Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 lutego 2026 12:51
  • Data zakończenia: 4 lutego 2026 13:12

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,2 s
B. 0,8 s
C. 0,1 s
D. 0,4 s
Maksymalny dopuszczalny czas wyłączenia w układach sieci typu TN przy napięciu zasilania 230 V wynosi 0,4 s, zgodnie z normą PN-IEC 60364-4-41:2000. Czas ten jest kluczowy w kontekście bezpieczeństwa użytkowników i ochrony instalacji elektrycznych. W układzie TN zastosowanie przewodów ochronnych oraz odpowiedniego zabezpieczenia (np. wyłączników nadprądowych i różnicowoprądowych) ma na celu zminimalizowanie ryzyka porażenia prądem. Przykładowo, w przypadku uszkodzenia izolacji, szybkie wyłączenie zasilania ogranicza czas, w którym występuje niebezpieczne napięcie na obudowach urządzeń elektrycznych. Z tego względu, normy te zalecają właśnie ten czas wyłączenia, który pozwala pełni zabezpieczyć użytkownika przed skutkami awarii. W praktyce, odpowiednie dobranie elementów zabezpieczających oraz ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, co czyni tę wiedzę niezbędną dla każdego specjalisty w tej dziedzinie.

Pytanie 2

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Zatrzymuje łuk elektryczny
B. Napina sprężynę mechanizmu
C. Rozpoznaje zwarcia
D. Identyfikuje przeciążenia
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym pełni kluczową rolę w detekcji zwarć w obwodach elektrycznych. Jego działanie opiera się na zasadzie pomiaru prądu płynącego przez obwód. W momencie wystąpienia zwarcia, prąd znacznie wzrasta, co prowadzi do aktywacji wyzwalacza. Przykładowo, w przypadku zwarcia doziemnego, występujące wartości prądu mogą przekroczyć normalne poziomy, co wyzwala mechanizm odłączający obwód i zabezpieczający instalację przed uszkodzeniami. Tego typu rozwiązania są zgodne z normami IEC 60947-2, które określają wymagania dotyczące sprzętu niskonapięciowego. Poprawne działanie wyzwalacza elektromagnetycznego jest zatem niezbędne dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, minimalizując ryzyko pożaru czy uszkodzenia urządzeń. W praktyce, wyłączniki nadprądowe z wyzwalaczami elektromagnetycznymi są powszechnie stosowane w domach, biurach oraz przemysłowych środowiskach pracy, gdzie ochrona przed skutkami zwarć jest kluczowa.

Pytanie 3

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 11,0 V
C. 12,4 V
D. 12,0 V
Odpowiedzi 11,3 V, 12,4 V i 11,0 V nie są prawidłowe, bo całkowicie pomijają ważne rzeczy dotyczące, jak akumulatory się rozładowują. Z mojego doświadczenia, kluczowe jest zrozumienie, jak prąd obciążenia wpływa na napięcie, bo to mega ważne dla oceny, jak akumulatory się zachowują. Na przykład, 11,3 V może sugerować, że akumulator jest wyczerpany albo że coś jest nie tak z jego pojemnością. Z kolei 12,4 V może wynikać z błędnego zrozumienia wykresu, bo wysoka wartość napięcia nie jest normą przy dużym obciążeniu. Odpowiedź 11,0 V też nie pokazuje realnych wartości, które akumulator powinien mieć w takiej sytuacji. Często zdarzają się błędy w myśleniu, takie jak niepoprawne szacowanie wpływu czasu na napięcie, co prowadzi do mylnych wniosków na temat sprawności akumulatorów. Ważne, by wszyscy, którzy korzystają z akumulatorów, znali ich charakterystyki i potrafili dobrze interpretować dane z wykresów, co pomoże w lepszym ich wykorzystaniu w różnych sytuacjach.

Pytanie 4

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
IN – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IZ ≤ IN ≤ IB
B. IN ≤ IB ≤ IZ
C. IB ≤ IZ ≤ IN
D. IB ≤ IN ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 5

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Formowania oczek z końców żył przewodów.
B. Zaciskania końcówek na żyłach przewodów.
C. Zdejmowania powłoki przewodów.
D. Zdejmowania izolacji żył przewodów.
Narzędzie przedstawione na zdjęciu to specjalistyczne szczypce do ściągania izolacji, które są kluczowym elementem w pracy z przewodami elektrycznymi. Jego głównym zadaniem jest usuwanie warstwy izolacyjnej z żył przewodów, co jest niezbędne do zapewnienia poprawnego połączenia elektrycznego. Dzięki charakterystycznej budowie, która często posiada regulowany ogranicznik, użytkownik ma możliwość precyzyjnego dostosowania głębokości cięcia. Umożliwia to bezpieczne usunięcie izolacji bez uszkodzenia samej żyły, co jest istotne z punktu widzenia nie tylko wydajności, ale również bezpieczeństwa instalacji elektrycznych. W praktyce, stosując to narzędzie, można wykonać prace takie jak łączenie przewodów w instalacjach domowych czy przygotowywanie kabli do podłączeń w urządzeniach elektronicznych. Przestrzeganie dobrych praktyk, jak na przykład unikanie zbyt głębokiego nacięcia, jest kluczowe, aby zminimalizować ryzyko uszkodzenia przewodów. Narzędzie to jest zgodne z normami branżowymi, co potwierdza jego przydatność i efektywność w codziennym użytkowaniu.

Pytanie 6

Którym symbolem graficznym oznacza się prowadzenie przewodów w tynku na schemacie ideowym projektowanej instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybierając inną odpowiedź, można było wpaść w pułapkę typowych nieporozumień dotyczących symboliki w projektowaniu instalacji elektrycznych. Wiele osób myli symbole graficzne związane z instalacjami elektrycznymi, co często prowadzi do nieprawidłowej interpretacji dokumentów projektowych. Niezrozumienie różnicy między różnymi symbolami może spowodować, że nieprawidłowo zaprojektowane lub wykonane instalacje nie będą spełniały norm bezpieczeństwa i funkcjonalności. Należy pamiętać, że każdy symbol na schemacie ma swoje konkretne znaczenie. Na przykład, niektóre symbole mogą wskazywać na przewody prowadzone pod tynkiem lub w innych rodzajach osłon, co ma bezpośredni wpływ na bezpieczeństwo instalacji. Używanie niewłaściwych symboli może prowadzić do błędów w wykonaniu instalacji, a w konsekwencji do kosztownych poprawek. Właściwe rozumienie symboliki jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych, a także dla zapewnienia, że projekty spełniają wymagania norm europejskich i krajowych. Dlatego ważne jest, aby dokładnie zapoznawać się z dokumentacją techniczną oraz stosować się do uznawanych standardów, takich jak PN-IEC 60617, aby uniknąć nieporozumień i błędów w projektach. To zarówno kwestia praktyki, jak i odpowiedzialności zawodowej.

Pytanie 7

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór innych rysunków może wynikać z nieporozumienia co do roli pierścieni ślizgowych w konstrukcji silników elektrycznych. Rysunki, które nie przedstawiają pierścieni, mogą pokazywać inne istotne elementy silnika, takie jak wirnik czy stojan, ale nie są one odpowiednie w kontekście zadania. Niezrozumienie funkcji pierścieni ślizgowych często prowadzi do błędnej interpretacji ich lokalizacji i roli. Pierścienie ślizgowe są integralną częścią konstrukcji, umożliwiającą przekazywanie prądu do wirnika, co jest kluczowe dla funkcjonowania silnika. Wybierając rysunki, które nie pokazują tych elementów, można mylnie przyjąć, że inne części silnika pełnią tę funkcję, co jest niezgodne z rzeczywistością. Dodatkowo, w kontekście standardów branżowych, każdy element silnika ma swoją specyfikę i funkcję, co jest kluczowe w projektowaniu i eksploatacji. Ignorowanie tej zasady może prowadzić do nieprawidłowego działania maszyny, a w konsekwencji do poważnych awarii. Dlatego znajomość konstrukcji silników oraz poszczególnych komponentów jest niezbędna dla każdego inżyniera zajmującego się automatyką lub energetyką.

Pytanie 8

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzony przewód pomiędzy W1 a S191B10
B. Uszkodzone przewody pomiędzy W2 a W3
C. Uszkodzone przewody pomiędzy W1 a W2
D. Uszkodzony przewód pomiędzy W3 a E1
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.

Pytanie 9

W jaki sposób odbywa się sterowanie oświetleniem w układzie wykonanym według schematu montażowego przedstawionego na rysunku?

Ilustracja do pytania
A. Klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A
B. Klawisze 1a i 1b sterują żarówką B, a klawisze 2a i 2b sterują żarówką A
C. Klawisze 1a i 1b sterują żarówką A, a klawisze 2a i 2b sterują żarówką B
D. Klawisze 1a i 2a sterują żarówką A, a klawisze 1b i 2b sterują żarówką B
Poprawna odpowiedź wskazuje, że klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A. Taki układ jest typowym schematem dla oświetlenia schodowego, co umożliwia włączanie i wyłączanie oświetlenia z dwóch niezależnych miejsc. W praktyce, jest to szczególnie przydatne w długich korytarzach, na klatkach schodowych oraz w pomieszczeniach z dwoma wejściami. Klawisze połączone w układzie schodowym pozwalają na elastyczne zarządzanie oświetleniem, co zwiększa komfort użytkowania przestrzeni. Ważnym aspektem takiego rozwiązania jest także bezpieczeństwo, ponieważ umożliwia użytkownikom łatwe dostosowanie oświetlenia w zależności od potrzeb, co jest zgodne z zasadami ergonomii i dobrych praktyk projektowych w zakresie oświetlenia. Zastosowanie układów schodowych w obiektach publicznych, takich jak szkoły czy biura, również potwierdza ich praktyczność oraz adaptacyjność w różnych warunkach użytkowych.

Pytanie 10

Jaki wyłącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Nadprądowy.
B. Różnicowoprądowy.
C. Silnikowy.
D. Czasowy.
Wyłącznik różnicowoprądowy to naprawdę ważne urządzenie w każdej instalacji elektrycznej. Jego głównym zadaniem jest ochrona nas przed porażeniem prądem. Działa to tak, że jeśli wykryje różnicę między prądem, który wpływa a tym, który wypływa z obwodu, to szybko odłącza zasilanie. Kiedy prąd upływowy przekroczy ustaloną wartość, najczęściej 30 mA, to wyłącznik po prostu wyłącza prąd. Fajnie jest wiedzieć, że takie wyłączniki są stosowane zwłaszcza w łazienkach, czy wszędzie tam, gdzie elektryczność ma kontakt z wodą. Warto zaznaczyć, że według normy PN-EN 61008, powinny być w każdej nowoczesnej instalacji, co świadczy o ich roli w dbaniu o nasze bezpieczeństwo. Poza tym, nowoczesne budynki zwykle są w nie wyposażone, co dodatkowo zwiększa bezpieczeństwo. Oprócz ochrony, wyłączniki różnicowoprądowe też pomagają monitorować stan instalacji, co jest istotne, by była ona w dobrym stanie.

Pytanie 11

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. W odstępach czasu kolejno: K1M, K42M, K41M
B. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
C. W odstępach czasu kolejno: K41M, K42M, K1M
D. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
Wybór innej odpowiedzi, która sugeruje inną kolejność włączania styczników w układzie, zawiera poważne błędy koncepcyjne, które mogą prowadzić do nieprawidłowego działania silnika i potencjalnego uszkodzenia systemu. Na przykład, jeżeli stycznik K1M zostanie włączony jako pierwszy, a K41M nie zostanie aktywowany, silnik zacznie pracować w pełnym obciążeniu bez wcześniejszego zmniejszenia prądu rozruchowego. Taki proces może prowadzić do nadmiernego prądu, co z kolei zwiększa ryzyko przegrzania i uszkodzenia uzwojeń silnika. Włączenie stycznika K42M przed K41M nie tylko nie jest zgodne z zasadami bezpieczeństwa, ale także może prowadzić do nieprawidłowego działania silnika w trybie gwiazdy, co neguje jego zalety. W kontekście dobrych praktyk, stosowanie się do ustalonej sekwencji włączania styczników jest kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy układów elektrycznych. Niewłaściwe podejście do rozruchu silnika może skutkować poważnymi konsekwencjami finansowymi i operacyjnymi, dlatego tak ważne jest przestrzeganie ustalonych procedur, które opierają się na zasadzie minimalizacji ryzyka i maksymalizacji efektywności działania całego układu.

Pytanie 12

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór niewłaściwego przyrządu do pomiarów rezystancji izolacji w instalacji elektrycznej może prowadzić do poważnych konsekwencji, zarówno technicznych, jak i bezpieczeństwa. Inne urządzenia, takie jak multimetru czy omomierze, nie są przystosowane do pomiaru wysokich wartości rezystancji, jakie występują w systemach izolacji. Multimetry, które często mają zakres pomiarowy do 20 MΩ, mogą nie być w stanie dokładnie zmierzyć rezystancji izolacji, zwłaszcza w przypadku uszkodzeń lub degradacji materiałów izolacyjnych. Użycie takich przyrządów w miejsce megomierza może prowadzić do fałszywych wniosków, które w efekcie mogą zagrażać bezpieczeństwu użytkowników. W praktyce, pomiar rezystancji izolacji powinien opierać się na standardowych procedurach, które wymagają użycia specjalistycznego wyposażenia. Dodatkowo, niekiedy występuje mylne przekonanie, że pomiar o niskich wartościach rezystancji jest wystarczający do oceny stanu izolacji. W rzeczywistości, normy branżowe jasno określają, że izolacja powinna mieć bardzo wysoką rezystancję, sięgającą nawet gigaomów, aby była uznawana za bezpieczną. Prawidłowe podejście do pomiarów nie tylko wpływa na efektywność działania instalacji, ale także na bezpieczeństwo ludzi oraz mienia, co jest kluczowym aspektem pracy w każdej branży związanej z elektrycznością.

Pytanie 13

Na którym rysunku przedstawiono prawidłowe połączenie łącznika świecznikowego z żyrandolem?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór odpowiedzi, która nie przedstawia poprawnego połączenia łącznika świecznikowego z żyrandolem, może wynikać z kilku typowych nieporozumień związanych z zasadami działania obwodów elektrycznych. W przypadku, gdy przewód fazowy L nie jest podłączony do łącznika, a zamiast tego łącznik jest połączony bezpośrednio z przewodem neutralnym N, obwód nie będzie działał prawidłowo. Taki układ może prowadzić do sytuacji, w której żyrandol nie świeci, ponieważ brak jest możliwości włączenia zasilania. Ponadto, jeśli przewód neutralny jest podłączony tylko do żarówki, a nie do łącznika, dochodzi do nieprawidłowego rozdzielenia obwodu, co może prowadzić do uszkodzeń instalacji oraz zwiększonego ryzyka pożaru. Innym typowym błędem jest pominięcie istotnych zasad bezpieczeństwa, takich jak stosowanie odpowiednich izolacji czy zabezpieczeń. To może skutkować nie tylko nieprawidłowym działaniem obwodu, ale również stwarzać zagrożenie dla użytkowników. Niezrozumienie roli przewodów fazowych i neutralnych w obwodzie elektrycznym jest kluczowym czynnikiem prowadzącym do tych błędów. W każdym przypadku, fundamentalne zasady dotyczące instalacji elektrycznych powinny być przestrzegane, aby zapewnić ich bezpieczeństwo i niezawodność.

Pytanie 14

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. N i PE są zwarte oraz L3 jest przerwana.
B. L1 i L2 są przerwane.
C. L1 i L2 są zwarte.
D. N i L3 są zwarte oraz PE jest przerwana.
Poprawna odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. Wyniki pomiarów rezystancji potwierdzają, że między żyłami N i PE nie ma oporu, co oznacza, że są one ze sobą połączone. Przykładowo, w instalacjach elektrycznych, żyła neutralna (N) oraz żyła ochronna (PE) powinny być połączone w punkcie zerowym, co jest zgodne z normami bezpieczeństwa. W przypadku, gdy rezystancja między L3.1 a L3.2 wynosi ∞, mamy do czynienia z przerwaniem w tej żyle, co może prowadzić do niebezpiecznych sytuacji, takich jak wzrost napięcia na żyłach fazowych. Istotne jest, aby przy każdorazowej kontroli instalacji elektrycznych stosować takie pomiary, aby zidentyfikować wszelkie nieprawidłowości. Praktyki te są zgodne z normami PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa instalacji elektrycznych. Zrozumienie tych zależności jest kluczowe dla zapewnienia bezpieczeństwa oraz długotrwałej eksploatacji instalacji elektrycznych.

Pytanie 15

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TN-C
B. IT
C. TT
D. TN-S
Wybór odpowiedzi TN-S, IT lub TT może wynikać z nieporozumienia dotyczącego podstawowych zasad ochrony i neutralizacji w instalacjach elektrycznych. W układzie TN-S przewody ochronne (PE) i neutralne (N) są rozdzielone, co oznacza, że nie ma miejsca na przewód PEN. To rozdzielenie jest istotne w kontekście bezpieczeństwa, ponieważ zapewnia niezależność ochrony przed porażeniem, co jest kluczowe w przypadku awarii. Z kolei układ IT jest stosowany przede wszystkim w miejscach, gdzie wymagana jest wysoka niezawodność zasilania, a jego konstrukcja opiera się na izolacji od ziemi, co sprawia, że nie stosuje się w nim przewodu PEN. W układzie TT, podobnie jak w TN-S, przewody są także rozdzielone, a dodatkowo zastosowanie uziemienia lokalnego zwiększa bezpieczeństwo. Typowym błędem myślowym jest założenie, że wszystkie układy, w których występują przewody ochronne, będą miały tę samą funkcjonalność. Dlatego ważne jest, aby zapoznać się z zasadami działania różnych układów oraz ich zastosowaniem w praktyce. Bez właściwej wiedzy na temat tych układów można łatwo wprowadzić się w błąd, co może prowadzić do poważnych konsekwencji w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 16

Na rysunku przedstawiono stosowaną w instalacjach elektrycznych złączkę

Ilustracja do pytania
A. gwintową.
B. skrętną.
C. samozaciskową.
D. śrubową.
Wybór złączki samozaciskowej nie jest odpowiedni w kontekście przedstawionego rysunku. Złączki samozaciskowe, choć powszechnie używane, mają inną konstrukcję i działanie. Działają na zasadzie automatycznego zaciskania przewodów pod wpływem ich włożenia, co nie zapewnia tak solidnego połączenia jak złączka skrętna. Takie połączenia mogą być narażone na luzowanie się w wyniku wibracji czy zmian temperatury, co jest istotnym czynnikiem w instalacjach elektrycznych. Z kolei złączka śrubowa, mimo że oferuje solidne połączenie, wymaga użycia narzędzi do dokręcania, co może być czasochłonne i zwiększa ryzyko niewłaściwego montażu, co również negatywnie wpływa na bezpieczeństwo. Złączki gwintowe są stosowane głównie w instalacjach hydraulicznych i nie są ukierunkowane na łączenie przewodów elektrycznych, co czyni je nieodpowiednim wyborem. Te błędne podejścia do tematu mogą prowadzić do wyciągania mylnych wniosków podczas projektowania i realizacji instalacji. Przy wyborze odpowiednich złączek należy kierować się ich specyfiką oraz zastosowaniem w konkretnych warunkach oraz zgodnością z przyjętymi standardami bezpieczeństwa i jakości w branży elektrycznej.

Pytanie 17

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 22 stycznika K1
C. Z zaciskiem 3 listwy zaciskowej X1
D. Z zaciskiem 4 listwy zaciskowej X1
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 18

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Aluminium
B. Brąz
C. Stal
D. Miedź
Aluminium, miedź i brąz, mimo że są to metale, nie są najlepszymi przewodnikami strumienia magnetycznego. Aluminium, na przykład, jest dobrym przewodnikiem elektryczności, ale jego permeabilność magnetyczna jest znacznie niższa niż stali. W rzeczywistości, aluminium jest stosowane w aplikacjach, gdzie kluczowa jest niska waga, ale nie spełnia oczekiwań w kontekście efektywnego przewodzenia strumienia magnetycznego. Miedź, chociaż jest doskonałym przewodnikiem elektrycznym, ma również niską permeabilność i nie nadaje się do koncentracji strumienia magnetycznego w zastosowaniach wymagających silnych pól magnetycznych. Brąz, będący stopem miedzi, także nie oferuje lepszych właściwości magnetycznych niż jego składniki. Typowym błędem myślowym, który prowadzi do wyboru tych metali jako potencjalnych przewodników strumienia magnetycznego, jest skupienie się na ich właściwościach elektrycznych, a nie magnetycznych. W zastosowaniach inżynieryjnych i elektrotechnicznych, skuteczność materiału w przewodzeniu strumieni magnetycznych jest kluczowa dla osiągania wysokiej wydajności energetycznej. Dlatego w kontekście odpowiedzi na pytanie o najlepszy przewodnik strumienia magnetycznego, stal wyraźnie wyróżnia się na tle innych materiałów, co każdorazowo należy brać pod uwagę w projektach inżynieryjnych.

Pytanie 19

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór innej odpowiedzi, która nie wskazuje na szczypce do ściągania izolacji, może wynikać z nieporozumienia dotyczącego procesu lutowania i przygotowania przewodów. Kluczowym etapem w naprawie przewodów jest usunięcie izolacji, co jest niezbędne do zapewnienia dobrego kontaktu elektrycznego. Bez odpowiedniego narzędzia do ściągania izolacji nie będzie możliwe prawidłowe przygotowanie przewodów, co może prowadzić do nietrwałych połączeń. Ważne jest zrozumienie, że lutownica sama w sobie nie wystarcza do naprawy uszkodzonego przewodu. Wiele osób może mylnie zakładać, że lutowanie można przeprowadzić na przewodach z izolacją, co jest błędnym podejściem. Tego typu myślenie może prowadzić do uszkodzenia przewodów oraz nieefektywnych połączeń, które mogą stwarzać zagrożenie w przyszłości. Prawidłowa wiedza na temat narzędzi i technik stosowanych w elektryce jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności pracy. Warto pamiętać, że każdy profesjonalista powinien być świadomy znaczenia odpowiednich narzędzi w kontekście lutowania, ponieważ niewłaściwe przygotowanie może prowadzić do problemów z przewodnictwem elektrycznym oraz zwiększać ryzyko awarii.

Pytanie 20

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie lakieru elektroizolacyjnego
B. wyłożenie izolacją żłobkową
C. nałożenie oleju elektroizolacyjnego
D. zabezpieczenie klinami ochronnymi
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 21

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Ledowy.
B. Wolframowy.
C. Rtęciowy.
D. Halogenowy.
Żarówka LED, którą przedstawiono na ilustracji, jest doskonałym przykładem nowoczesnych rozwiązań oświetleniowych. Charakteryzuje się ona nie tylko wysoką efektywnością energetyczną, ale także długą żywotnością, sięgającą nawet 25 000 godzin. Diody LED, umieszczone na żółtych paskach wewnątrz szklanej bańki, zapewniają równomierne rozproszenie światła, co wpływa na komfort użytkowania. W przeciwieństwie do tradycyjnych żarówek wolframowych, które emitują dużą ilość ciepła, żarówki LED pozostają chłodne podczas pracy, co zwiększa bezpieczeństwo i zmniejsza ryzyko pożaru. Ponadto, żarówki LED są dostępne w różnych temperaturach barwowych, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb użytkownika. Przykładem zastosowania żarówek LED mogą być systemy oświetleniowe w biurach, gdzie ich wysoka efektywność przekłada się na zmniejszenie kosztów energii oraz poprawę jakości pracy dzięki lepszemu oświetleniu. Warto również zauważyć, że według norm unijnych i standardów efektywności energetycznej, stosowanie żarówek LED jest promowane jako sposób na ograniczenie emisji CO2 oraz zmniejszenie wpływu na środowisko.

Pytanie 22

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 0,003 A i 30 A
B. 0,03 A i 30 A
C. 30 A i 0,03 A
D. 3 A i 0,03 A
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących podstawowych pojęć związanych z wyłącznikami różnicowoprądowymi. Odpowiedzi, które sugerują wartości prądu różnicowego większe od 0,03 A, mogą prowadzić do fałszywego przekonania, że wyłączniki o wyższych prądach różnicowych zapewniają lepszą ochronę, co jest błędne. Prąd różnicowy 0,03 A jest standardem dla ochrony ludzi, a jego wyższe wartości, takie jak 3 A czy 30 A, są stosowane w innych kontekstach, na przykład w obwodach zabezpieczających przed pożarami, nie zaś w kontekście ochrony ludzi przed porażeniem. Wartości prądu znamionowego również mogą być mylące; na przykład sugerowanie, że 30 A to prąd różnicowy, może prowadzić do nieprawidłowego zrozumienia zasady działania wyłącznika. Wyłącznik różnicowoprądowy ma za zadanie przede wszystkim detekcję upływu prądu, a nie regulację jego wartości w obwodzie. Dodatkowo, mylenie prądów różnicowych i znamionowych może prowadzić do niewłaściwego doboru wyłącznika w instalacjach, co z kolei może stwarzać zagrożenie dla użytkowników. Kluczowe jest zrozumienie, że poprawny dobór parametrów wyłącznika różnicowoprądowego ma fundamentalne znaczenie dla bezpieczeństwa elektrycznego w budynkach.

Pytanie 23

Aparat pokazany na zdjęciu jest wykorzystywany do

Ilustracja do pytania
A. ograniczania przepięć.
B. wyłączania prądów roboczych.
C. wykrywania prądów upływu.
D. ograniczania napięć.
Aparat przedstawiony na zdjęciu to ogranicznik przepięć, który odgrywa kluczową rolę w zabezpieczaniu instalacji elektrycznych przed skutkami przepięć. Przepięcia mogą występować na skutek naturalnych zjawisk, takich jak wyładowania atmosferyczne, ale również z powodu operacji w sieci energetycznej, co może prowadzić do niebezpiecznych wzrostów napięcia. Ograniczniki przepięć są zaprojektowane tak, aby natychmiast reagować na te niekorzystne zjawiska, kierując nadmiar energii do ziemi i tym samym chroniąc urządzenia podłączone do instalacji. W praktyce, stosowanie ograniczników przepięć jest standardem w projektowaniu obiektów budowlanych, zgodnie z normami PN-EN 62305, które definiują wymagania dotyczące ochrony przed skutkami wyładowań atmosferycznych. Dzięki zastosowaniu tych urządzeń, można znacznie zredukować ryzyko uszkodzenia sprzętu oraz strat materialnych wynikających z niekontrolowanych przepięć.

Pytanie 24

Które z wymienionych zaleceń nie dotyczy wykonywania nowych instalacji elektrycznych w pomieszczeniach mieszkalnych?

A. Gniazda wtyczkowe w kuchni zasilać z osobnego obwodu.
B. Odbiorniki dużej mocy zasilać z wydzielonych obwodów.
C. Rozdzielić obwody oświetleniowe od gniazd wtyczkowych.
D. Gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu.
Prawidłowo wskazane, że zalecenie „gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu” nie jest typowym wymaganiem dla nowych instalacji mieszkaniowych. W aktualnej praktyce i wg zaleceń normowych (np. PN‑HD 60364, wytyczne SEP) dąży się do logicznego podziału instalacji na obwody, ale nie aż tak drobiazgowego, żeby każde pomieszczenie miało osobny obwód gniazd. Z mojego doświadczenia w mieszkaniówce robi się zwykle kilka obwodów gniazd ogólnych, które obejmują po 2–3 pomieszczenia, z zachowaniem ograniczenia obciążenia i długości linii, oraz oddzielne obwody dla kuchni i dużych odbiorników. Chodzi o rozsądny kompromis między bezpieczeństwem, funkcjonalnością a kosztami. Gdyby dla każdego pokoju prowadzić osobny obwód gniazd, rozdzielnica rozrasta się niepotrzebnie, rośnie ilość kabli, zabezpieczeń, pracy przy montażu i późniejszej eksploatacji. Technicznie da się tak zrobić, ale nie jest to wymagane, ani specjalnie praktyczne w typowych mieszkaniach. Natomiast pozostałe trzy odpowiedzi odzwierciedlają powszechnie przyjęte dobre praktyki. Gniazda wtyczkowe w kuchni prowadzi się z osobnego obwodu, bo kuchnia jest mocno obciążona: czajnik, mikrofalówka, zmywarka, czasem piekarnik, małe AGD – wszystko to generuje duże prądy i wymaga osobnego zabezpieczenia. Rozdzielenie obwodów oświetleniowych od gniazd to też standard – pozwala np. przy wyłączeniu zabezpieczenia gniazd (zwarcie, przeciążenie) zachować oświetlenie, co jest istotne dla bezpieczeństwa użytkowników i serwisu. Odbiorniki dużej mocy, jak płyta indukcyjna, piekarnik elektryczny, pralka, suszarka, klimatyzator, zasila się z wydzielonych obwodów właśnie po to, by nie przeciążać obwodów ogólnych i dobrać odpowiedni przekrój przewodów oraz zabezpieczenie nadprądowe i różnicowoprądowe. Moim zdaniem klucz w projektowaniu instalacji mieszkaniowej to nie „jak najwięcej obwodów”, tylko sensowny podział wynikający z bilansu mocy, wygody eksploatacji i wymogów normowych.

Pytanie 25

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 12
B. 9
C. 6
D. 3
Odpowiedzi sugerujące większą liczbę pomiarów, takie jak 6, 9 czy 12, wynikają z powszechnych nieporozumień na temat metodologii przeprowadzania pomiarów rezystancji izolacji przewodów. W praktyce, zbyt wiele pomiarów może prowadzić do komplikacji w interpretacji wyników. Zgodnie z wytycznymi, kluczowe jest, aby pomiary były skoncentrowane i dotyczyły najważniejszych punktów w systemie. Często błędne podejście do tematu polega na mylnym założeniu, że im więcej pomiarów zostanie wykonanych, tym bardziej dokładne będą wyniki. Rzeczywistość jest jednak taka, że nadmiar pomiarów może wprowadzać w błąd, a wyniki mogą się nie zgadzać z rzeczywistym stanem izolacji. Prawidłowe podejście polega na dobraniu odpowiednich miejsc pomiarowych oraz ich liczby, co z kolei powinno opierać się na charakterystyce instalacji oraz bieżących wymaganiach normatywnych. Warto również zwrócić uwagę na to, że wykonanie niewłaściwej liczby pomiarów może prowadzić do pominięcia krytycznych miejsc, gdzie uszkodzenia izolacji mogą występować, co w konsekwencji zagraża bezpieczeństwu użytkowników i prawidłowemu działaniu instalacji elektrycznej.

Pytanie 26

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Świecznikowy
B. Dwubiegunowy
C. Jednobiegunowy
D. Krzyżowy
Odpowiedź 'Krzyżowy' jest poprawna, ponieważ łącznik krzyżowy jest kluczowym elementem w instalacjach elektrycznych, które wymagają sterowania oświetleniem z wielu miejsc. Umożliwia on połączenie trzech lub więcej punktów sterujących, co znacznie zwiększa elastyczność w zarządzaniu oświetleniem w większych pomieszczeniach lub w korytarzach. Przykładem zastosowania łącznika krzyżowego może być sytuacja, w której światło w długim korytarzu jest kontrolowane zarówno na początku, w środku, jak i na końcu. W połączeniu z łącznikami schodowymi, które umożliwiają sterowanie z dwóch miejsc, łącznik krzyżowy wprowadza dodatkowy poziom kontroli, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. Zgodnie z normami PN-IEC 60669-1, stosowanie łączników krzyżowych jest rekomendowane w celu zapewnienia wygodnego i funkcjonalnego dostępu do systemu oświetlenia, co zwiększa komfort użytkowania oraz efektywność energetyczną.

Pytanie 27

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. aR
B. gG
C. gL
D. aM
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 28

Którym symbolem graficznym oznacza się prowadzenie przewodów elektrycznych na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 4.
C. Symbolem 2.
D. Symbolem 3.
Symbol graficzny, który dobrze oznacza prowadzenie przewodów na drabinkach kablowych, to symbol 2. Przedstawia on drabinkę z poprzeczkami. Drabinki kablowe są naprawdę ważne w instalacjach elektrycznych, bo pomagają w utrzymaniu porządku i ułatwiają konserwację. W praktyce używanie odpowiednich symboli jest kluczowe dla zrozumienia schematów elektrycznych. Dzięki temu możemy uniknąć wielu problemów i zapewnić sobie bezpieczeństwo podczas pracy z instalacjami. W normach jak PN-EN 60617 mówi się o tym, jak ważne są jednoznaczne oznaczenia, by uniknąć błędów. Dlatego symbol 2 jest powszechnie akceptowany w branży, co czyni go bardzo przydatnym.

Pytanie 29

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duży przekrój uszkodzonego przewodu
B. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
C. Zbyt duża moc urządzenia
D. Luźne połączenie w listwie neutralnej
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 30

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. YADY
B. XzTKMXpw
C. DYt
D. LgY
Wybór innych typów przewodów, takich jak LgY, DYt czy XzTKMXpw, jest wynikiem niepełnego zrozumienia materiałów izolacyjnych i ich właściwości. Przewód LgY wyposażony jest zazwyczaj w powłokę z tworzywa sztucznego, ale nie jest to polwinit, co ogranicza jego zastosowanie w środowisku narażonym na działanie wysokich temperatur oraz agresywnych substancji chemicznych. Z kolei przewody DYt, które są stosowane w aplikacjach sygnalizacyjnych, również nie mają powłoki z polwinitu, co czyni je mniej odpowiednimi do zastosowań, gdzie wymagana jest duża odporność na czynniki zewnętrzne. Przewód XzTKMXpw jest natomiast typem, który może być używany w specyficznych warunkach, ale brak dokładnych informacji o jego zastosowaniach oraz materiałach izolacyjnych sprawia, że nie można go uznać za praktyczny wybór w kontekście powłoki z polwinitu. Wybór niewłaściwego typu przewodu wynika często z braku wiedzy na temat standardów branżowych oraz właściwych praktyk dotyczących instalacji elektrycznych, co może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Właściwy dobór przewodów jest kluczowy dla zapewnienia nieprzerwanego działania systemów elektrycznych oraz ochrony przed potencjalnymi awariami.

Pytanie 31

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±2,35 mA
B. ±0,37 mA
C. ±0,35 mA
D. ±0,02 mA
W analizie błędów pomiarowych kluczowe jest zrozumienie, jak oblicza się wartość błędu na podstawie specyfikacji urządzenia. Błędne odpowiedzi wynikają często z nieprawidłowego zastosowania wzorów lub zrozumienia zasad dotyczących dokładności. Na przykład, niektóre osoby mogą pomylić 1% z wartością całkowitą pomiaru, co prowadzi do oszacowania błędu jako ±0,35 mA. Jednakże w takim przypadku nie uwzględnia się dodatkowego błędu stałego, który w tym przypadku wynosi 0,02 mA. Z kolei wybranie wartości ±2,35 mA jest zupełnie nieadekwatne, ponieważ w praktyce nie ma podstaw do przyjęcia tak dużego błędu w odniesieniu do wskazania 35 mA, co wskazuje na fundamentalne nieporozumienie w zakresie norm dotyczących dokładności pomiarów. Umożliwia to zrozumienie, że błędy systematyczne i przypadkowe muszą być brane pod uwagę w kontekście całkowitych wartości określonych przez producentów. Dlatego w pomiarach elektrycznych rekomenduje się korzystanie z dokładnych procedur obliczeniowych, które uwzględniają zarówno błędy procentowe, jak i stałe, co pozwala na uzyskanie rzetelnych wyników pomiarów. Ponadto, brak wiedzy na temat tego, jak poprawnie interpretować specyfikacje techniczne urządzeń pomiarowych, może prowadzić do poważnych błędów w ocenie wyników pomiarów, co w praktyce przekłada się na nieefektywność lub błędne decyzje w kontekście zastosowań inżynieryjnych.

Pytanie 32

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko metalowe
B. Metalowe lub gumowe
C. Z PVC lub gumowe
D. Tylko z PVC
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 33

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Wytwórczych
B. Pomocniczych
C. Przesyłowych
D. Odbiorczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 34

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Zielony
B. Czerwony
C. Niebieski
D. Żółty
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 35

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S193B10
B. S193B16
C. S194B10
D. S192B16
Wybór niewłaściwego wyłącznika nadprądowego do obwodu zasilającego może być wynikiem kilku błędnych rozważań. Na przykład, jeśli ktoś zdecyduje się na S194B10, musi pamiętać, że ten model jest przeznaczony do zasilania jednofazowego, co czyni go nieodpowiednim w kontekście obwodu trójfazowego. Problemy pojawiają się, gdy nie uwzględnia się specyfiki obwodu, w którym ma pracować dany wyłącznik. Użycie wyłącznika, który nie jest przystosowany do pracy z obciążeniem trójfazowym, może prowadzić do jego przedwczesnego zadziałania lub braku reakcji w razie przeciążenia. Kolejną nieprzemyślaną decyzją może być wybór modelu S192B16, który, choć ma odpowiednią wartość prądową, nie jest przeznaczony do zastosowań trójfazowych. W kontekście instalacji elektrycznych niezwykle istotne jest, aby urządzenia zabezpieczające były dostosowane do specyfikacji i norm obowiązujących w danej instalacji. Warto zwrócić uwagę na wymagania dotyczące kategorii prądowej i liczby faz, aby uniknąć poważnych problemów z użytkowaniem urządzeń elektrycznych. Niezrozumienie tego aspektu może prowadzić do wyboru niewłaściwych komponentów, co w praktyce może skutkować awariami, a nawet zagrożeniem dla bezpieczeństwa. Właściwy dobór wyłącznika nadprądowego powinien być zawsze oparty na obliczeniach i analizach zgodnych z zasadami bezpieczeństwa oraz normami prawnymi, co podkreśla znaczenie wiedzy i doświadczenia w tej dziedzinie.

Pytanie 36

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. lokalizacji przewodów w instalacji elektrycznej.
B. sprawdzania ciągłości połączeń w instalacji.
C. bezdotykowego pomiaru rezystancji przewodów.
D. pomiaru parametrów oświetlenia.
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 37

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Płaskiego.
B. Nasadowego.
C. Ampulowego.
D. Oczkowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 38

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 20 mm2
B. 12 mm2
C. 16 mm2
D. 10 mm2
Minimalny przekrój miedzianego przewodu ochronnego powinien wynosić 16 mm2 przy miedzianych przewodach fazowych o przekrojach 25 mm2 i 35 mm2. Takie wymagania wynikają z obliczeń związanych z bezpieczeństwem elektrycznym oraz ochroną przed porażeniem prądem. W polskich normach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podano zasady doboru przewodów ochronnych, które uwzględniają maksymalne prądy zwarciowe oraz czas wyłączenia w przypadku awarii. Odpowiedni przekrój przewodu ochronnego jest kluczowy dla zapewnienia skutecznej ochrony instalacji oraz osób korzystających z urządzeń elektrycznych. W praktyce, dobór właściwego przekroju w instalacjach przemysłowych i budowlanych ma na celu minimalizację ryzyka uszkodzenia instalacji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa. Warto również zwrócić uwagę na to, że stosując przewody o odpowiednim przekroju, zmniejszamy straty energii oraz ryzyko przegrzewania się materiałów, co jest istotne z perspektywy trwałości i niezawodności instalacji.

Pytanie 39

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. priorytetowym, zostaje wyłączony obwód niepriorytetowy
C. niepriorytetowym, zostaje wyłączony obwód priorytetowy
D. priorytetowym, zostaje wyłączony obwód priorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 40

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.