Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 lutego 2026 03:58
  • Data zakończenia: 8 lutego 2026 04:22

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ilustracja przedstawia proces

Ilustracja do pytania
A. cięcia plazmą.
B. szlifowania.
C. spawania łukowego.
D. zgrzewania.
Cięcie plazmą to zaawansowana technologia obróbcza, która wykorzystuje wysokotemperaturową plazmę do precyzyjnego cięcia metali. Na przedstawionej ilustracji dostrzegamy charakterystyczny wygląd procesu, gdzie jasna plazmowa wiązka koncentruje się na materiale, umożliwiając jego szybkie i dokładne przecięcie. Ta metoda jest szczególnie ceniona w przemyśle, gdzie wymagana jest wysoka jakość cięcia oraz minimalne zniekształcenie krawędzi. Cięcie plazmowe charakteryzuje się dużą prędkością pracy, co pozwala na oszczędność czasu podczas produkcji i obróbki. Technologia ta jest często wykorzystywana w maszynach CNC, co dodatkowo zwiększa jej precyzję i powtarzalność. Standardy branżowe, takie jak ISO 9013, opisują wymagania dotyczące jakości cięcia plazmowego, co czyni tę metodę nie tylko skuteczną, ale i zgodną z międzynarodowymi normami. Warto zaznaczyć, że cięcie plazmą znajduje zastosowanie w wielu branżach, od produkcji stalowej, przez przemysł motoryzacyjny, aż po konstrukcje budowlane.

Pytanie 2

Na rysunku przedstawiono budowę oraz zasadę działania zaworu

Ilustracja do pytania
A. dławiąco-zwrotnego.
B. przełączającego obieg.
C. podwójnego sygnału.
D. szybkiego spustu.
Zawór szybkiego spustu to mega ważny element w systemach pneumatycznych. Jego głównym zadaniem jest szybkie i skuteczne odprowadzanie sprężonego powietrza. Na rysunku widzimy, że w pozycji a) zawór jest zamknięty i nie pozwala na przepływ powietrza, a w pozycji b) się otwiera, co pozwala na błyskawiczne uwolnienie ciśnienia. Takie zawory są super ważne, zwłaszcza w sytuacjach, gdzie trzeba działać szybko - na przykład w hamulcach samochodów czy w procesach produkcyjnych. Dzięki nim można efektywniej operować i zapewnić większe bezpieczeństwo, bo można w kontrolowany sposób spuszczać powietrze, co zmniejsza ryzyko uszkodzeń. Warto też pamiętać, że te zawory powinny spełniać różne normy branżowe, jak np. ISO 4414, które mówią o zasadach bezpieczeństwa i wydajności w systemach pneumatycznych.

Pytanie 3

Na rysunku przedstawiono

Ilustracja do pytania
A. fotorezystor.
B. transoptor szczelinowy.
C. tranzystor unipolarny.
D. mostek prostowniczy.
Wybranie innej odpowiedzi niż transoptor szczelinowy pokazuje, że można mieć pewne nieporozumienia odnośnie funkcji i budowy różnych elementów elektronicznych. Na przykład, tranzystor unipolarny to zupełnie coś innego, bo działa na zasadzie jednego typu nośników ładunku. Nie ma za bardzo związku z optycznym przesyłaniem sygnałów. Transoptory szczelinowe, w przeciwieństwie do tranzystorów, są robione z myślą o izolacji galwanicznej i przesyłaniu sygnałów optycznych. Dlatego są mega potrzebne w wielu miejscach, gdzie bezpieczeństwo elektryczne ma znaczenie. Wybór mostka prostowniczego, który zmienia prąd zmienny na stały, też nie jest dobry, bo nie ma to nic wspólnego z optycznym przesyłaniem sygnałów i nie przypomina budowy transoptora. Fotorezystor z kolei to element pasywny, którego oporność zmienia się w zależności od światła, co również nie jest tym, co robi transoptor. Z mojego doświadczenia wynika, że często mylenie tych elementów bierze się z braku zrozumienia ich zastosowań i konstrukcji, a także z nieodpowiedniego kojarzenia ich z ogólnym pojęciem optoelektroniki. Kluczowe jest zrozumienie, że transoptory to połączenie optyki i elektroniki, co czyni je unikalnymi w dzisiejszych technologiach.

Pytanie 4

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu sercowego
B. układu słuchu
C. układu pokarmowego
D. dermatologicznych
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 5

Przestrzeń gazowa akumulatora hydraulicznego \( V_O \) została napełniona azotem o ciśnieniu początkowym \( p_0 \). W trakcie powolnego rozładowania przy stałej temperaturze, podczas którego zmieniły się parametry \( p_1 \) i \( V_1 \), obowiązuje zależność

A. \( p_0 \, V_O = p_1 \, V_1 \)
B. \( p_0 \, V_1^{1.4} = p_1 \, V_O^{1.4} \)
C. \( p_0 \, V_O^{1.4} = p_1 \, V_1^{1.4} \)
D. \( p_0 \, V_1 = p_1 \, V_O \)
Wszystkie odpowiedzi inne niż D nie odzwierciedlają prawidłowych zasad dotyczących zachowania gazów w warunkach izotermicznych. Należy zauważyć, że w przypadku gazów idealnych, przy stałej temperaturze, zachowanie ciśnienia i objętości nie jest niezależne, co prowadzi do błędnych wniosków przedstawionych w innych opcjach. Często mylone są pojęcia związane z ciśnieniem i objętością, co skutkuje nieprawidłowym zrozumieniem zależności między tymi parametrami. W praktyce, zrozumienie, że iloczyn ciśnienia i objętości jest stały, jest kluczowe w wielu zastosowaniach inżynieryjnych. Ignorowanie tego może prowadzić do poważnych błędów w projektowaniu systemów hydraulicznych, co w efekcie może generować nieprawidłowe działanie urządzeń oraz potencjalne zagrożenia dla bezpieczeństwa. Niezrozumienie tej zasady może także skutkować nieefektywnym wykorzystaniem energii w systemach, gdzie optymalizacja ciśnienia i objętości jest konieczna dla osiągnięcia maksymalnej wydajności. Dlatego zrozumienie prawa Boyle'a-Mariotte'a oraz jego zastosowanie w praktyce jest niezbędne dla każdego inżyniera czy technika pracującego z systemami gazowymi.

Pytanie 6

Ilustracja przedstawia proces

Ilustracja do pytania
A. wiercenia.
B. frezowania.
C. nitowania.
D. gwintowania.
Odpowiedź "nitowania" to strzał w dziesiątkę! Ilustracja dobrze pokazuje, jak ten proces działa. Nitowanie jest naprawdę popularne w takich branżach jak lotnictwo, motoryzacja czy budownictwo, gdzie odporne połączenia są super ważne. Cała robota z nitowaniem zaczyna się od włożenia nitu w otwory elementów, które chcemy połączyć. Potem używamy odpowiedniego narzędzia, żeby uformować końcówkę nitu, co sprawia, że połączenie jest mocne. Na końcu zgniecione zostaje drugie końcówka nitu, co zapewnia trwałe złączenie. W praktyce często wybiera się nitowanie, bo spawanie czasem może osłabić materiał. Warto znać te techniki, żeby inżynierowie i technicy mogli zadbać o bezpieczeństwo i trwałość konstrukcji.

Pytanie 7

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. ustawić go w pozycji bocznej ustalonej
B. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
C. położyć go na plecach z uniesionymi nogami
D. przystąpić do pośredniego masażu serca
W sytuacji porażenia prądem elektrycznym, odpowiednie działania są kluczowe, aby zminimalizować ryzyko powikłań oraz uratować życie poszkodowanego. Przystąpienie do sztucznego oddychania przez 30 minut jest niewłaściwe, gdyż powinna być to reakcja ograniczona do momentu, gdy osoba nie oddycha. Długotrwałe sztuczne oddychanie bez oceny stanu pacjenta może prowadzić do dalszych uszkodzeń. Ułożenie osoby na plecach z nogami do góry ma na celu zwiększenie dopływu krwi do mózgu, lecz w kontekście porażenia prądem jest to nieodpowiednia praktyka, gdyż może prowadzić do ryzyka aspiracji i zadławienia. Przystąpienie do pośredniego masażu serca jest tylko wskazane w przypadku zatrzymania krążenia, co nie jest opisanym w pytaniu scenariuszem, gdyż osoba odzyskała oddech. Takie działania w przypadku osoby przytomnej mogą być nie tylko niepotrzebne, ale również niebezpieczne. Wszelkie działania powinny być dostosowane do aktualnego stanu poszkodowanego, a kluczowym elementem pierwszej pomocy jest ciągła ocena jego stanu. Niewłaściwe podejście do tych zasad prowadzi do niebezpiecznych sytuacji i może zagrażać życiu poszkodowanego.

Pytanie 8

Uruchomienie krokowej symulacji działania układu zaprojektowanego w programie przedstawionym na rysunku wymaga kliknięcia ikony

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Aby uruchomić krokową symulację działania układu zaprojektowanego w programie, należy kliknąć ikonę oznaczoną literą "B", która reprezentuje symbol "play" (trójkąt skierowany w prawo). To powszechnie akceptowane oznaczenie w szerokiej gamie programów komputerowych i aplikacji, które służą do symulacji, odtwarzania multimediów czy programowania. Używanie standardowych ikon, takich jak symbol "play", pomaga w intuicyjnym i łatwym korzystaniu z oprogramowania, co jest kluczowe w procesie edukacyjnym i projektowym. Przykładowo, w programach do modelowania elektronicznego, takich jak LTspice czy Multisim, użytkownicy przyzwyczajają się do tego, że kliknięcie przycisku "play" uruchamia symulację obwodu. Umiejętność identyfikacji i używania takich ikon jest istotna nie tylko dla efektywności pracy, ale także dla zrozumienia interakcji w programach komputerowych. Dodatkowo, dobrze jest znać inne ikony, które mogą być używane do zatrzymywania, wstrzymywania lub resetowania symulacji, co jest istotne w kontekście analizy wyników i dokonywania poprawek w projektach. Zrozumienie i umiejętność korzystania z tych standardów może znacznie przyspieszyć proces nauki oraz wspierać praktyczne zastosowanie wiedzy inżynierskiej.

Pytanie 9

Jeśli w układzie na rysunku wyłącznik znajdzie się w pozycji I, to w rezystorze wydziela się moc o wartości około

Ilustracja do pytania
A. 5,8 W
B. 0,72 W
C. 3,5 W
D. 0 W
Odpowiedź 0,72 W jest na pewno poprawna, bo można ją obliczyć przy użyciu wzoru P = U * I. Tutaj P to moc, U to napięcie, a I to prąd. Jak wyłącznik jest w pozycji I, to napięcie wynosi 12 V, a rezystancja to 200 Ω. Z prawa Ohma wiadomo, że prąd I można obliczyć jako I = U/R, czyli I = 12 V / 200 Ω = 0,06 A. Potem, żeby znaleźć moc, podstawiamy wartości do wzoru: P = 12 V * 0,06 A = 0,72 W. Takie obliczanie mocy jest standardem w elektryce, bo dokładność jest ważna dla bezpieczeństwa i efektywności systemów. Zrozumienie tych obliczeń to podstawa dla każdego, kto zajmuje się elektroniką. Dobrze znać te zasady, bo mogą pomóc w optymalizacji projektów i wykrywaniu problemów z komponentami. W praktyce często używa się tego w różnych systemach, nie tylko w podstawowej elektronice, ale i w bardziej zaawansowanych układach zasilania.

Pytanie 10

Jaką jednostką prędkości kątowej posługujemy się w układzie SI?

A. m/s
B. km/h
C. rad/s
D. obr/min
Jednostką prędkości kątowej w układzie SI jest radian na sekundę (rad/s). Prędkość kątowa definiuje, jak szybko obiekt porusza się wokół osi obrotu, co jest kluczowe w wielu dziedzinach, takich jak inżynieria mechaniczna czy fizyka. Przykładem może być ruch planet wokół Słońca, gdzie prędkość kątowa pozwala opisać, jak szybko planeta przebywa kąt w przestrzeni kosmicznej. W zastosowaniach praktycznych, jak w silnikach elektrycznych, monitorowanie prędkości kątowej jest niezbędne do optymalizacji wydajności i zapewnienia bezpieczeństwa. Zastosowanie jednostki rad/s w obliczeniach jest zgodne z normami międzynarodowymi, co ułatwia porównywanie wyników oraz standaryzację procesów inżynieryjnych. Ponadto, prędkość kątowa jest często używana w analizie drgań, gdzie precyzyjne określenie prędkości obrotowej jest kluczowe dla poprawnego funkcjonowania struktur mechanicznych.

Pytanie 11

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. odkształcenia nitu
B. luźnego osadzenia nitu
C. pęknięcia powierzchni łba i zakuwki nitu
D. nieprawidłowego kształtu zakuwki
Luźne osadzenie nitu jest kluczowym problemem, którego identyfikacja jest niezbędna dla zapewnienia trwałości i bezpieczeństwa połączeń nitowanych. Kontrola połączeń nitowanych, przeprowadzona poprzez ostukiwanie młotkiem nitu, pozwala na ocenę jego stabilności w obrębie materiału, z którym jest połączony. Jeśli nit jest luźny, może to prowadzić do osłabienia całej struktury, co jest szczególnie niebezpieczne w konstrukcjach lotniczych oraz budowlanych, gdzie wymagana jest wysoka niezawodność. Przykładem zastosowania tej metody kontroli może być ocena połączeń w kadłubach samolotów, gdzie każda wada może prowadzić do katastrofalnych skutków. W praktyce, jeśli po uderzeniu młotkiem następuje wyraźny dźwięk, może to sugerować luźne osadzenie nitu. Standardy takie jak ISO 13920 definiują wymagania dla jakości i kontroli połączeń, co podkreśla znaczenie skutecznych metod diagnostycznych, jak ta opisana.

Pytanie 12

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem jednej fazy z obudową.
B. przerwą w jednej z faz.
C. błędną sekwencją faz.
D. zwarciem dwóch faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 13

Jaki element odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. Element realizujący iloczyn logiczny.
B. Element dławiący.
C. Zawór ograniczający ciśnienie.
D. Przełącznik obiegu.
Analizując niepoprawne odpowiedzi, można zauważyć kilka kluczowych błędów konceptualnych. Po pierwsze, element dławiący, choć również istotny w układach hydraulicznymi, służy do regulacji przepływu medium, a nie do jego przełączania. Dławik nie zmienia kierunku przepływu, lecz ogranicza jego ilość, co sprawia, że jest stosowany w innych kontekstach, takich jak kontrola prędkości silników hydraulicznych. Z kolei, element realizujący iloczyn logiczny jest komponentem stosowanym w automatyce, ale nie ma zastosowania w kontekście układów hydraulicznych czy pneumatycznych. Jest on wykorzystywany w systemach sterowania jako element decyzyjny, a nie jako mechanizm do kierowania przepływem medium. Zawór ograniczający ciśnienie, choć pełni ważną rolę w ochronie układów przed nadmiernym ciśnieniem, także nie realizuje funkcji przełączania, a jego zastosowanie koncentruje się na stabilizacji ciśnienia w systemach. Typowym błędem myślowym w przypadku wyboru tych odpowiedzi jest mylenie funkcji różnych komponentów oraz brak zrozumienia ich specyficznych ról w systemach hydraulicznych. Znajomość tych różnic jest kluczowa dla prawidłowego projektowania i eksploatacji układów, co podkreśla znaczenie odpowiedniego szkolenia i edukacji w obszarze technologii hydraulicznych.

Pytanie 14

Który adres IP ma urządzenie służące do wizualizacji procesu sterowania systemem mechatronicznym, obsługiwanym przez sterowniki PLC, pracujące w sieci Ethernet, której strukturę przedstawiono na rysunku.

Ilustracja do pytania
A. 192.168.0.50
B. 192.168.0.45
C. 192.168.0.1
D. 192.168.0.55
Poprawna odpowiedź to 192.168.0.50, ponieważ według rysunku przedstawiającego strukturę sieci Ethernet, adres ten jest przypisany do urządzenia HMI (Human-Machine Interface), które służy do wizualizacji i sterowania procesem w systemie mechatronicznym. W kontekście systemów automatyki, HMI odgrywa kluczową rolę w interakcji użytkownika z maszynami i procesami, umożliwiając monitorowanie, kontrolowanie oraz zarządzanie danymi w czasie rzeczywistym. Zastosowanie właściwego adresu IP w sieci Ethernet jest fundamentalne dla zapewnienia komunikacji pomiędzy różnymi komponentami systemu, w tym kontrolerami PLC i serwerami. Zasadniczo, przyporządkowanie adresów IP do urządzeń powinno być zgodne z zasadami planowania adresacji w sieciach komputerowych, co obejmuje eliminowanie konfliktów adresowych oraz zapewnienie odpowiedniej struktury logicznej. W praktyce, znajomość odpowiednich adresów IP jest niezbędna dla inżynierów automatyki i techników, aby efektywnie diagnozować problemy i konfigurować systemy. Wiedza ta jest szczególnie ważna w kontekście integracji systemów, gdzie błędne przypisanie adresów może prowadzić do poważnych zakłóceń w pracy całego systemu.

Pytanie 15

Aby zmierzyć nieznaną rezystancję z wysoką precyzją przy użyciu trzech rezystorów odniesienia o znanych wartościach, jaki przyrząd powinno się zastosować?

A. mostek Thomsona
B. omomierz
C. mostek Wheatstone'a
D. megaomomierz
Mostek Wheatstone'a jest jedną z najpowszechniejszych metod wykorzystywanych do precyzyjnego pomiaru nieznanej rezystancji. Jego zasada działania opiera się na zestawieniu znanych rezystancji z jedną nieznaną w formie układu mostkowego. Połączenie rezystorów w tym układzie pozwala na osiągnięcie równowagi, co jest warunkiem do określenia wartości nieznanej rezystancji. Metoda ta jest szczególnie cenna w laboratoriach kalibracyjnych oraz w zastosowaniach przemysłowych, gdzie wymagana jest wysoka dokładność pomiarów. W praktyce mostki Wheatstone'a mogą być używane do pomiaru rezystancji w zakresie miliohmów do megaohmów, co czyni je uniwersalnymi narzędziami. Dodatkowo, stosując tę metodę, można zminimalizować wpływ niepożądanych czynników, takich jak temperatura czy jakość połączeń elektrycznych. Warto również zauważyć, że mostek Wheatstone'a jest zgodny z międzynarodowymi standardami metrologicznymi, co czyni go narzędziem o dużej wiarygodności.

Pytanie 16

Zależność między ciśnieniem p, temperaturą T i objętością V powietrza opisuje zależność poniżej. Obniżenie temperatury powietrza przy jego stałej objętości

p · V
T
= const
A. zwiększa ciśnienie powietrza.
B. nie ma wpływu na ciśnienie powietrza.
C. zwiększa ciśnienie powietrza dla temperatur mniejszych od 0 stop.C
D. zmniejsza ciśnienie powietrza.
Obniżenie temperatury powietrza przy stałej objętości rzeczywiście prowadzi do zmniejszenia ciśnienia powietrza. Zgodnie z prawem Boyle'a-Mariotte'a, dla danej masy gazu, iloczyn ciśnienia (p) i objętości (V) jest wprost proporcjonalny do temperatury (T) wyrażonej w kelwinach. Przy stałej objętości zmiana temperatury wpływa bezpośrednio na ciśnienie. Na przykład, w zastosowaniach inżynieryjnych, w układach pneumatycznych, obniżenie temperatury powietrza może prowadzić do spadku efektywności systemu, co jest kluczowe w kontekście chłodzenia, gdzie kontrola temperatury jest niezbędna dla zapewnienia odpowiednich parametrów pracy. W praktyce, w systemach klimatyzacyjnych, obniżenie temperatury powietrza zewnętrznego skutkuje zmniejszeniem ciśnienia wewnętrznego, co może wpływać na wydajność całego układu. Zrozumienie tej zależności jest niezbędne dla projektantów systemów klimatyzacyjnych oraz inżynierów zajmujących się aerodynamiką.

Pytanie 17

Zawór 1V1 przełączy się z pozycji a na b

Ilustracja do pytania
A. po 2 s od chwili zadziałania elementu sygnałowego S1
B. gdy siłownik 1A1 zostanie wsunięty i moduł czasowy odliczy czas t = 2 s
C. po 2 s od chwili zadziałania elementu sygnałowego SO
D. gdy siłownik 1A1 zostanie wysunięty i moduł czasowy odliczy czas t = 2 s
Zawór 1V1 przełącza się z pozycji a na b po wysunięciu siłownika 1A1 i po odliczeniu czasu t = 2 s. To działanie jest zgodne z zasadami automatyki oraz teorią sterowania, w której kluczowe znaczenie ma synchronizacja pomiędzy elementami wykonawczymi a kontrolnymi. W sytuacji, gdy siłownik 1A1 jest wysunięty, oznacza to, że został on aktywowany i wykonuje swoje zadanie. Zgodnie z dobrymi praktykami w projektowaniu systemów automatyki, czas reakcji i czas przełączenia są kluczowymi czynnikami, które muszą być uwzględnione, aby zapewnić prawidłowe funkcjonowanie układu. W przypadku omawianego zaworu, 2-sekundowy interwał czasowy pozwala na stabilizację stanu układu przed zmianą, co jest istotne dla uniknięcia niepożądanych przepływów czy ciśnień. Stosowanie tego typu mechanizmów czasowych jest zgodne z normami, takimi jak ISO 12100, które określają zasady oceny ryzyka w maszynach.

Pytanie 18

Materiał o których właściwościach należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
A.2,7040
B.2,75320
C.7,70320
D.8,8535
A. C.
B. D.
C. B.
D. A.
Wybór odpowiedzi B jest właściwy, ponieważ materiał ten ma kluczowe właściwości, które spełniają wymagania dla konstrukcji lekkiej i odpornej na odkształcenia. Gęstość materiału wynosząca 2,75 g/cm³ sprawia, że jego masa jest zredukowana, co jest istotne w przypadku urządzeń mechatronicznych, gdzie waga ma bezpośredni wpływ na mobilność i wydajność. Ponadto, granica plastyczności 320 MPa oznacza, że materiał jest w stanie wytrzymać znaczne obciążenia bez trwałych deformacji. Przykładowe zastosowania obejmują elementy konstrukcyjne w robotyce oraz podzespoły w przenośnych urządzeniach, które muszą zachować swoją formę podczas użytkowania. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór materiałów o niskiej gęstości i wysokiej wytrzymałości jest kluczowy dla zapewnienia efektywności energetycznej i niezawodności urządzeń. W branży mechatronicznej często wykorzystuje się materiały kompozytowe, które łączą te pożądane właściwości, co dodatkowo podkreśla znaczenie odpowiedniego doboru materiałów.

Pytanie 19

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. magnes stały
B. tłumik
C. membrana
D. zawór dławiący
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 20

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
B. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
C. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
D. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 21

Jaka jest średnica wałka zmierzona suwmiarką, której noniusz przedstawiono na rysunku?

Ilustracja do pytania
A. 3,85 mm
B. 3,65 mm
C. 3,20 mm
D. 3,10 mm
Poprawna odpowiedź to 3,85 mm, co wynika z dokładnego odczytu suwmiarki. Na głównej skali suwmiarki widzimy wartość 3 mm, a następnie analizujemy noniusz. Kluczowym krokiem jest zlokalizowanie linii noniusza, która pokrywa się z linią głównej skali. W tym przypadku jest to 8,5, co oznacza dodatkowe 0,85 mm. Łącząc te wartości, otrzymujemy 3,85 mm. Użycie suwmiarki jest standardową praktyką w precyzyjnym pomiarze wymiarów, co jest szczególnie istotne w inżynierii i produkcji, gdzie dokładność ma kluczowe znaczenie. Stosowanie suwmiarki wymaga umiejętności interpretacji odczytów oraz znajomości zasad pomiarów, co zapewnia wysoką jakość wyrobów oraz minimalizację błędów produkcyjnych.

Pytanie 22

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. transformator bezpieczeństwa.
B. transformator separacyjny.
C. autotransformator.
D. transformator rozdzielczy.
Wybór innych typów transformatorów, takich jak autotransformator, transformator rozdzielczy czy transformator bezpieczeństwa, jest wynikiem braku zrozumienia podstawowych zasad funkcjonowania tych urządzeń. Autotransformator, który łączy obwody pierwotne i wtórne, nie izoluje ich od siebie, co jest kluczowym aspektem funkcji transformatora separacyjnego. Przykładem zastosowania autotransformatora jest regulacja napięcia w aplikacjach, gdzie niezbędne jest jedynie przekształcanie napięcia bez separacji obwodów, co może prowadzić do zagrożenia w przypadku awarii. Transformator rozdzielczy, z drugiej strony, jest używany w systemach energetycznych do rozdzielania mocy na różne linie, ale jego działanie również nie obejmuje izolacji obwodów, co jest niezbędne w kontekście bezpieczeństwa. Transformator bezpieczeństwa ma na celu ochronę przed porażeniem prądem, jednak różni się od transformatora separacyjnego szczegółami konstrukcyjnymi i przeznaczeniem. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania i implementacji systemów elektroenergetycznych, gdzie bezpieczeństwo i niezawodność są priorytetami. Każda z tych pomyłek wskazuje na nieprzemyślane podejście do tematu i potrzebę głębszej analizy oraz przyswojenia wiedzy na temat funkcji i zastosowań różnych typów transformatorów w praktyce.

Pytanie 23

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. daloczułkiem.
B. pirometrem.
C. multimetrem.
D. fotometrem.
Pirometr to urządzenie specjalistyczne, które służy do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekt, co pozwala na określenie jego temperatury bez konieczności fizycznego kontaktu. Takie podejście jest szczególnie przydatne w sytuacjach, gdy obiekt jest zbyt gorący lub niebezpieczny do dotykania, jak w przypadku pieców przemysłowych czy silników. W praktyce, pirometry są powszechnie stosowane w przemyśle metalurgicznym, spożywczym oraz w energetyce, gdzie precyzyjny pomiar temperatury ma kluczowe znaczenie dla bezpieczeństwa i efektywności procesów. Zgodnie z normami branżowymi, pomiar temperatury za pomocą pirometru powinien być wykonywany w odpowiednich warunkach, co obejmuje m.in. kalibrację urządzenia oraz uwzględnienie współczynnika emisji materiału, który mierzony jest dla uzyskania dokładnych rezultatów. Warto również zauważyć, że pirometry są dostępne w różnych wariantach, w tym ręcznych i stacjonarnych, co zwiększa ich uniwersalność w zastosowaniach przemysłowych.

Pytanie 24

Jaki rodzaj wyłącznika przedstawiono na rysunku?

Ilustracja do pytania
A. Krańcowy.
B. Silnikowy.
C. Różnicowoprądowy.
D. Nadprądowy.
Wybór wyłącznika krańcowego, silnikowego lub nadprądowego jest błędny, ponieważ te urządzenia mają zupełnie inne funkcje i zastosowanie w instalacjach elektrycznych. Wyłącznik krańcowy jest elementem automatyki, stosowanym głównie w systemach, które wymagają detekcji położenia elementów mechanicznych, takich jak drzwi czy dźwigi. Odpowiada on za sygnalizowanie, gdy dany element osiągnie skrajne położenie, a nie za ochronę przed prądem upływowym. Wyłącznik silnikowy, z kolei, jest używany do ochrony silników elektrycznych przed przeciążeniem i zwarciem, co również nie jest związane z detekcją różnicy prądów. Natomiast wyłącznik nadprądowy zabezpiecza instalacje przed skutkami przeciążeń i zwarć, ale nie jest w stanie zareagować na niebezpieczne prądy upływowe, które mogą prowadzić do porażeń elektrycznych. W związku z tym, wybór któregoś z tych urządzeń zamiast wyłącznika różnicowoprądowego wskazuje na niepełne zrozumienie zasad bezpieczeństwa w instalacjach elektrycznych oraz ich funkcji, co może prowadzić do poważnych konsekwencji w obszarze ochrony zdrowia i życia użytkowników. Ważne jest, aby przy projektowaniu instalacji elektrycznych stosować odpowiednie środki ochrony, zgodne z normami oraz wymaganiami prawnymi.

Pytanie 25

Które z narzędzi należy zastosować do usuwania nadmiaru roztopionego lutu z miejsca lutowania?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Narzędzie oznaczone literą "C" to lutowarka z odsysaczem, znana również jako desoldering pump, która jest kluczowym elementem w procesie lutowania. Umożliwia ona skuteczne usunięcie nadmiaru roztopionego lutu z miejsca lutowania, co jest niezbędne dla uzyskania czystych i trwałych połączeń. W praktyce, lutowarka z odsysaczem działa poprzez wytworzenie podciśnienia w momencie kontaktu z lutem, co pozwala na jego natychmiastowe wciągnięcie. To narzędzie jest szczególnie przydatne w sytuacjach, gdy konieczne jest poprawienie lub usunięcie lutowanych komponentów bez uszkodzenia płytki drukowanej. Zgodnie z najlepszymi praktykami w branży elektroniki, stosowanie odsysaczy jest rekomendowane do zabezpieczenia jakości połączeń, ponieważ nadmiar lutu może prowadzić do zwarć oraz nieprawidłowego działania układów. Ponadto, użycie lutowarki z odsysaczem jest zalecane w standardach przemysłowych dotyczących lutowania, aby zapewnić wysoką jakość wykonania oraz niezawodność produktów.

Pytanie 26

Zgodnie z normą PN-M-85002 na wale o średnicy 12 mm można osadzić wpust pryzmatyczny o wymiarach

Wpis z normy PN-M-85002
Wałek — d mmWpust
ponaddob×h mm
682×2
8103×3
10124×4
12175×5
17226×6
22308×7
A. 5x5 mm
B. 3x3 mm
C. 6x6 mm
D. 4x4mm
Odpowiedź 4x4 mm jest poprawna, ponieważ zgodnie z normą PN-M-85002 dla wałów o średnicy od 10 do 12 mm, przewidziano wpust pryzmatyczny o wymiarach 4x4 mm. Wpust pryzmatyczny jest kluczowym elementem w mechanice, który zapewnia efektywne przenoszenie momentu obrotowego między wałem a piastą. W praktyce, stosowanie odpowiednich wymiarów wpustów jest niezbędne dla zapewnienia stabilności i trwałości połączeń mechanicznych. W przypadku zastosowań w przemyśle, niewłaściwy dobór wymiarów wpustu może prowadzić do problemów z przenoszeniem momentu, co skutkuje zwiększeniem zużycia elementów oraz ryzykiem awarii. Przykładowo, w układach napędowych maszyn, zastosowanie wpustu o niewłaściwych wymiarach może skutkować poślizgiem, co negatywnie wpływa na wydajność całego systemu. Dlatego znajomość norm oraz precyzyjne dobieranie wymiarów wpustów pryzmatycznych jest kluczowe dla inżynierów mechaników oraz technologów.

Pytanie 27

Którego klucza należy użyć do odkręcenia przedstawionej na rysunku śruby?

Ilustracja do pytania
A. Z gniazdem sześciokątnym.
B. Płaskiego szczękowego.
C. Trzpieniowego sześciokątnego.
D. Oczkowego sześciokątnego.
Wybór niewłaściwego klucza do odkręcania śruby z gniazdem sześciokątnym, takiego jak klucz oczkowy sześciokątny, jest typowym błędem, który wynika z braku zrozumienia specyfikacji narzędzi. Klucz oczkowy jest przeznaczony do odkręcania nakrętek i śrub, które mają zewnętrzne gniazdo sześciokątne. Stosowanie go do śrub z wewnętrznym gniazdem prowadzi do nieefektywnego przenoszenia momentu obrotowego i łatwego uszkodzenia gniazda, co może skutkować uszkodzeniem śruby oraz narzędzia. Podobnie, klucz płaski szczękowy nie jest odpowiedni, ponieważ nie zapewnia stabilności i precyzyjnego dopasowania, co jest kluczowe w operacjach wymagających wysokiego momentu obrotowego. Klucz z gniazdem sześciokątnym, mimo że może być używany do odkręcania niektórych typów nakrętek, jest również niewłaściwy w kontekście śrub z gniazdem sześciokątnym wewnętrznym, ponieważ nie pasuje do ich specyfiki. Zrozumienie kształtów oraz zastosowań narzędzi jest kluczowe dla bezpiecznej i efektywnej pracy w mechanice, a ignorowanie tych zasad prowadzi do typowych błędów, które mogą spowodować nie tylko uszkodzenie narzędzi, lecz także poważne uszkodzenia samej konstrukcji.

Pytanie 28

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Pośrednich
B. Bezpośrednich
C. Złożonych
D. Uwikłanych
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 29

Wartość mocy czynnej wskazana przez watomierz wynosi

Ilustracja do pytania
A. 130 W
B. 65 W
C. 500 W
D. 325 W
Odpowiedź 325 W jest poprawna, ponieważ wartość ta odpowiada rzeczywistemu odczytowi mocy czynnej na watomierzu. Watomierz jest urządzeniem pomiarowym, które rejestruje moc czynną w obwodach elektrycznych, co ma kluczowe znaczenie w obliczeniach dotyczących zużycia energii elektrycznej w domach i przemysłowych instalacjach. Przy pomiarach mocy czynnej, należy pamiętać, że odczyt ten nie obejmuje mocy biernej ani pozornej, co czyni go istotnym w kontekście efektywności energetycznej. W praktyce, poprawne wykorzystanie watomierzy w instalacjach elektrycznych pozwala na monitorowanie wydajności urządzeń, co jest zgodne z normą PN-EN 60529. Użycie watomierzy jest kluczowe nie tylko w celu oceny kosztów energii, ale także w ocenie wpływu na środowisko, ponieważ pozwala na identyfikację urządzeń o niskiej efektywności energetycznej i optymalizację ich działania. Warto również zauważyć, że regularne monitorowanie mocy czynnej może pomóc w wykrywaniu nieprawidłowości w działaniu instalacji elektrycznych, co jest ważne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 30

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Rezystancją w obwodzie wzbudzenia
B. Rezystancją w obwodzie twornika
C. Napięciem przyłożonym do obwodu wzbudzenia
D. Napięciem przyłożonym do obwodu twornika
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 31

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego to

Ilustracja do pytania
A. spawanie.
B. lutowanie.
C. zgrzewanie.
D. klejenie.
Lutowanie jest kluczową techniką montażu podzespołów elektronicznych na płytkach obwodów drukowanych. Proces ten polega na łączeniu elementów za pomocą stopu lutowniczego, który po podgrzaniu staje się płynny, a następnie, po ochłodzeniu, tworzy mocne połączenie zarówno elektryczne, jak i mechaniczne. Lutowanie jest szeroko stosowane w przemyśle elektronicznym, szczególnie w produkcji urządzeń, które muszą wykazywać niezawodność i długowieczność. W przypadku lutowania, istotne jest przestrzeganie standardów takich jak IPC-A-610, które definiują wymagania dotyczące jakości lutowanych połączeń. Przykładowo, lutowanie może być stosowane do montażu komponentów SMD (przez powierzchnię), gdzie precyzyjne i niezawodne połączenia są kluczowe. Dodatkowo, lutowanie może być realizowane zarówno ręcznie, jak i maszynowo, co pozwala na elastyczność w procesie produkcyjnym, zależnie od skali produkcji oraz wymagań jakościowych.

Pytanie 32

Na którym rysunku przedstawiono zęby i ślady zazębień poprawnie zamontowanych i współpracujących ze sobą kół zębatych?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Zaznaczenie odpowiedzi innej niż A często wynika z braku zrozumienia zasad prawidłowego zazębienia kół zębatych. Warto zwrócić uwagę, że nieprawidłowe zazębienie, jak to widoczne w odpowiedziach B, C i D, może prowadzić do szeregu problemów w funkcjonowaniu mechanizmów. Przesunięcie osiowe, które można zaobserwować w niektórych z tych rysunków, nie tylko wpływa na nieefektywne przenoszenie momentu obrotowego, ale także generuje dodatkowe siły, które mogą prowadzić do szybszego zużycia zębów. Ponadto, niewłaściwe nachylenie zębów, które także występuje w tych odpowiedziach, może prowadzić do zwiększenia tarcia i hałasu, co jest niepożądane w wielu zastosowaniach przemysłowych. Często uczniowie mylnie zakładają, że każdy rysunek kół zębatych wygląda poprawnie, jednak kluczowe jest zrozumienie, że tylko idealne zazębienie, w pełni zgodne z normami, zapewnia długotrwałą i efektywną pracę. W praktyce inżynieryjnej, zgodności z normami takimi jak ANSI/AGMA 1012-F14 jest niezbędna, aby zapewnić, że projektowane układy będą działały zgodnie z oczekiwaniami. Ignorowanie tych zasad może prowadzić do poważnych konsekwencji, w tym awarii sprzętu oraz zwiększenia kosztów operacyjnych.

Pytanie 33

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Zgrzewanie
B. Lutowanie twarde
C. Lutowanie miękkie
D. Klejenie
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 34

Na podstawie przedstawionej tabliczki znamionowej pompy hydraulicznej określ jej maksymalną wydajność.

Ilustracja do pytania
A. 250 bar
B. 6 dm3/min
C. 24 V DC
D. 40 dm3
Odpowiedź 6 dm3/min jest prawidłowa, ponieważ na tabliczce znamionowej pompy hydraulicznej znajduje się informacja o wydatku pompy, oznaczona jako 'WYDATEK POMPY: Q = 6 litr/min'. Przy konwersji jednostek, 6 litrów na minutę jest równoznaczne z 6 dm3/min, co zostaje potwierdzone w standardach dotyczących oznaczania wydajności urządzeń hydraulicznych. Wydajność pompy jest kluczowym parametrem, który wpływa na efektywność całego układu hydraulicznego. Przykładowo, w zastosowaniach przemysłowych, takich jak malowanie natryskowe lub systemy hydrauliczne w maszynach, właściwa wydajność pompy ma bezpośredni wpływ na jakość i wydajność pracy. Znajomość maksymalnej wydajności pompy pozwala na odpowiedni dobór komponentów oraz optymalizację procesów, co jest zgodne z najlepszymi praktykami inżynieryjnymi. W przypadku pompy hydraulicznej, jej wydajność jest także istotna podczas doboru odpowiednich węży i złączy, które muszą sprostać wymogom ciśnienia i przepływu.

Pytanie 35

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Płytki
B. Podkładki
C. Uszczelki
D. Zawleczki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 36

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. szczotek.
B. komutatora.
C. uzwojenia.
D. łożysk.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 37

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Zbiornika oleju hydraulicznego
B. Siłownika jednostronnego działania
C. Zbiornika sprężonego powietrza
D. Siłownika dwustronnego działania
Podłączenie przyłącza T do zbiornika sprężonego powietrza jest niewłaściwie zrozumiane, ponieważ systemy hydrauliczne i pneumatyczne różnią się zasadniczo w swoim działaniu i zastosowaniu. Zbiorniki sprężonego powietrza są przeznaczone do gromadzenia powietrza pod ciśnieniem i są używane w systemach pneumatycznych, gdzie energia jest przekazywana przez sprężone powietrze. Zastosowanie przyłącza T w tym kontekście wprowadzałoby w błąd, ponieważ olej hydrauliczny nie może być użyty w systemie pneumatycznym, co mogłoby prowadzić do uszkodzeń komponentów i awarii całego układu. Z kolei podłączenie do siłownika jednostronnego działania również jest nieprawidłowe, ponieważ taki siłownik potrzebuje jedynie jednego przyłącza do zasilania, a powrót oleju odbywa się przez inne kanały, co nie ma związku z przyłączem T. Siłownik dwustronnego działania wymaga natomiast zarówno zasilania, jak i odprowadzania oleju, ale jego konstrukcja nie przewiduje podłączenia do zbiornika w ten sposób. Zrozumienie funkcji przyłącza T w kontekście zaworu hydraulicznego 4/2 jest fundamentalne dla efektywnego zarządzania systemem hydraulicznym, dlatego kluczowe jest, aby nie mylić jego zastosowania z systemami pneumatycznymi czy z siłownikami, które operują na innych zasadach.

Pytanie 38

Na rysunku przedstawiono zawór rozdzielający przystosowany do sterowania

Ilustracja do pytania
A. pneumatycznego.
B. elektrycznego.
C. hydraulicznego.
D. mechanicznego.
Zawór rozdzielający przedstawiony na rysunku jest przeznaczony do systemów pneumatycznych, co można potwierdzić po symbolice oraz oznaczeniach na urządzeniu. W praktyce, zawory pneumatyczne są kluczowymi komponentami w wielu aplikacjach przemysłowych, w tym w automatyce oraz produkcji. Ich główną funkcją jest kontrolowanie przepływu powietrza w systemach, co pozwala na precyzyjne sterowanie napędem pneumatycznym. Zawory te są zaprojektowane do pracy w warunkach, gdzie maksymalne ciśnienie robocze wynosi 10 barów, co jest typowe dla systemów pneumatycznych, a ich konstrukcja musi spełniać odpowiednie normy, takie jak ISO 6431 czy ISO 15744, dotyczące wymagań dla elementów pneumatycznych. Stosowanie zaworów pneumatycznych w aplikacjach takich jak pakowanie, montaż czy manipulacja materiałami przyczynia się do zwiększenia efektywności procesów produkcyjnych. Systemy pneumatyczne są szczególnie cenione za swoją szybkość, niezawodność oraz stosunkowo niskie koszty operacyjne, co czyni je popularnym wyborem w nowoczesnym przemyśle.

Pytanie 39

Które elementy przedstawiono na zdjęciu?

Ilustracja do pytania
A. Pojemniki na sprężone powietrze.
B. Obciążniki do układów hydraulicznych.
C. Akumulatory hydrauliczne.
D. Sondy pomiarowe.
Analiza pozostałych odpowiedzi ujawnia szereg nieporozumień dotyczących funkcji i konstrukcji elementów hydraulicznych. Sondy pomiarowe, chociaż istotne w systemach hydraulicznych, są używane do pomiaru ciśnienia lub poziomu płynów, co różni się zasadniczo od funkcji akumulatorów hydraulicznych, które służą do magazynowania energii. Sondy nie mają zdolności do gromadzenia płynu pod ciśnieniem ani do stabilizacji ciśnienia w układzie. Kolejnym elementem są pojemniki na sprężone powietrze, które również różnią się od akumulatorów hydraulicznych, gdyż ich funkcjonalność dotyczy przechowywania sprężonego powietrza, a nie płynów hydraulicznych. W kontekście wymagań technicznych, akumulatory hydrauliczne projektowane są w oparciu o różne materiały i technologie, co czyni je unikalnymi w porównaniu do pojemników na sprężone powietrze. Obciążniki do układów hydraulicznych również nie są akumulatorami, ponieważ ich rolą jest stabilizowanie maszyn i pojazdów w czasie pracy, a nie magazynowanie energii. W związku z tym, mylenie tych elementów prowadzi do fundamentalnych błędów w zrozumieniu ich zastosowania i wpływa na projektowanie oraz eksploatację systemów hydraulicznych. Zrozumienie różnic między tymi komponentami jest kluczowe dla efektywnego zarządzania systemami hydraulicznymi oraz ich bezpieczeństwa.

Pytanie 40

Jakiego rodzaju sprzęgła należy użyć do połączenia dwóch wałów przedstawionych na rysunku?

Ilustracja do pytania
A. Tulejowego.
B. Łubkowego.
C. Kołnierzowego.
D. Oldhama.
Sprzęgło Oldhama jest idealnym rozwiązaniem do połączenia wałów, które mogą być przesunięte względem siebie osiowo, co jest kluczowe w wielu zastosowaniach inżynieryjnych i przemysłowych. Jego konstrukcja pozwala na przenoszenie momentu obrotowego przy jednoczesnym zminimalizowaniu skutków przesunięcia osiowego. W praktyce, sprzęgła Oldhama znajdują zastosowanie w napędach, gdzie wały mogą być ustawione w różnych płaszczyznach, na przykład w robotyce czy automatyce. Ponadto, sprzęgła te charakteryzują się niskim zużyciem, co zwiększa ich trwałość oraz redukuje potrzebę konserwacji. Dobre praktyki inżynieryjne zalecają ich użycie w systemach, gdzie występują wibracje lub cykliczne obciążenia, ponieważ ich konstrukcja umożliwia tłumienie drgań. Przykładowo, w systemach napędowych samochodów elektrycznych czy maszyn CNC, sprzęgła Oldhama są powszechnie stosowane, co potwierdza ich wszechstronność i efektywność w różnych aplikacjach przemysłowych.