotne jest dokładne zapoznanie się z ich właściwościami oraz praktycznymi zastosowaniami.

Pytanie 7

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. cyny
B. pasty lutowniczej
C. ołowiu
D. kalafonii
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 8

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Programowanie
B. Regulacja parametrów
C. Czyszczenie
D. Pomiary sprawdzające
Programowanie to głównie takie zajęcie, które polega na tworzeniu i zmienianiu oprogramowania, co pozwala na sterowanie różnymi urządzeniami elektronicznymi. Kiedy mówimy o konserwacji tych urządzeń, to programowanie nie wchodzi w skład typowych działań konserwacyjnych. Tu chodzi o to, żeby sprzęt działał jak należy, więc skupiamy się na czyszczeniu, regulacji i przeprowadzaniu różnych sprawdzeń. Na przykład, czyszczenie wentylatorów czy złączy to coś, co naprawdę może pomóc uniknąć przegrzewania się urządzenia. A regulacja parametrów? To sposób na dostosowanie sprzętu do zmieniających się warunków, co ma ogromne znaczenie dla wydajności. Więc, programowanie jest ważne, ale nie dotyczy bezpośrednio codziennych zadań związanych z konserwacją, które mają na celu utrzymanie sprzętu w dobrej formie.

Pytanie 9

Przedstawiony na rysunku symbol graficzny dotyczy czujnika

Ilustracja do pytania
A. magnetycznego.
B. piezoelektrycznego.
C. pojemnościowego.
D. indukcyjnego.
Wybór czujnika indukcyjnego, pojemnościowego lub piezoelektrycznego nie jest zgodny z przedstawionym symbolem graficznym. Czujniki indukcyjne działają na zasadzie wykrywania zmian w polu elektromagnetycznym i są typowo stosowane do detekcji metali, a nie do pomiaru pola magnetycznego. Ich zastosowanie ogranicza się głównie do obiektów metalowych, co czyni je mniej uniwersalnymi w kontekście detekcji obiektów nieferromagnetycznych. Z kolei czujniki pojemnościowe polegają na pomiarze zmian pojemności elektrycznej i są wykorzystywane głównie do detekcji obiektów dielektrycznych, co również nie ma związku z detekcją pola magnetycznego. Ostatecznie, czujniki piezoelektryczne działają na zasadzie generowania napięcia pod wpływem deformacji mechanicznej, co również nie odpowiada funkcji czujnika magnetycznego. Użycie tych technologii w kontekście przedstawionego symbolu prowadzi do nieporozumień, ponieważ każda z nich ma swoje specyficzne zastosowanie, które nie pokrywa się z funkcją czujnika magnetycznego. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru czujników w różnych aplikacjach przemysłowych i automatyce.

Pytanie 10

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. filtra.
B. stabilizatora.
C. wzmacniacza.
D. zasilacza.
Wybór wzmacniacza, zasilacza lub stabilizatora jako odpowiedzi na pytanie jest wynikiem nieporozumienia dotyczącego funkcji oraz symboli graficznych używanych w schematach elektrycznych. Wzmacniacz, na przykład, ma na celu zwiększenie amplitudy sygnału, co jest reprezentowane przez inny symbol graficzny, zazwyczaj z charakterystycznymi oznaczeniami wzmocnienia. Zasilacz natomiast dostarcza energię elektryczną do obwodów, a jego symbol często przedstawia prostokąt z odniesieniami do napięcia lub mocy. Stabilizatory służą do utrzymania stałego poziomu napięcia, co jest krytyczne w wielu aplikacjach, ale symbolizują je różne oznaczenia, które nie mają nic wspólnego z falistą linią wewnątrz prostokąta. Typowym błędem myślowym jest konfudowanie ról i funkcji tych komponentów, co prowadzi do niepoprawnych wniosków. Zrozumienie, że każdy z tych elementów ma odmienny cel i specyfikę pracy, jest kluczowe dla inżynierów i techników, którzy muszą poprawnie interpretować symbolikę stosowaną w dokumentacji technicznej. Bez tej wiedzy można łatwo wprowadzić się w błąd, co w praktyce prowadzi do nieefektywnych rozwiązań i problemów technicznych.

Pytanie 11

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. wykonanych z elastycznych tworzyw sztucznych
B. odpornych na wysoką temperaturę
C. zasilanych akumulatorowo
D. izolowanych
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 12

Jaki sposób postępowania z wykorzystanymi kineskopami telewizorów jest zgodny z normami ochrony środowiska?

A. Zabranie ich bezpośrednio na wysypisko.
B. Wrzucenie do pojemnika na szkło.
C. Przekazanie do firmy zajmującej się utylizacją niebezpiecznych odpadów.
D. Wrzucenie do pojemnika na odpady plastikowe.
Wyrzucenie zużytych kineskopów telewizorów do pojemnika na odpady szklane, wywiezienie ich na wysypisko śmieci czy też do pojemnika na odpady z tworzyw sztucznych jest niewłaściwe z kilku kluczowych powodów. Po pierwsze, kineskopy nie są jedynie odpadami szklanymi, ponieważ zawierają niebezpieczne substancje chemiczne. Umieszczając je w pojemniku na szkło, narażamy osoby zajmujące się segregacją i przetwarzaniem odpadów na kontakt z toksycznymi substancjami. Ponadto, takie działanie może prowadzić do nieodwracalnych zanieczyszczeń środowiska, w tym gleby i wód gruntowych. Wyrzucenie kineskopów na wysypisko śmieci jest także niewłaściwe, gdyż odpady te wymagają szczególnego traktowania i nie powinny trafiać do standardowych miejsc składowania odpadów. Wysypiska nie są przystosowane do radzenia sobie z niebezpiecznymi materiałami, co może skutkować ich uwolnieniem do środowiska. W przypadku umieszczania kineskopów w pojemnikach na odpady z tworzyw sztucznych również dochodzi do naruszenia przepisów, jako że takie odpady mają inny skład chemiczny i nie mogą być mieszane z innymi typami materiałów. Niezgodność z przepisami dotyczącymi ochrony środowiska prowadzi nie tylko do potencjalnych kar finansowych, ale także stwarza zagrożenie dla zdrowia publicznego oraz ekosystemu. Zrozumienie, że kineskopy są odpadami niebezpiecznymi, jest kluczowe dla podejmowania odpowiednich działań w zakresie ich utylizacji.

Pytanie 13

Przedstawione na fotografii narzędzie służy do

Ilustracja do pytania
A. ściągania izolacji z przewodów.
B. krępowania wyprowadzeń.
C. zagniatania końcówek na przewodach.
D. cięcia przewodów.
Odpowiedź "cięcia przewodów" jest prawidłowa, ponieważ narzędzie przedstawione na fotografii to szczypce boczne, które są specjalistycznym narzędziem zaprojektowanym z myślą o precyzyjnym cięciu różnych materiałów, w tym przewodów elektrycznych. Szczypce boczne mają charakterystyczne ostrza uformowane w sposób, który umożliwia cięcie drutów bez ich rozwarstwiania czy deformacji. W praktyce narzędzie to jest szeroko stosowane w instalacjach elektrycznych, gdzie precyzyjne cięcie przewodów jest kluczowe dla zapewnienia ich trwałości i bezpieczeństwa. W branży elektrycznej ważne jest, aby stosować odpowiednie narzędzia zgodnie z zaleceniami, a szczypce boczne są zgodne z normami bezpieczeństwa, co czyni je niezawodnym wyborem. Warto również wspomnieć, że używanie odpowiednich narzędzi do cięcia przewodów przyczynia się do zmniejszenia ryzyka uszkodzenia przewodów, co jest szczególnie istotne w kontekście prowadzenia instalacji w trudnych warunkach.

Pytanie 14

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. HDMI
B. DVI
C. S-Video
D. BNC
Podczas analizy nieprawidłowych odpowiedzi, warto zwrócić uwagę na złącze BNC, które jest używane przede wszystkim w systemach wideo analogowymi i w telekomunikacji. Jego konstrukcja opiera się na okrągłym gnieździe z prominentną, szybko demontowalną końcówką, co sprawia, że jest idealny w kontekście przesyłania sygnałów RF (radio frequency) oraz sygnałów wideo w standardzie CVBS. Takie podejście do przesyłania sygnału nie jest odpowiednie dla nowoczesnych zastosowań wideo high-definition, które wymagają znacznie większej jakości obrazu. S-Video, z kolei, to złącze analogowe, które przesyła sygnał wideo w osobnych kanałach luminancji i chrominancji, co poprawia jakość przesyłanego obrazu w porównaniu do standardowego Composite Video, ale w dalszym ciągu nie dorównuje jakości sygnału cyfrowego oferowanego przez DVI. HDMI, będąc bardziej nowoczesnym standardem, obsługuje zarówno sygnał wideo, jak i audio, a jego złącze różni się nie tylko kształtem, ale także funkcjonalnością, oferując bardziej zaawansowane możliwości, takie jak 3D oraz Ethernet. Typowe błędy myślowe przy wyborze tych złącz polegają na mylącym rozumieniu ich zastosowania oraz ograniczeń – na przykład, użytkownicy mogą błędnie sądzić, że złącze S-Video jest wystarczające do przesyłania sygnałów w wysokiej rozdzielczości, co jest nieprawdziwe. Ważne jest, aby przy wyborze złącza wziąć pod uwagę specyfikacje techniczne oraz wymagania dotyczące jakości sygnału, aby zapewnić optymalne rezultaty w przypadku urządzeń multimedialnych.

Pytanie 15

W procesie lutowania komponentów elektronicznych topnik stosuje się w celu

A. chemicznego oczyszczenia powierzchni łączonych metali
B. zwiększenia przewodności elektrycznej spoiny lutowniczej
C. obniżenia temperatury topnienia lutowia
D. polepszenia twardości spoiny lutowniczej
Topnik jest substancją chemiczną, której główną funkcją podczas lutowania jest chemiczne oczyszczenie powierzchni łączonych metali. W procesie lutowania, metalowe powierzchnie muszą być dokładnie oczyszczone z tlenków, zanieczyszczeń oraz innych osadów, które mogą utrudniać prawidłowe połączenie. Topniki, takie jak kalafonia, są używane, aby zapewnić, że powierzchnie będą wolne od tlenków i innych zanieczyszczeń, co pozwala na lepszą adhezję stopu lutowniczego. Przykładem może być lutowanie elementów w elektronice, gdzie niewłaściwe przygotowanie powierzchni może prowadzić do słabych połączeń i awarii urządzeń. Dobre praktyki branżowe sugerują stosowanie topników o odpowiednich właściwościach chemicznych, które są zgodne z normami IPC (Institute of Printed Circuits), aby zapewnić wysoką jakość połączeń lutowniczych. Dodatkowo, stosowanie topników może również umożliwić obniżenie temperatury lutowania, co jest korzystne w przypadku elementów wrażliwych na wysokie temperatury. Warto również wspomnieć, że po lutowaniu, pozostałości topnika powinny być odpowiednio usunięte, aby zapobiec korozji i innym problemom z działaniem urządzenia.

Pytanie 16

Jakie zabezpieczenie przed uszkodzeniem lutowanego elementu powinno być użyte podczas przyłączenia tranzystora CMOS do płyty głównej telewizora?

A. Założenie opaski uziemiającej na rękę
B. Wykorzystanie spoiwa o niższej temperaturze topnienia do lutowania
C. Noszenie okularów ochronnych
D. Pokrycie końcówek tranzystora pastą termoprzewodzącą
Nałożenie pasty termoprzewodzącej na końcówki tranzystora to coś, co zazwyczaj robi się przy elementach, które grzeją się mocno, jak tranzystory mocy. W przypadku tranzystorów CMOS, które się używa w aplikacjach o niskim poborze mocy, pasta termoprzewodząca raczej nie przynosi korzyści, a czasami nawet może namieszać, bo zanieczyści obwód. Choć noszenie okularów ochronnych jest ważne dla bezpieczeństwa podczas lutowania, to nie chroni tranzystora przed ESD. Musimy zdawać sobie sprawę, że ochrona przed ładunkami elektrostatycznymi to priorytet. Użycie spoiwa o niższej temperaturze topnienia może pomóc w uniknięciu przegrzania, ale nie zwalnia nas to z obowiązku uziemienia. Niektórzy myślą, że wystarczy coś dodać, jak pasta, żeby zapewnić bezpieczeństwo komponentom ESD, a to nie tak. Wszystkie środki ochrony muszą być stosowane razem, a nie wybiórczo.

Pytanie 17

Mostek Graetza stanowi przykład

A. generatora
B. stabilizatora
C. zasilacza
D. prostownika
Mostek Graetza, znany również jako mostek prostowniczy, jest układem elektronicznym składającym się z czterech diod, który służy do prostowania prądu zmiennego na prąd stały. Jego działanie polega na tym, że diody przewodzą prąd tylko w jednym kierunku, co pozwala na eliminację ujemnych połówek fali prądu zmiennego. W rezultacie, na wyjściu mostka uzyskujemy stały sygnał, którego amplituda jest dwukrotnie większa niż w przypadku pojedynczego prostownika. Mostek Graetza znajduje szerokie zastosowanie w zasilaczach, gdzie konieczne jest przekształcenie prądu zmiennego z sieci na prąd stały, który można wykorzystać do zasilania urządzeń elektronicznych. Dodatkowo, w przypadku zastosowań w systemach audio i w urządzeniach elektronicznych, mostki prostownicze są kluczowe dla zapewnienia stabilnych napięć. Dobrze zaprojektowany mostek prostowniczy zapewnia nie tylko efektywność, ale także bezpieczeństwo, zmniejszając ryzyko przeciążenia układu. W branży obowiązują określone standardy dotyczące doboru komponentów oraz projektowania układów prostowniczych, co gwarantuje ich niezawodność i długoterminową funkcjonalność.

Pytanie 18

Jak nazywa się program wykorzystywany do wyszukiwania błędów w kodach napisanych w asemblerze?

A. debuggerem
B. linkerem
C. kompilatorem
D. konwerterem
Linker jest narzędziem odpowiedzialnym za łączenie różnych modułów kodu w jeden plik wykonywalny, jednak nie wykrywa błędów w kodzie, a jedynie łączy skompilowane jednostki kodu. Konwerter, w kontekście programowania, może odnosić się do narzędzi przekształcających kod z jednego języka na inny, co również nie ma związku z wykrywaniem błędów. Kompilator to program, który przekształca kod źródłowy napisany w języku wysokiego poziomu na kod maszynowy, ale jego główną funkcją nie jest debugowanie, a raczej generowanie kodu. Użytkownicy często mylą te terminy z powodu ich złożonego charakteru i różnorodności zastosowań w procesie tworzenia oprogramowania. W rzeczywistości, debugging jest procesem, który wymaga specyficznych narzędzi i podejść, które umożliwiają programistom analizę i interakcję z działającym programem. Często można spotkać programistów, którzy mylnie sądzą, że kompilatory i linkery są wystarczające do identyfikacji problemów w kodzie. Takie podejście prowadzi do błędnych wniosków o stanie aplikacji, ponieważ wiele błędów, zwłaszcza logicznych, nie jest w stanie zidentyfikować ani kompilator, ani linker, a jedynie debugger, który pozwala na dynamiczną analizę działania programu.

Pytanie 19

Podczas instalacji wzmacniacza antenowego najpierw należy

A. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
B. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
C. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
D. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 20

Jakie mogą być skutki dotknięcia podzespołów podczas regulacji układu elektronicznego na płytce drukowanej, oznaczonej symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Uszkodzenie układu na skutek wyładowania elektrostatycznego.
B. Zatarcie napisów identyfikujących nazwę i serię układu.
C. Poparzenie palców dłoni.
D. Zwiększenie rezystancji wejściowej układu.
Wybór odpowiedzi, która wskazuje na poparzenie palców dłoni, jest niewłaściwy, gdyż nie uwzględnia fundamentalnych zasad działania układów elektronicznych. Poparzenia mogą występować w wyniku kontaktu z elementami o wysokiej temperaturze, jednak w kontekście regulacji układów elektronicznych na płytkach drukowanych, to wyładowania elektrostatyczne stanowią znacznie poważniejsze ryzyko. Warto zwrócić uwagę, że zwiększenie rezystancji wejściowej układu nie jest bezpośrednim skutkiem dotykania podzespołów. Rezystancja wejściowa jest cechą projektową układu i nie zmienia się w wyniku interakcji z osobą, chyba że przez fizyczne uszkodzenie komponentu. Zatarcie napisów identyfikacyjnych, choć może zdarzyć się w wyniku niewłaściwego użytkowania, nie jest bezpośrednim skutkiem dotknięcia podzespołów, lecz raczej wynikiem długotrwałego działania chemikaliów czy ścierania mechanicznego. W praktyce, odpowiednie procedury ochrony przed ESD powinny być stosowane w każdym procesie pracy z elektroniką, aby uniknąć wszelkiego rodzaju uszkodzeń, które mogą wynikać z nieodpowiedniego traktowania komponentów. Właściwe zrozumienie zagadnień związanych z wyładowaniami elektrostatycznymi pozwala na znaczące zmniejszenie ryzyka uszkodzenia układów oraz zapewnienie ich długotrwałej i stabilnej pracy.

Pytanie 21

Przedstawiona płytka przygotowana jest do montażu

Ilustracja do pytania
A. przewlekanego.
B. BGA.
C. powierzchniowego.
D. mieszanego.
Wybór odpowiedzi dotyczącej technologii BGA, przewlekanego lub powierzchniowego montażu w kontekście przedstawionej płytki jest mylny, ponieważ każda z tych metod odnosi się do specyficznych technik montażowych, które nie są wystarczające do opisania przedstawionego układu. Technologia BGA (Ball Grid Array) odnosi się do sposobu pakowania i montażu komponentów, gdzie kulki lutownicze są umieszczane na dolnej stronie elementu. Zastosowanie BGA nie wyklucza montażu przewlekanego, ale w opisywanym przypadku, płytka o mieszanym montażu ma zarówno otwory jak i pady, co oznacza, że BGA może być jedynie jedną z opcji. Wybór odpowiedzi „przewlekanego” może prowadzić do błędnego wniosku, że płytka jest przeznaczona wyłącznie do montażu przewlekanego, co nie oddaje jej rzeczywistej konstrukcji. Przewlekane komponenty wymagają otworów, ale nie wykluczają elementów montowanych powierzchniowo, co jest kluczowym punktem dla montażu mieszanego. W przypadku odpowiedzi „powierzchniowego” pomijamy elementy przewlekane, co również jest nieprawidłowe. Takie podejście jest typowym błędem myślowym, polegającym na zbytnim uproszczeniu tematu montażu płytek drukowanych. Właściwe zrozumienie różnych metod montażu jest kluczowe w projektowaniu układów elektronicznych, co należy uwzględnić w praktycznych zastosowaniach.

Pytanie 22

Ile żył powinien posiadać przewód zakończony z obu stron złączami przedstawionymi na rysunku?

Ilustracja do pytania
A. 6 żył.
B. 5 żył.
C. 3 żyły.
D. 4 żyły.
Wybór czterech żył w przewodzie USB 2.0 jest prawidłowy, ponieważ standard ten wykorzystuje dokładnie te cztery przewody do realizacji funkcji. Dwie z nich, oznaczone jako D+ i D-, odpowiadają za transmisję danych, co umożliwia przesyłanie informacji między urządzeniami. Trzecia żyła jest przewodem zasilającym, dostarczającym napięcie do urządzenia, a czwarta żyła pełni rolę masy, co jest kluczowe dla stabilności połączenia. W praktyce, złącza USB są powszechnie stosowane w różnych urządzeniach, takich jak komputery, smartfony, drukarki, czy też zewnętrzne dyski twarde. Zrozumienie struktury przewodów w złączu USB jest niezbędne dla prawidłowego projektowania systemów elektronicznych i ich interoperacyjności. Ponadto, znajomość standardów USB pozwala na efektywne wykorzystanie technologii w codziennych zastosowaniach, takich jak ładowanie urządzeń czy transfer danych.

Pytanie 23

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. zerowania ochronnego
B. uziemienia ochronnego
C. wyłączników różnicowoprądowych
D. klimatyzacji
W kontekście naprawy i konserwacji urządzeń elektronicznych, kwestie bezpieczeństwa i ochrony są kluczowe. Wyłączniki różnicowoprądowe oraz uziemienie ochronne są elementami zabezpieczającymi, które mają na celu ochronę przed porażeniem prądem elektrycznym oraz minimalizację ryzyka powstania pożaru. Wyłącznik różnicowoprądowy wykrywa różnice w prądzie między przewodem fazowym a neutralnym, co pozwala na szybkie odłączenie zasilania w przypadku wykrycia nieszczelności, co jest szczególnie ważne w środowiskach, gdzie urządzenia mogą być narażone na wilgoć. Zerowanie ochronne jest kolejnym istotnym elementem, który zabezpiecza użytkowników przed niebezpiecznymi sytuacjami, zapewniając, że w przypadku wystąpienia defektu urządzenia prąd nie przepływa przez ciało ludzkie. Zastosowanie tych elementów zabezpieczających jest zgodne z normami branżowymi, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące ochrony osób i mienia. Wiele osób może błędnie sądzić, że na stanowiskach serwisowych wystarczająca jest jedna forma zabezpieczenia, zapominając o konieczności stosowania zarówno uziemienia, jak i wyłącznika różnicowoprądowego. Ignorowanie tych aspektów może prowadzić do poważnych konsekwencji, takich jak wypadki związane z porażeniem prądem, a także zniszczenie sprzętu elektronicznego spowodowane brakiem odpowiedniej ochrony.

Pytanie 24

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku częstotliwości środkowej fo
B. spadku współczynnika prostokątności
C. wzrostu współczynnika prostokątności
D. wzrostu częstotliwości środkowej fo
Zrozumienie wpływu dobroci Q na filtry RLC jest kluczowe, aby odpowiednio interpretować konsekwencje projektowe. Pierwsza z niepoprawnych odpowiedzi sugeruje, że zwiększenie dobroci Q mogłoby prowadzić do zwiększenia częstotliwości środkowej f0, co jest nieprawidłowe. W rzeczywistości wartość f0 jest określona przez komponenty RLC i nie zmienia się w wyniku zmiany dobroci Q. Zwiększenie Q nie wpływa na częstotliwość centralną, lecz na charakterystykę pasma przenoszenia. Kolejna odpowiedź sugerująca zmniejszenie częstotliwości środkowej f0 również jest mylna, jako że zmiana dobroci Q nie ma wpływu na jej wartość. W rzeczywistości, zwiększenie dobroci Q prowadzi do większej wyrazistości filtru, ale nie zmienia jego centralnej częstotliwości. Dlatego też, koncepcja współczynnika prostokątności jest nieodłącznie związana z dobrocią Q, a jego zmiana wpływa na szerokość pasma przenoszenia. Należy również zwrócić uwagę na to, że w praktyce stosuje się różne metody obliczania i regulacji Q, aby osiągnąć pożądane efekty w różnych zastosowaniach, takich jak filtry w radiotechnice czy systemy audio. Typowym błędem w analizie charakterystyki filtrów RLC jest mylenie dobroci Q z innymi parametrami, co może prowadzić do niepoprawnych wniosków dotyczących działania układów elektronicznych.

Pytanie 25

Który z wymienionych elementów elektronicznych przedstawiony jest na zdjęciu?

Ilustracja do pytania
A. Przerzutnik monostabilny.
B. Komparator.
C. Wzmacniacz operacyjny.
D. Transoptor.
Wybierając inne opcje, można napotkać istotne nieporozumienia dotyczące funkcji i oznaczeń elementów elektronicznych. Komparator, który jest elementem służącym do porównywania dwóch sygnałów, może być mylnie postrzegany jako wzmacniacz operacyjny ze względu na ich podobieństwa w budowie. Niemniej jednak, komparatory działają zazwyczaj w trybie porównawczym, co oznacza, że nie są zaprojektowane do wzmacniania sygnałów, ale do ich analizy w kontekście logicznym. Z kolei transoptory, które służą do optycznej izolacji obwodów elektrycznych, również mają swoje specyficzne zastosowanie, które znacznie różni się od funkcji wzmacniaczy operacyjnych. Osoby, które wybierają tę odpowiedź, mogą nie dostrzegać, że transoptory są wykorzystywane w aplikacjach takich jak interfejsy optyczne. Przerzutniki monostabilne, które z kolei są elementami cyfrowymi, mają za zadanie generować impuls o określonym czasie w odpowiedzi na sygnał wyzwalający. Rozumienie różnic w zastosowaniach tych elementów jest kluczowe dla prawidłowego projektowania układów elektronicznych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych odpowiedzi, to mylenie funkcji oraz zastosowań poszczególnych elementów, co w efekcie prowadzi do niepoprawnych wniosków w analizie układów elektronicznych.

Pytanie 26

Udzielanie pomocy osobie rażonej prądem elektrycznym należy rozpocząć od

A. zgłoszenia sytuacji przełożonemu
B. wykonania sztucznego oddychania
C. przeprowadzenia masażu serca
D. odłączenia osoby od źródła prądu
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 27

Aby prawidłowo wykonać zakładanie wtyku RJ45, należy użyć

A. zaciskarki do złączy
B. płaskiego śrubokręta
C. narzędzia LSA typu KRONE
D. nóż monterskiego
Wykorzystanie niewłaściwych narzędzi podczas zakupu wtyków RJ45 może prowadzić do wielu problemów technicznych. Wciskacz LSA typu KRONE, chociaż jest narzędziem przydatnym w instalacjach telefonicznych i niektórych sieciach komputerowych, nie jest przeznaczony do zaciskania wtyków RJ45. Jego zastosowanie do tego celu może skutkować nieodpowiednim połączeniem, co w konsekwencji prowadzi do problemów z transmisją danych, takich jak spadki przepustowości czy błędy w przesyłaniu informacji. Śrubokręt płaski również nie jest odpowiednim narzędziem, ponieważ nie ma on zdolności do zapewnienia właściwego połączenia pomiędzy przewodami a wtykiem; może jedynie służyć do manipulacji przy montażu elementów obudowy. Nóż monterski, choć użyteczny do obcinania kabli, nie ma zastosowania w kontekście zakupu wtyków, gdyż nie jest w stanie zapewnić odpowiedniego i trwałego połączenia elektrycznego. Korzystanie z tych narzędzi zamiast zaciskarki może prowadzić do wielu nieefektywnych połączeń, co w dłuższym czasie obniża niezawodność całej sieci oraz może wymagać kosztownych napraw i wymiany podzespołów. Zrozumienie podstawowych zasad i zastosowanie odpowiednich narzędzi w instalacjach kablowych jest kluczowe dla utrzymania wysokiej jakości połączeń i sprawności całej infrastruktury sieciowej.

Pytanie 28

Do przykręcenia przewodów w przedstawionym na rysunku urządzeniu należy wykorzystać

Ilustracja do pytania
A. klucz oczkowy.
B. wkrętak krzyżakowy.
C. wkrętak płaski.
D. klucz imbusowy.
Wkrętak płaski to narzędzie, które idealnie nadaje się do przykręcania śrub z prostym rowkiem. To dość istotne zwłaszcza w kontekście tego urządzenia, o którym mówimy. Ważne jest, żeby dobierać odpowiednie narzędzia do różnych typów śrub, bo to wpływa na to, jak dobrze się one montują i jak długo wytrzymają. Śruby z prostym rowkiem, jak te w naszym przykładzie, naprawdę wymagają wkrętaka płaskiego. Gdybyś użył wkrętaka krzyżakowego albo klucza imbusowego, to nie dałbyś rady skutecznie przykręcić śruby, a to mogłoby spowodować, że albo śruba się uszkodzi, albo materiał, w który ją wkręcasz. W mechanice i elektryce używanie odpowiednich narzędzi to podstawa, bo to podnosi jakość pracy i efektywność montażu. Warto też pamiętać, żeby dbać o narzędzia i dobrze je przechowywać, bo to wpływa na ich trwałość i bezpieczeństwo podczas pracy.

Pytanie 29

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Uchwyt ślusarski.
B. Statyw do wiertarki.
C. Prasę mechaniczną.
D. Ściągacz do łożysk.
Statyw do wiertarki, przedstawiony na zdjęciu, jest kluczowym narzędziem w procesie precyzyjnego wiercenia. Jego pionowa prowadnica oraz ręczna korba umożliwiają łatwą regulację wysokości wiertła, co jest niezwykle ważne w przypadku pracy z różnymi grubościami materiałów. Dzięki stabilnej podstawie z otworami montażowymi, statyw zapewnia solidne mocowanie wiertarki, co przekłada się na większą dokładność wiercenia. To narzędzie jest szczególnie użyteczne w przemyśle budowlanym oraz w pracach rzemieślniczych, gdzie precyzja jest kluczowa. Użytkownicy mogą korzystać z różnych standardów wiertarskich, aby optymalizować proces wiercenia w zależności od materiału. Warto także zaznaczyć, że stosowanie statywu do wiertarki minimalizuje ryzyko błędów związanych z ręcznym prowadzeniem wiertarki, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy.

Pytanie 30

Przewód światłowodowy Toslink stosowany jest do podłączenia

Ilustracja do pytania
A. anteny z odbiornikiem.
B. dysku zewnętrznego z komputerem.
C. sygnału video.
D. sygnału audio.
Podczas analizy podanych odpowiedzi warto zwrócić uwagę na istotne różnice między przewodami Toslink a innymi typami połączeń. Sygnał video, na przykład, jest przesyłany za pomocą zupełnie innych standardów, takich jak HDMI czy VGA. Przewody te są przystosowane do przesyłania obrazu i dźwięku jednocześnie, co jest niemożliwe do osiągnięcia za pomocą kabla Toslink, który jest dedykowany wyłącznie dla sygnału audio. Kolejnym powszechnym błędnym skojarzeniem jest łączenie anteny z odbiornikiem. Anteny zazwyczaj przesyłają sygnał radiowy, który wymaga innych technologii, takich jak sygnały RF, a nie cyfrowe połączenia optyczne. Co więcej, podłączanie dysków zewnętrznych z komputerem również wymaga użycia innych standardów komunikacyjnych, takich jak USB czy Thunderbolt. To wyraźnie podkreśla, że Toslink nie jest przeznaczony do tego typu zastosowań. Często mylone są różne protokoły komunikacyjne, co prowadzi do błędnych wniosków. Użytkownicy mogą myśleć, że wszystkie przewody audio mogą być stosowane zamiennie, a to nie jest zgodne z rzeczywistością. Warto dokładnie poznać specyfikacje techniczne urządzeń oraz standardy, które regulują ich działanie, aby uniknąć nieporozumień.

Pytanie 31

Jaką funkcję pełni wzmacniacz typu OC, zastosowany w układzie, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Zapewnia duże wzmocnienie napięciowe i prądowe.
B. Odwraca fazę sygnału wejściowego.
C. Zapewnia dużą rezystancję wejściową.
D. Separuje galwanicznie źródło sygnału wejściowego i II stopień wzmacniacza.
Wzmacniacz typu OC nie odwraca fazy sygnału wejściowego, co jest często mylnie zakładane przy analizie jego podstawowych właściwości. Odwracanie fazy sygnału jest typowe dla innych typów wzmacniaczy, takich jak wzmacniacze odwracające, gdzie zjawisko to wynika z konstrukcji układu. Ponadto, w kontekście wzmacniaczy, wzmocnienie napięciowe i prądowe, które są często mylnie przypisywane wzmacniaczowi OC, jest ograniczone, ponieważ ten typ wzmacniacza nie ma na celu wzmacniania sygnału, lecz raczej zapewnienia wysokiej impedancji. Kolejnym błędnym wnioskiem jest przekonanie, że wzmacniacz OC separuje galwanicznie źródło sygnału od kolejnego stopnia wzmacniacza. W rzeczywistości, wzmacniacz OC nie jest zaprojektowany z myślą o separacji galwanicznej, lecz o znacznym zwiększeniu rezystancji wejściowej. Zrozumienie właściwości wzmacniacza OC jest kluczowe, aby uniknąć błędów w projektowaniu układów elektronicznych, ponieważ nieprawidłowe przypisanie funkcji wzmacniacza może prowadzić do nieoczekiwanych wyników w działaniu całego systemu.

Pytanie 32

Co należy zrobić, gdy pracownik omdleje w źle wentylowanej pracowni elektronicznej?

A. położyć poszkodowanego na plecach, umieścić zimny kompres na czole i monitorować tętno
B. wynieść poszkodowanego na świeże powietrze i ułożyć go na brzuchu
C. wynieść poszkodowanego na świeże powietrze, położyć na plecach i unieść kończyny w górę
D. ustawić poszkodowanego w pozycji siedzącej i dać mu wodę do picia
W przypadku omdlenia, odpowiedzi sugerujące ułożenie poszkodowanego na brzuchu, w pozycji siedzącej lub podawanie wody, są niewłaściwe i mogą narażać poszkodowanego na dodatkowe ryzyko. Ułożenie na brzuchu uniemożliwia swobodne oddychanie, co jest kluczowe w sytuacji, gdy osoba straciła przytomność lub ma trudności z oddychaniem. Pozycja siedząca natomiast, choć może wydawać się bardziej komfortowa, w rzeczywistości może pogłębiać problemy z krążeniem krwi i prowadzić do dalszego omdlenia. Podawanie wody w takiej sytuacji jest niebezpieczne, ponieważ poszkodowany, będąc w stanie nieprzytomności, może zakrztusić się, co grozi uduszeniem. Typowym błędem myślowym jest zakładanie, że poszkodowany potrzebuje natychmiastowego nawodnienia, zamiast skupić się na przywróceniu go do przytomności i zapewnieniu odpowiedniego krążenia. W przypadkach omdlenia kluczowe jest pierwsze wsparcie w formie stabilizacji pozycji ciała, co działa na zasadzie ograniczenia dalszych komplikacji. Zgodnie z wytycznymi medycznymi, w takich sytuacjach należy przede wszystkim zapewnić bezpieczeństwo i monitorować stan poszkodowanego, a nie podejmować działań, które mogą pogorszyć jego sytuację.

Pytanie 33

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. przytrzymywania wlutowywanych elementów elektronicznych.
B. kształtowania wyprowadzeń elementów elektronicznych.
C. usuwania izolacji z przewodów elektrycznych.
D. zaciskania tulejek na przewodach elektrycznych.
Narzędzie przedstawione na zdjęciu to zaciskarka do tulejek kablowych, które jest niezbędnym narzędziem w szerokim zakresie prac elektrycznych. Zaciskarki są używane do trwałego i solidnego łączenia metalowych tulejek z końcówkami przewodów elektrycznych, co jest kluczowe dla zapewnienia wysokiej jakości połączenia elektrycznego. Dzięki ich zastosowaniu można zminimalizować ryzyko nieprawidłowego połączenia, które mogłoby prowadzić do awarii lub nawet pożaru. W kontekście standardów branżowych, zgodnych z normami takich jak PN-EN 60352-2, zaciskanie tulejek powinno być przeprowadzane z zachowaniem odpowiednich parametrów siły i jakości, co gwarantuje stabilność połączenia. W praktyce, zaciskarka pozwala na szybkie i efektywne przygotowanie przewodów do dalszego użytkowania, co ma szczególne znaczenie w przypadku instalacji elektrycznych, w których niezawodność połączeń jest kluczowa. Użytkownik powinien również pamiętać o regularnym serwisowaniu narzędzi oraz stosowaniu odpowiednich tulejek, aby zapewnić optymalne wyniki.

Pytanie 34

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. wysuszenie skóry dłoni
B. poparzenie dłoni
C. krwawienie podskórne
D. uszkodzenie wzroku
Wybór odpowiedzi dotyczącej wysuszenia skóry rąk, krwotoku podskórnego czy poparzenia ręki jako zagrożeń podczas pracy z celownikiem laserowym wskazuje na błędne rozumienie zagrożeń związanych z obsługą urządzeń laserowych. Wysuszenie skóry rąk jest problemem często związanym z długotrwałym kontaktem z substancjami chemicznymi lub niewłaściwą higieną, podczas gdy krwotok podskórny może wynikać z urazu mechanicznego, a nie bezpośrednio z użycia lasera. Ponadto, poparzenia rąk mogą wystąpić w wyniku kontaktu z gorącymi powierzchniami lub materiałami, a nie z promieniowaniem laserowym. W kontekście laserów kluczowe jest zrozumienie, że to promieniowanie może prowadzić do uszkodzeń wzroku, co stanowi największe zagrożenie. Standardowe procedury bezpieczeństwa powinny uwzględniać obowiązek stosowania okularów ochronnych oraz szkolenia w zakresie obsługi laserów. Ignorowanie zagrożeń związanych z wzrokiem może prowadzić do poważnych konsekwencji, takich jak całkowita utrata zdolności widzenia. Warto podkreślić, że w przypadku pracy z laserami nieprzestrzeganie zasad bezpieczeństwa może skutkować nie tylko uszkodzeniami osobistymi, ale również odpowiedzialnością prawną i finansową dla pracodawcy. Dlatego zaleca się systematyczne doskonalenie wiedzy na temat bezpieczeństwa pracy z laserami oraz wdrażanie procedur ochrony zdrowia i życia pracowników.

Pytanie 35

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. promieniowania X.
B. opadów deszczu.
C. niskich temperatur.
D. wyładowań atmosferycznych.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.

Pytanie 36

Instalując czujkę ruchu typu NC w konfiguracji EOL, rezystor parametryczny powinien być połączony szeregowo ze stykiem alarmowym czujki i umiejscowiony

A. na środku przewodu
B. niezależnie od miejsca
C. w obudowie czujki
D. bezpośrednio przy centrali
Podczas analizy odpowiedzi na pytanie dotyczące podłączenia czujki ruchu w konfiguracji EOL, ważne jest zrozumienie, dlaczego odpowiedzi takie jak umiejscowienie rezystora w połowie przewodu, obojętnie w jakim miejscu, czy bezpośrednio przy centrali są niewłaściwe. Umiejscowienie rezystora w połowie przewodu może prowadzić do nieprzewidywalnych wyników, gdyż w przypadku uszkodzenia przewodu lub zwarcia w jego części, system może nie zareagować w odpowiedni sposób. Takie podejście nie spełnia wymaganych standardów bezpieczeństwa, które obligują do precyzyjnego umiejscowienia elementów zabezpieczeń w określonych lokalizacjach, by zapewnić właściwą detekcję. Umieszczenie rezystora obojętnie w jakim miejscu również narusza zasady zarządzania sygnałem w obwodach alarmowych; właściwe umiejscowienie jest kluczowe, by system mógł sprawnie monitorować obwód. Z kolei umieszczanie rezystora bezpośrednio przy centrali, mimo że może wydawać się wygodne, nie pozwala na detekcję potencjalnych awarii w czujce. Tego typu myślenie jest typowym błędem, który może prowadzić do niedostatecznej ochrony systemu. Zatem, mając na uwadze kwestie bezpieczeństwa oraz efektywności operacyjnej, kluczowe jest, aby rezystor był umieszczony w obudowie czujki, gdzie może skutecznie i niezawodnie spełniać swoją rolę w systemie alarmowym.

Pytanie 37

Element elektroniczny, którego symbol graficzny przedstawiono na rysunku, zmienia swoją rezystancję w zależności od wartości

Ilustracja do pytania
A. wilgotności.
B. temperatury.
C. prądu.
D. napięcia.
Poprawna odpowiedź to "napięcia", ponieważ symbol graficzny przedstawiony na rysunku reprezentuje warystor, który jest elementem elektronicznym o zmiennej rezystancji w zależności od napięcia przyłożonego do jego końców. Warystory są używane głównie w obwodach ochrony przed przepięciami; ich główną funkcją jest ograniczenie napięcia do bezpiecznego poziomu w przypadku nagłego wzrostu. Na przykład, w systemach elektrycznych i elektronicznych, warystory mogą chronić delikatne komponenty przed uszkodzeniem spowodowanym przepięciami wywołanymi przez błyski piorunów lub wahania w sieci energetycznej. Dobrą praktyką jest stosowanie warystorów w układach zabezpieczeń, aby zapewnić długoterminową niezawodność i bezpieczeństwo urządzeń, co jest zgodne z normami IEC 61643-1 i UL 1449. Dodatkowo, warystory są stosowane w różnych aplikacjach, takich jak zasilacze UPS, gdzie chronią przed nagłymi wzrostami napięcia, co jest kluczowe dla stabilności i wydajności całego systemu.

Pytanie 38

Który z wymienionych parametrów nie odnosi się do odbiorników radiowych?

A. Czułość
B. Moc wejściowa
C. Moc wyjściowa
D. Selektywność
Czułość, selektywność oraz moc wyjściowa to parametry, które są kluczowe w ocenie jakości odbiorników radiowych. Czułość odbiornika definiuje minimalny poziom sygnału, przy którym urządzenie jest w stanie zidentyfikować i przetworzyć sygnał. W praktyce, oznacza to, że im niższa wartość czułości, tym lepiej odbiornik poradzi sobie z odbieraniem słabych sygnałów, co jest szczególnie istotne w obszarach o niskiej mocy sygnału. Selektywność natomiast, określa zdolność urządzenia do oddzielania sygnałów znajdujących się blisko siebie w spektrum częstotliwości. Wartość ta jest niezwykle ważna, gdyż pozwala na odbiór wybranych stacji bez zakłóceń spowodowanych przez inne nadajniki działające w sąsiedztwie. Moc wyjściowa to parametr, który wskazuje na siłę sygnału dostarczanego do końcowego urządzenia, co ma bezpośredni wpływ na jakość dźwięku. Błędne zrozumienie mocy wejściowej i jej roli w kontekście odbiorników radiowych może prowadzić do mylnego wniosku, że jest ona istotnym parametrem dla tych urządzeń. W rzeczywistości moc wejściowa dotyczy źródła sygnału, a nie samego odbiornika, co jest kluczowym aspektem, który powinien być uwzględniany przy analizie parametrów radiowych. Zrozumienie tych różnic jest niezbędne dla prawidłowej oceny i porównania odbiorników radiowych w różnych zastosowaniach.

Pytanie 39

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. D-SUB 15
B. SATA
C. RS 232
D. LPT
Interfejs RS 232, znany jako Interfejs szeregowy, jest stosunkowo przestarzałym standardem komunikacyjnym, który służył głównie do łączenia urządzeń peryferyjnych, takich jak modemy, myszy czy drukarki. Mimo że RS 232 był powszechnie stosowany w przeszłości, jego ograniczenia w zakresie prędkości transferu i odległości sprawiają, że nie nadaje się on do podłączania nowoczesnych dysków twardych, które wymagają bardziej wydajnych interfejsów. LPT, czyli port równoległy, był także używany w kontekście podłączania drukarek, lecz jego zastosowanie nie obejmowało dysków twardych. LPT jest również ograniczony pod względem prędkości i wydajności, co czyni go nieodpowiednim wyborem. Z kolei D-SUB 15 to złącze, które najczęściej kojarzone jest z portem VGA używanym do podłączania monitorów. Nie jest to interfejs do komunikacji z dyskami twardymi i jego wykorzystanie w tym kontekście jest całkowicie nieadekwatne. W przeszłości wiele osób może było skłonnych do używania starszych standardów ze względu na ich dostępność, jednak z perspektywy nowoczesnej architektury komputerowej, takie podejście prowadzi do problemów z wydajnością i kompatybilnością. W rezultacie, wybór interfejsu SATA jest właściwy i zgodny z obecnymi standardami branżowymi, które promują efektywność i szybkość transferu danych.

Pytanie 40

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
B. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
C. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować
D. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
Jak nie wyłączysz zasilania przed demontażem kamery, to wpadniesz w duże kłopoty. Gdy odłączasz przewód sygnałowy, a zasilanie wciąż działa, możesz uszkodzić kamerę albo cały system. Zasilanie powinno być odłączone w pierwszej kolejności, bo jak tego nie zrobisz, to może dojść do zwarcia, a nawet pożaru. Jak najpierw odłączysz przewody zasilające, to możesz mieć nieprzyjemne wyładowania energii. A jeśli zdemontujesz kamerę bez rozłączenia wszystkiego, to możesz ją uszkodzić. Dlatego każdy technik musi pamiętać, żeby najpierw wyłączyć zasilanie. Ignorowanie tego to główny błąd, który może skończyć się naprawdę źle.