Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:56
  • Data zakończenia: 7 grudnia 2025 11:22

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Strzałka na rysunku wskazuje

Ilustracja do pytania
A. przycisk zwiemy.
B. przycisk rozwierny.
C. styk pomocniczy rozwierny.
D. styk pomocniczy zwiemy.
Wybór niepoprawnej odpowiedzi może sprawiać kłopot przez to, że oznaczenia w schematach elektrycznych są czasem mylące. Przyciski rozwierne, styk pomocniczy rozwierny oraz styk pomocniczy zwiemy to różne typy styków i przycisków, które pełnią różne funkcje w obwodach elektrycznych. Przyciski rozwierne to te normalnie zamknięte (NC), więc w spoczynku obwód jest zamknięty, a naciśnięcie przycisku go otwiera. Używa się ich zazwyczaj tam, gdzie jest potrzeba interakcji ze strony użytkownika, żeby wyłączyć jakieś urządzenie, co może czasami prowadzić do nieprzewidzianych skutków w systemach bezpieczeństwa, gdy są źle zastosowane. Styki pomocnicze, zarówno rozwierne, jak i zwiemy, służą do rozszerzania funkcji głównych przełączników. Styki pomocnicze zwiemy (NO) zamykają obwód po aktywacji, a rozwierne (NC) działają na zasadzie przeciwnej. Dosyć łatwo je pomylić z przyciskami przez ich podobieństwo, ale różnią się swoją podstawową funkcją. Kluczowym błędem, przy wyborze odpowiedzi, może być pomylenie funkcji normalnie otwartych z normalnie zamkniętymi stykami. Zrozumienie tych różnic jest naprawdę ważne w inżynierii elektrycznej, bo poprawna identyfikacja i wykorzystanie tych komponentów mogą decydować o bezpieczeństwie i efektywności całego systemu. Może warto jeszcze raz zastanowić się nad funkcjami i zastosowaniem każdego z tych elementów, żeby lepiej uchwycić ich rolę w obwodach elektrycznych.

Pytanie 2

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. schodowego.
B. jednobiegunowego.
C. hotelowego.
D. dwubiegunowego.
Wybór odpowiedzi dotyczącej łącznika hotelowego jest nieprawidłowy ze względu na błędną interpretację schematu. Łącznik hotelowy służy do sterowania oświetleniem w sposób dostosowany do potrzeb gości, jednak jego charakterystyka różni się od łącznika schodowego. Odpowiedzi dotyczące łączników jednobiegunowych i dwubiegunowych również są błędne, ponieważ te typy łączników nie posiadają funkcji umożliwiającej sterowanie oświetleniem z wielu punktów. Łącznik jednobiegunowy jest przeznaczony do włączania lub wyłączania obwodu z jednego miejsca, co wyklucza możliwość sterowania z więcej niż jednego punktu. Z kolei łącznik dwubiegunowy, mimo że może kontrolować dwa różne obwody, nie jest zaprojektowany do wspólnej obsługi jednego źródła światła z różnych lokalizacji. Typowym błędem jest mylenie funkcji i zastosowań różnych typów łączników. Prawidłowe podejście do analizy schematów łączników elektrycznych wymaga znajomości ich funkcji oraz kontekstu, w jakim są stosowane. Ważne jest, aby przy wyborze odpowiedniego rozwiązania brać pod uwagę specyfikę instalacji oraz potrzeby użytkowników. Zgodnie z praktykami inżynieryjnymi, właściwe rozróżnienie typów łączników oraz ich zastosowań jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 3

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 3,8 Ω
C. 2,3 Ω
D. 6,6 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 4

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Szczypce, wkrętak, lutownica
B. Ściągacz izolacji, lutownica, tester
C. Tester, wkrętak, lutownica
D. Ściągacz izolacji, wkrętak, próbnik
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 5

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź "C" jest uzasadniona, ponieważ oprawa oświetleniowa zaprezentowana na zdjęciu charakteryzuje się szczelną konstrukcją, co jest kluczowe w pomieszczeniach o zwiększonej wilgotności, takich jak piwnice. Zgodnie z normami, takimi jak PN-EN 60529, oprawy przeznaczone do użytku w warunkach wilgotnych powinny posiadać odpowiedni stopień ochrony IP, który zapewnia ochronę przed wnikaniem wody oraz pyłu. Dla piwnic zwykle zaleca się oprawy z stopniem IP65 lub wyższym, co oznacza, że są one całkowicie chronione przed kurzem i zabezpieczone przed strumieniem wody. Zastosowanie odpowiedniej oprawy oświetleniowej w takich miejscach nie tylko zapewnia bezpieczeństwo użytkowników, ale również przedłuża żywotność urządzenia, minimalizując ryzyko uszkodzenia spowodowanego wilgocią. Przykładem mogą być oprawy LED dostosowane do warunków zewnętrznych, które często spełniają te wymagania, oferując równocześnie efektywność energetyczną.

Pytanie 6

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. który działa z przekaźnikiem czasowym
B. posiadający aparat różnicowoprądowy
C. który współdziała z przekaźnikiem sygnalizacyjnym
D. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
Wyłącznik zabezpieczający przewody przed przeciążeniem i zwarciem jest kluczowym elementem systemu elektroinstalacyjnego. Właściwie dobrany wyłącznik, wyposażony w wyzwalacze przeciążeniowe i zwarciowe, automatycznie odcina zasilanie w przypadku, gdy prąd przekroczy dozwoloną wartość. Wyzwalacze przeciążeniowe działają na zasadzie detekcji nadmiernego natężenia prądu, co może prowadzić do przegrzania przewodów i ryzyka pożaru. Z kolei wyzwalacze zwarciowe są odpowiedzialne za natychmiastowe odłączenie obwodu w przypadku zwarcia, co chroni zarówno urządzenia, jak i instalację elektryczną. Przykładem zastosowania takiego wyłącznika może być jego instalacja w domowych instalacjach elektrycznych, gdzie chroni obwody zasilające gniazda elektryczne i urządzenia gospodarstwa domowego. Zgodnie z normami IEC oraz polskimi standardami, instalacje powinny być zabezpieczone przed skutkami przeciążeń i zwarć, co podkreśla znaczenie tego typu wyłączników w zapewnieniu bezpieczeństwa.

Pytanie 7

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TN-S
B. IT
C. TT
D. TN-C
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 8

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Sprawdzenie kierunku obrotów wału silnika
B. Mierzenie temperatury stojana
C. Mierzenie prędkości obrotowej
D. Weryfikacja symetrii napięcia zasilającego
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 9

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 40 ÷ 60%
B. 0 ÷ 10%
C. 90 ÷ 100%
D. 60 ÷ 90%
Odpowiedź 0 ÷ 10% jest prawidłowa, ponieważ oprawy oświetleniowe V klasy charakteryzują się bardzo niskim poziomem strumienia świetlnego, który jest kierowany w dół. Klasa ta jest przeznaczona do aplikacji, gdzie istotne jest, aby minimalizować oświetlenie w kierunku podłogi, co ma zastosowanie w wielu miejscach, takich jak korytarze, schody czy przestrzenie publiczne, gdzie wysoka intensywność światła w dół może być niepożądana. Przykładem zastosowania są oprawy LED w przestrzeniach biurowych, które mają za zadanie tworzyć strefy z odpowiednim rozproszeniem światła, a nie silnym, bezpośrednim oświetleniem. W praktyce zastosowanie tej klasy opraw pozwala na oszczędność energii oraz zmniejszenie olśnienia, co jest zgodne z normami energetycznymi i ekologicznymi, takimi jak dyrektywy UE dotyczące efektywności energetycznej. Wiedza na temat rozkładu strumienia świetlnego w zależności od klasy oprawy jest kluczowa dla projektantów oświetlenia, którzy mają na celu optymalizację warunków świetlnych w różnych typach przestrzeni.

Pytanie 10

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. watomierz oraz amperomierz
B. analogowy omomierz
C. cyfrowy watomierz
D. amperomierz oraz woltomierz
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 11

Którego z przedstawionych na rysunkach przyrządów pomiarowych należy użyć w celu zbadania rozkładu temperatury wewnątrz rozdzielnicy?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Przyrząd pomiarowy przedstawiony na rysunku B to kamera termowizyjna, który jest niezastąpionym narzędziem w diagnostyce elektronicznej i energetycznej. Umożliwia bezkontaktowe skanowanie obiektów, co pozwala na szybkie i efektywne zlokalizowanie miejsc o podwyższonej temperaturze. W kontekście rozdzielnic elektrycznych, stosowanie kamery termowizyjnej jest praktyką zalecaną według normy IEC 60364, która podkreśla znaczenie monitorowania temperatury w instalacjach elektrycznych, aby zapobiegać przeciążeniom oraz wykrywać wczesne oznaki uszkodzeń połączeń czy komponentów. Przykładem zastosowania może być regularne wykonywanie inspekcji termograficznych w zakładach przemysłowych, co pozwala na identyfikację problemów zanim dojdzie do awarii, co w dłuższej perspektywie skutkuje obniżeniem kosztów eksploatacji oraz poprawą bezpieczeństwa pracy. Dodatkowo, analiza termograficzna wspiera działania związane z utrzymaniem ruchu, a także jest elementem audytów energetycznych, mających na celu optymalizację zużycia energii.

Pytanie 12

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. prowadzonej w tynku.
B. natynkowej.
C. podtynkowej.
D. prefabrykowanej.
Odpowiedź 'podtynkowej' jest poprawna, ponieważ elektronarzędzie przedstawione na rysunku to frezarka do rowków, która jest kluczowym narzędziem w instalacjach elektrycznych podtynkowych. Umożliwia ono precyzyjne wykonywanie bruzd w murach, gdzie następnie kable elektryczne są układane pod tynkiem. Taki sposób instalacji jest zgodny z najlepszymi praktykami budowlanymi, które zalecają ukrywanie przewodów dla zapewnienia estetyki i bezpieczeństwa. Instalacje podtynkowe chronią kable przed uszkodzeniami mechanicznymi oraz eliminują ryzyko zwarcia spowodowanego wystawieniem przewodów na działanie czynników zewnętrznych. W przypadku zastosowań w obiektach mieszkalnych, standardy budowlane, takie jak PN-IEC 60364, podkreślają znaczenie odpowiedniej izolacji oraz układania instalacji w sposób, który minimalizuje ryzyko uszkodzeń i ułatwia przyszłe prace konserwacyjne.

Pytanie 13

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Świecznikowy.
B. Krzyżowy.
C. Grupowy.
D. Schodowy.
Łącznik oznaczony literą P na schemacie montażowym to łącznik krzyżowy, który odgrywa kluczową rolę w układzie sterowania oświetleniem z trzech miejsc. Umożliwia on przełączanie obwodu w sposób, który pozwala na włączanie i wyłączanie oświetlenia z różnych lokalizacji. Przykładowo, w długim korytarzu, gdzie znajdują się trzy punkty dostępu, użycie łączników krzyżowych w połączeniu z łącznikami schodowymi na końcach umożliwia wygodne zarządzanie oświetleniem. Standardy branżowe, takie jak PN-EN 60669-1, wskazują, że użycie łączników krzyżowych w instalacjach oświetleniowych znacząco zwiększa komfort użytkowania oraz efektywność energetyczną. W praktyce, jeśli zainstalujemy łącznik krzyżowy w odpowiednich miejscach, zyskamy pełną kontrolę nad oświetleniem, co jest szczególnie przydatne w większych przestrzeniach.

Pytanie 14

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 10 lat
B. raz na pół roku
C. raz na rok
D. co najmniej raz na 5 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 15

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
B. Przerwa w przewodzie uziemiającym instalację.
C. Zwarcie przewodu ochronnego z przewodem neutralnym.
D. Włączenie odbiornika drugiej klasy ochronności.
Analizując pozostałe odpowiedzi, można zauważyć, że włączenie odbiornika drugiej klasy ochronności nie powinno wpływać na działanie wyłącznika nadprądowego. Odbiorniki te są zaprojektowane tak, aby nie wymagały uziemienia, co czyni je bezpiecznymi w użytkowaniu, o ile są prawidłowo zainstalowane. Przerwa w przewodzie uziemiającym również nie jest bezpośrednią przyczyną wyłączenia wyłącznika nadprądowego, aczkolwiek może prowadzić do niebezpiecznych sytuacji w przypadku awarii, gdyż brak odpowiedniego uziemienia stwarza ryzyko porażenia prądem. Zwarcie przewodu ochronnego z przewodem neutralnym, z drugiej strony, może być poważnym błędem, ale w kontekście wyłącznika nadprądowego nie prowadzi ono do jego samoczynnego wyłączenia, chyba że to zwarcie spowoduje przeciążenie lub zwarcie w instalacji. Typowym błędem myślowym jest zakładanie, że każdy problem z instalacją elektryczną prowadzi do automatycznego zadziałania wyłącznika nadprądowego, podczas gdy w rzeczywistości ten mechanizm jest zaprojektowany do ochrony przed określonymi rodzajami awarii, a nie każdą możliwą sytuacją. Wiedza o tym, jak działają zabezpieczenia oraz jakie są ich ograniczenia, jest kluczowa dla prawidłowego użytkowania instalacji elektrycznej.

Pytanie 16

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S193B16
B. S194B10
C. S192B16
D. S193B10
Wyłącznik S193B16 jest właściwym wyborem do zastąpienia bezpieczników typu gG w obwodzie zasilającym trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7 kW. Aby przeanalizować tę decyzję, należy wziąć pod uwagę kilka kluczowych aspektów. Po pierwsze, moc 7 kW przy napięciu 400 V wymaga prądu znamionowego wynoszącego około 10 A (I = P/U, czyli 7 kW / 400 V = 17,5 A). W związku z tym wyłącznik S193B16, który ma wartość 16 A, jest odpowiedni, ponieważ jego wartość znamionowa jest wyższa od obliczonego prądu, co zapewnia odpowiednią ochronę przed przeciążeniem. Po drugie, wyłączniki nadprądowe typu S193 są projektowane z myślą o zastosowaniach w instalacjach trójfazowych, co czyni je bardziej odpowiednimi niż inne opcje, które są mniej uniwersalne. W praktyce, stosując S193B16, zapewniamy nie tylko skuteczną ochronę obwodu przed przeciążeniem, ale także zgodność z normami PN-EN 60898-1, które regulują zasady stosowania takich urządzeń w instalacjach elektrycznych. W przypadku awarii, wyłącznik ten zareaguje szybko, co zwiększy bezpieczeństwo użytkowania grzejnika elektrycznego.

Pytanie 17

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. SMYp
B. OMYp
C. HDGs
D. YDYt
Wybór niewłaściwych typów przewodów do instalacji elektrycznej w drewnianych ścianach, takich jak OMYp, SMYp czy YDYt, może prowadzić do poważnych problemów. Przewód OMYp, mimo że jest elastyczny i używany w instalacjach wewnętrznych, nie jest przystosowany do użycia w środowisku, gdzie istnieje ryzyko uszkodzeń mechanicznych oraz pożaru, co czyni go nieodpowiednim do drewnianych konstrukcji. Przewody SMYp i YDYt, mimo że są szeroko stosowane, mają swoje ograniczenia. SMYp, jako przewód o mniejszej odporności na temperaturę, może w warunkach wysokich temperatur ulegać uszkodzeniom izolacji, co z kolei zwiększa ryzyko iskrzenia i pożaru. Z kolei YDYt, choć jest stosunkowo popularny, może nie spełniać wymogów dotyczących ochrony przed uszkodzeniami mechanicznymi, co jest kluczowe w kontekście drewnianych ścian. W przypadku niewłaściwego doboru przewodów, ich użycie może prowadzić do awarii elektrycznych, a nawet zagrożenia dla bezpieczeństwa użytkowników budynku. Kluczowe jest, aby projektując instalację, uwzględnić specyfikę materiałów budowlanych oraz normy branżowe, takie jak PN-IEC 60364, które wyraźnie określają, jakie rozwiązania są zalecane w różnych środowiskach. Znalezienie równowagi pomiędzy funkcjonalnością a bezpieczeństwem jest niezbędne, aby uniknąć kosztownych napraw oraz potencjalnych zagrożeń dla życia i zdrowia użytkowników.

Pytanie 18

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystancji uziemień metodą kompensacyjną.
B. rezystywności gruntu metodą bezpośrednią.
C. rezystancji uziemień metodą techniczną.
D. rezystywności gruntu metodą pośrednią.
Odpowiedź 'rezystancji uziemień metodą techniczną' jest prawidłowa, ponieważ rysunek ilustruje schemat pomiaru rezystancji uziemienia w oparciu o metodę techniczną, która jest powszechnie stosowana w inżynierii elektrycznej. Metoda ta, znana także jako metoda Wennera, polega na umieszczeniu dwóch elektrod pomocniczych w równych odległościach od elektrody centralnej. Takie rozmieszczenie elektrod pozwala na dokładne pomiary napięcia i prądu, co umożliwia precyzyjne obliczenie rezystancji uziemienia. W praktyce, pomiar rezystancji uziemienia jest kluczowy dla zapewnienia skutecznej ochrony przed przepięciami oraz dla poprawnego działania systemów odgromowych. Warto również zauważyć, że zgodnie z normami, takimi jak PN-EN 50522, ważne jest, aby pomiary rezystancji uziemienia były wykonywane regularnie i w odpowiednich warunkach, aby zapewnić bezpieczeństwo instalacji elektrycznych.

Pytanie 19

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Zielony
B. Niebieski
C. Żółty
D. Czerwony
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 20

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 7,07 V
B. 4,50 V
C. 10,00 V
D. 6,40 V
Wartość średnia napięcia wyjściowego nieobciążonego prostownika jednopołówkowego zasilanego napięciem sinusoidalnym o wartości skutecznej 10 V można obliczyć, korzystając z odpowiednich wzorów. Dla prostownika jednopołówkowego, wartość średnia napięcia DC (Vdc) jest równa wartości szczytowej napięcia AC (Vp) podzielonej przez π. Wartość szczytowa napięcia sinusoidalnego oblicza się jako: Vp = Vrms × √2, co dla Vrms = 10 V daje Vp ≈ 14,14 V. Następnie obliczamy wartość średnią: Vdc = Vp / π ≈ 14,14 V / 3,14 ≈ 4,50 V. To pokazuje, że prostownik jednopołówkowy nie jest w stanie dostarczyć pełnej wartości skutecznej napięcia AC, a wartość średnia jest znacznie niższa. W praktyce, znajomość tej zależności jest kluczowa w projektowaniu zasilaczy, gdzie stosuje się prostowniki do konwersji napięcia AC na DC, co pozwala na zasilanie urządzeń elektronicznych. Wiedza ta jest również fundamentalna w kontekście analizy obwodów elektrycznych oraz zapewnienia optymalnego działania systemów zasilania.

Pytanie 21

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX4
B. IPX5
C. IPX3
D. IPX2
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 22

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Neonowym wskaźnikiem napięcia
B. Kluczem płaskim
C. Wkrętakiem
D. Nożem monterskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 23

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 6,0 mm2
B. 1,5 mm2
C. 2,5 mm2
D. 4,0 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 24

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 25

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P304 40-30-AC
B. P302 25-10-AC
C. P202 25-30-AC
D. P304 40-100-AC
Wybór odpowiedzi, która nie jest zgodna z rzeczywistymi wartościami prądu zadziałania wyłączników różnicowoprądowych, może wynikać z kilku typowych błędów analitycznych. Często zdarza się, że osoby analizujące dane mają trudności w poprawnym zinterpretowaniu wartości zmierzonych. Na przykład przy wyłącznikach, które osiągają wartości zadziałania bliskie granicznym, niektórzy mogą mylnie założyć, że są one w pełni zgodne z wymaganiami, nie zwracając uwagi na fakt, że ich wartości nie mieszczą się w określonych normach. Dobrze jest pamiętać, że każdy wyłącznik różnicowoprądowy musi spełniać ściśle określone normy, aby zapewnić odpowiedni poziom ochrony, który jest kluczowy w zapobieganiu zagrożeniom elektrycznym. W przypadku omawianego wyłącznika, jego prąd zadziałania wynoszący 12 mA jest poniżej minimalnej wymaganej wartości 15 mA. Ignorowanie takich szczegółów może prowadzić do fałszywego poczucia bezpieczeństwa, co jest niebezpieczne w praktycznych zastosowaniach, zwłaszcza w sytuacjach, gdzie narażeni są ludzie lub drogie urządzenia. Przeprowadzając testy, warto stosować się do wytycznych zawartych w normach, takich jak PN-EN 60947-2, które szczegółowo określają wymagania dotyczące bezpieczeństwa. Właściwa analiza wyników oraz ciągłe monitorowanie stanu wyłączników różnicowoprądowych powinno być standardową praktyką w każdym obiekcie, aby zapewnić ich niezawodność.

Pytanie 26

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 27

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Wkrętakiem z nacięciem Phillips.
B. Wkrętakiem z nacięciem Torx.
C. Kluczem nasadowym.
D. Kluczem imbusowym.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 28

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Świecznikowy.
B. Podwójny krzyżowy.
C. Dwubiegunowy.
D. Podwójny schodowy.
Wybór odpowiedzi, która nie jest prawidłowa, często wynika z nieporozumienia dotyczącego funkcji różnorodnych rodzajów łączników elektrycznych. Na przykład, łącznik dwubiegunowy jest zaprojektowany do włączania i wyłączania jednego obwodu elektrycznego, co nie odpowiada funkcjonalności łącznika podwójnego schodowego, który umożliwia kontrolę dwóch niezależnych obwodów. Inna niepoprawna odpowiedź, łącznik świecznikowy, jest stosowany w instalacjach oświetleniowych, ale jego zastosowanie jest ograniczone do sterowania jednym źródłem światła w różnych punktach z jednego miejsca. Z kolei łącznik podwójny krzyżowy służy do bardziej zaawansowanej konfiguracji, gdzie możliwe jest sterowanie jednym źródłem światła z trzech lub więcej miejsc, jednak nie jest odpowiedni dla prostych instalacji schodowych. Użytkownicy, wybierając te błędne odpowiedzi, mogą mylić funkcje różnych łączników lub nie mieć pełnej wiedzy na temat ich zastosowania. Kluczowe jest zrozumienie, że w przypadku schodów, gdzie bezpieczeństwo i wygoda są priorytetami, zastosowanie łącznika podwójnego schodowego jest najbardziej odpowiednie. Właściwa instalacja zgodna z przepisami i standardami bezpieczeństwa zapewnia efektywne i bezpieczne oświetlenie, co może być pomijane w przypadku niewłaściwego doboru łączników.

Pytanie 29

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. aL
B. aM
C. gR
D. gG
Wkładki topikowe typu aM są zaprojektowane specjalnie do zabezpieczania silników elektrycznych, w tym jednofazowych silników indukcyjnych klatkowych, przed zwarciem. Ich konstrukcja pozwala na tolerowanie przeciążeń, które mogą wystąpić podczas rozruchu silnika, co czyni je idealnym wyborem w tego typu aplikacjach. Wkładki aM oferują wysoką zdolność przerywania prądu oraz szybkie działanie, co jest kluczowe w przypadku zwarć. Przykładowo, w zastosowaniach przemysłowych, gdzie silniki są narażone na różne obciążenia, wkładki aM zapewniają nie tylko ochronę, ale również zwiększają niezawodność całego systemu. Dobrą praktyką jest stosowanie wkładek aM w połączeniu z odpowiednimi zabezpieczeniami przeciążeniowymi, aby zapewnić kompleksową ochronę silników. Tego rodzaju wkładki są zgodne z normami IEC 60269 oraz EN 60269, co potwierdza ich wysoką jakość i skuteczność.

Pytanie 30

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór jednej z innych odpowiedzi na to pytanie może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa pracy z instalacjami elektrycznymi. Nóż, szczypce izolowane i kombinerki są narzędziami, które mogą być używane w odpowiednich sytuacjach, ale ich zastosowanie wymaga szczególnej ostrożności i zrozumienia ich funkcji. Użycie noża podczas pracy z przewodami elektrycznymi wiąże się z ryzykiem uszkodzenia izolacji, co może prowadzić do zwarcia lub porażenia prądem. Narzędzia, które nie są izolowane, mogą stwarzać dodatkowe zagrożenie, zwłaszcza jeżeli są używane w wilgotnym środowisku. Ponadto, błędne założenie, że każde narzędzie, które może przecinać lub manipulować przewodami, nadaje się do pracy z instalacjami elektrycznymi, jest typowym błędem myślowym. W rzeczywistości, narzędzia izolowane są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem, a ich użycie jest zgodne z zasadami bezpieczeństwa i normami branżowymi. Ważne jest, aby zawsze stosować odpowiednie narzędzia do danego zadania oraz dokładnie przestrzegać najlepszych praktyk, co nie tylko zwiększa efektywność pracy, ale również chroni zdrowie i życie osób wykonujących te zadania.

Pytanie 31

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Wiertarkę, punktak, zestaw wkrętaków
B. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
C. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
D. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 32

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Dławika.
B. Prądnicy synchronicznej.
C. Silnika jednofazowego.
D. Transformatora jednofazowego.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 33

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. dławików w trójfazowej oprawie świetlówkowej.
B. przekładników prądowych w trzech fazach.
C. trójfazowego transformatora separacyjnego.
D. trójfazowego licznika energii elektrycznej.
Trójfazowy licznik energii elektrycznej to urządzenie służące do pomiaru zużycia energii elektrycznej w systemach trójfazowych, które są powszechnie stosowane w przemyśle oraz w dużych obiektach komercyjnych. Na rysunku przedstawiono schemat, gdzie widoczne są trzy linie fazowe L1, L2, L3 oraz przewód neutralny N, co jest zgodne z typową konfiguracją podłączenia do takiego licznika. Liczniki energii elektrycznej muszą spełniać normy takie jak PN-EN 62053, które określają dokładność pomiarów oraz wymagania dotyczące instalacji. Przykładowo, w przypadku monitorowania zużycia energii w zakładzie przemysłowym, zastosowanie trójfazowego licznika pozwala na precyzyjne określenie, ile energii jest konsumowane przez różne maszyny, co z kolei umożliwia optymalizację kosztów operacyjnych oraz efektywności energetycznej. Odpowiednia symbolika graficzna na schemacie, jaką zastosowano w tym przypadku, jednoznacznie wskazuje na licznik, co jest zgodne z normami PN-EN 60617, które dotyczą symboliki w dokumentacji elektrycznej.

Pytanie 34

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Łącznik schodowy, który wybrałeś, jest kluczowym elementem w systemach oświetleniowych, umożliwiającym sterowanie z dwóch różnych miejsc, co jest niezwykle przydatne w wielu zastosowaniach, jak np. w długich korytarzach czy na schodach. Dzięki zastosowaniu tego typu łącznika można w wygodny sposób włączać i wyłączać światło, co zwiększa komfort użytkowników i bezpieczeństwo. Łączniki schodowe są również zgodne z obowiązującymi normami, które zalecają ich użycie w miejscach wymagających podwójnego sterowania. W praktyce, stosując łącznik schodowy, pamiętaj o odpowiednim okablowaniu oraz zastosowaniu odpowiednich zabezpieczeń, aby zapewnić długotrwałe i niezawodne działanie instalacji. Warto również zwrócić uwagę na jakość użytych materiałów oraz zgodność z dyrektywami Unii Europejskiej, które regulują kwestie bezpieczeństwa elektrycznego, co podkreśla znaczenie dobrych praktyk w branży.

Pytanie 35

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 20 mm2
B. 12 mm2
C. 10 mm2
D. 16 mm2
Minimalny przekrój miedzianego przewodu ochronnego powinien wynosić 16 mm2 przy miedzianych przewodach fazowych o przekrojach 25 mm2 i 35 mm2. Takie wymagania wynikają z obliczeń związanych z bezpieczeństwem elektrycznym oraz ochroną przed porażeniem prądem. W polskich normach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podano zasady doboru przewodów ochronnych, które uwzględniają maksymalne prądy zwarciowe oraz czas wyłączenia w przypadku awarii. Odpowiedni przekrój przewodu ochronnego jest kluczowy dla zapewnienia skutecznej ochrony instalacji oraz osób korzystających z urządzeń elektrycznych. W praktyce, dobór właściwego przekroju w instalacjach przemysłowych i budowlanych ma na celu minimalizację ryzyka uszkodzenia instalacji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa. Warto również zwrócić uwagę na to, że stosując przewody o odpowiednim przekroju, zmniejszamy straty energii oraz ryzyko przegrzewania się materiałów, co jest istotne z perspektywy trwałości i niezawodności instalacji.

Pytanie 36

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy C
B. Klasy D
C. Klasy A
D. Klasy B
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 37

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
B. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
C. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
D. Instrukcja obsługi urządzenia
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 38

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Wymienić uszkodzony przewód na nowy o identycznej średnicy
B. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
C. Zaizolować uszkodzoną część izolacji przewodu taśmą
D. Wymienić wszystkie przewody na nowe o większej średnicy
Wymiana wszystkich przewodów na nowe o większym przekroju nie jest właściwym podejściem. Takie działanie jest nie tylko kosztowne, ale również zbędne, ponieważ uszkodzenie dotyczy jednego przewodu, a nie całej instalacji. Ponadto, stosowanie przewodów o większym przekroju może prowadzić do nieprzewidzianych problemów z obciążeniem, a także do zmiany właściwości instalacji, co może być niezgodne z wcześniej ustalonymi parametrami. Zastosowanie taśmy izolacyjnej jako metody naprawy jest również niewłaściwe, ponieważ taśmy nie przywracają elastyczności i nie zabezpieczają przewodu przed dalszymi uszkodzeniami. Izolacja taśmy może nie wytrzymać w trudnych warunkach, takich jak wysoka temperatura, co może prowadzić do ponownego uszkodzenia. Nałożenie koszulki termokurczliwej to tymczasowe rozwiązanie, które nie zastępuje wymiany uszkodzonego przewodu. Może to być pomocne w niektórych sytuacjach, ale nie eliminuje ryzyka, które wiąże się z uszkodzoną izolacją. Użycie takich rozwiązań bez wymiany przewodu naraża użytkowników na elektryczne zagrożenia, a zgodność z normami bezpieczeństwa może być niewystarczająca. Kluczowe jest, aby działać zgodnie z zasadami dobrych praktyk i norm, co w tym przypadku obejmuje pełną wymianę uszkodzonego elementu.

Pytanie 39

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Generują napięcie remanentu
B. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
C. Obniżają rezystancję obwodu twornika
D. Usuwają niekorzystne efekty wynikające z działania twornika
Uzwojenia pomocnicze w silniku prądu stałego to naprawdę ważny temat, bo mają spory wpływ na to, jak ten silnik działa. Kiedy silnik jest w ruchu, to nieuniknione są pewne zjawiska, jak efekt rozbiegowy czy spadek momentu obrotowego. Uzwojenia pomocnicze, poprzez swoje połączenia, pomagają w stabilizacji tego momentu obrotowego i wpływają na ogólną wydajność silnika. W praktyce widać to na przykład w elektromagnesach czy w napędach maszyn przemysłowych, gdzie te uzwojenia zwiększają stabilność pracy silnika. Co więcej, ich zastosowanie pomaga w poprawie charakterystyk silnika, gdy obciążenie się zmienia, co jest naprawdę istotne w inżynierii elektrycznej. Warto też zwrócić uwagę na to, że dobrze zaprojektowane uzwojenia pomocnicze mogą zmniejszyć wahania prądu i wydłużyć żywotność silnika. Zgodność z normami IEC i IEEE przy ich implementacji jest kluczowa, żeby silnik działał na optymalnym poziomie i był niezawodny przez długi czas.

Pytanie 40

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 3.
B. Symbol 1.
C. Symbol 2.
D. Symbol 4.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.