Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 grudnia 2025 15:10
  • Data zakończenia: 9 grudnia 2025 15:18

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który adres IPv4 odpowiada adresowi IPv6 ::1?

A. 127.0.0.1
B. 10.0.0.1
C. 1.1.1.1
D. 128.0.0.1
Adres IPv6 ::1 jest tożsamy z adresem IPv4 127.0.0.1, co oznacza, że oba odnoszą się do lokalnego hosta, czyli komputera, na którym jest wykonywana aplikacja lub system. Adres 127.0.0.1 jest standardowym adresem loopback w protokole IPv4, a ::1 pełni tę samą funkcję w protokole IPv6. Gdy próbujesz połączyć się z tym adresem, ruch sieciowy jest kierowany wewnętrznie, co jest użyteczne w testach oprogramowania, diagnozowaniu problemów lub rozwoju aplikacji. Użycie adresu loopback pozwala programistom i administratorom systemów na weryfikację, czy aplikacje działają poprawnie bez potrzeby korzystania z rzeczywistej sieci. Warto również zauważyć, że w praktyce sieciowej warto stosować te adresy do testowania, aby uniknąć niezamierzonych połączeń z innymi urządzeniami w sieci. Standard IETF RFC 4291 definiuje struktury IPv6, a RFC 791 odnosi się do IPv4, zapewniając ramy wiedzy dla tych dwóch protokołów.

Pytanie 2

W jakiej warstwie modelu ISO/OSI wykorzystywane są adresy logiczne?

A. Warstwie transportowej
B. Warstwie sieciowej
C. Warstwie fizycznej
D. Warstwie łącza danych
Odpowiedź 'Sieciowa' jest zdecydowanie trafna. W modelu ISO/OSI warstwa sieciowa ma za zadanie trasować i przesyłać pakiety między różnymi sieciami. Używamy tu adresów IP, żeby móc rozpoznać urządzenia w sieci i sprawnie się komunikować. Kiedy komputer chce wysłać dane do innego urządzenia, to właśnie adres IP wskazuje, gdzie te dane mają trafić. Protokół IP działa na tej warstwie, co jest super ważne, bo dzięki temu dane mogą być efektywnie kierowane między różnymi sieciami. Fajnie też pomyśleć o używaniu zarówno adresów IP wersji 4, jak i 6, bo to zapewnia lepszą kompatybilność w różnych środowiskach sieciowych. No i nie zapominajmy, że warstwa sieciowa współpracuje z transportową, co w praktyce oznacza, że odpowiednio zarządza sesjami komunikacyjnymi, dbając o to, żeby dane były przesyłane rzetelnie i w dobrym porządku.

Pytanie 3

Klawiatura QWERTY, która pozwala na wprowadzanie znaków typowych dla języka polskiego, nazywana jest także klawiaturą

A. diaktryczną
B. maszynistki
C. polską
D. programisty
Klawiatura QWERTY, znana jako klawiatura programisty, jest dostosowana do wprowadzania znaków diakrytycznych, które są niezbędne w polskim alfabecie. W skład tego układu wchodzą dodatkowe znaki, takie jak 'ą', 'ę', 'ł', 'ó', 'ś', 'ź', 'ż', a także znaki interpunkcyjne, które są kluczowe dla poprawnej pisowni w języku polskim. Klawiatura programisty jest szczególnie użyteczna dla programistów i osób pracujących z tekstem, ponieważ umożliwia łatwe i szybkie wprowadzanie polskich znaków bez potrzeby zmiany układu klawiatury. Szereg programów i edytorów tekstu automatycznie rozpoznaje ten układ, co przyspiesza proces pisania kodu lub tekstów. Standardowe praktyki w branży zalecają korzystanie z klawiatury, która umożliwia sprawne pisanie w lokalnym języku, co zwiększa produktywność oraz minimalizuje ryzyko błędów w komunikacji pisemnej. Dostosowanie układu klawiatury do potrzeb użytkownika to kluczowy element efektywnej pracy biurowej oraz programistycznej.

Pytanie 4

Graficzny symbol odnosi się do standardów sprzętowych

Ilustracja do pytania
A. USB
B. SCSI-12
C. FireWire
D. LPT
USB Universal Serial Bus to standard interfejsu komunikacyjnego który od lat 90 stał się dominującym sposobem łączenia większości urządzeń peryferyjnych z komputerami USB jest elastycznym i tanim rozwiązaniem umożliwiającym ładowanie i przesył danych między urządzeniami jednak jego wczesne wersje były wolniejsze od FireWire co czyniło go mniej odpowiednim do zastosowań związanego z obróbką wideo FireWire natomiast był preferowany w środowiskach wymagających niskich opóźnień i wysokiej przepustowości takich jak edycja wideo w czasie rzeczywistym LPT czyli port równoległy to starsza technologia używana głównie do podłączania drukarek oraz innych urządzeń peryferyjnych w latach 80 i 90 XX wieku ze znacznie wolniejszym transferem danych w porównaniu do FireWire czy USB co czyni go nieodpowiednim dla współczesnych zastosowań wymagających dużej przepustowości Z kolei SCSI-12 to teoretycznie odniesienie do technologii SCSI Small Computer System Interface która była używana w serwerach i komputerach o wysokiej wydajności do podłączania dysków twardych i innych urządzeń jednak oznaczenie SCSI-12 jest nieprecyzyjne ponieważ standardy SCSI są oznaczane w inny sposób np SCSI-1 SCSI-2 i nie bezpośrednio konkurują z FireWire w kontekście zastosowań konsumenckich i multimedialnych Analiza tych technologii pokazuje że FireWire był najbardziej odpowiednim rozwiązaniem dla wymagających profesjonalnych zastosowań co czyni go poprawną odpowiedzią na pytanie

Pytanie 5

Jak wygląda liczba 257 w systemie dziesiętnym?

A. 1000 0000 w systemie binarnym
B. 1 0000 0001 w systemie binarnym
C. F0 w systemie szesnastkowym
D. FF w systemie szesnastkowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1 0000 0001 dwójkowo jest poprawna, ponieważ liczba 257 w systemie dziesiętnym jest równa liczbie 1 0000 0001 w systemie dwójkowym. Przekształcenie liczby dziesiętnej na system dwójkowy polega na wyznaczeniu wartości poszczególnych bitów. W przypadku liczby 257, zaczynamy od największej potęgi dwójki, która mieści się w tej liczbie, czyli 2^8 = 256, a następnie dodajemy 1 (2^0 = 1). W rezultacie otrzymujemy zapis: 1 (256) + 0 (128) + 0 (64) + 0 (32) + 0 (16) + 0 (8) + 0 (4) + 1 (2) + 1 (1), co daje nam ostatecznie 1 0000 0001. Praktyczne zastosowanie tej wiedzy można zauważyć w programowaniu oraz inżynierii komputerowej, gdzie konwersja między systemami liczbowymi jest często wymagana do efektywnego przetwarzania danych. Wiedza ta jest zgodna z ogólnymi standardami reprezentacji danych w systemach komputerowych, co czyni ją istotnym elementem w pracy programisty czy specjalisty IT.

Pytanie 6

W dokumentacji technicznej procesora Intel Xeon Processor E3-1220, producent przedstawia następujące dane: # rdzeni: 4 # wątków: 4 Częstotliwość zegara: 3.1 GHz Maksymalna częstotliwość Turbo: 3.4 GHz Intel Smart Cache: 8 MB DMI: 5 GT/s Zestaw instrukcji: 64 bit Rozszerzenia zestawu instrukcji: SSE4.1/4.2, AVX Opcje wbudowane: Nie Litografia: 32 nm Maksymalne TDP: 80 W. Co to oznacza dla Menedżera zadań systemu Windows, jeśli chodzi o historię użycia?

# of Cores:4
# of Threads:4
Clock Speed:3.1 GHz
Max Turbo Frequency:3.4 GHz
Intel® Smart Cache:8 MB
DMI:5 GT/s
Instruction Set:64-bit
Instruction Set Extensions:SSE4.1/4.2, AVX
Embedded Options Available:No
Lithography:32 nm
Max TDP:80 W
A. 2 rdzenie
B. 16 rdzeni
C. 4 rdzenie
D. 8 rdzeni
Prawidłowa odpowiedź to 4 procesory ponieważ procesor Intel Xeon E3-1220 składa się z 4 fizycznych rdzeni co oznacza że w Menedżerze zadań systemu Windows zobaczymy historię użycia dla 4 procesorów. Każdy rdzeń obsługuje pojedynczy wątek co oznacza że technologia Intel Hyper-Threading nie jest tutaj zastosowana co w przypadku jej użycia mogłoby prowadzić do podwojenia liczby wątków. W zadaniach wymagających dużej mocy obliczeniowej takich jak hostowanie serwerów czy przetwarzanie danych duża liczba rdzeni jest korzystna ale liczba wątków jest ograniczona do liczby rdzeni ze względu na brak wspomnianej technologii. Procesory z większą ilością rdzeni i wątków są bardziej efektywne w rozdzielaniu pracy na części co jest kluczowe w środowiskach wymagających dużej wydajności obliczeniowej. Dla porównania procesory z technologią Hyper-Threading mogą zwiększyć liczbę wątków co z kolei może być korzystne w aplikacjach intensywnie obciążających procesor. W kontekście standardów branżowych optymalizacja liczby rdzeni do zadań jest kluczowa dla efektywnego wykorzystania zasobów sprzętowych.

Pytanie 7

Który komponent mikroprocesora odpowiada m.in. za odczytywanie instrukcji z pamięci oraz generowanie sygnałów kontrolnych?

A. IU
B. ALU
C. FPU
D. EU
Wybór odpowiedzi związanych z FPU (Floating Point Unit), ALU (Arithmetic Logic Unit) oraz EU (Execution Unit) często wynika z niepełnego zrozumienia funkcji poszczególnych układów w architekturze mikroprocesora. FPU jest odpowiedzialny za wykonywanie operacji arytmetycznych na liczbach zmiennoprzecinkowych, co czyni go istotnym w obliczeniach wymagających dużej precyzji, ale nie jest odpowiedzialny za pobieranie rozkazów. ALU natomiast zajmuje się wykonywaniem podstawowych operacji arytmetycznych oraz logicznych na danych, ale jego rola nie obejmuje generowania sygnałów sterujących, co czyni go niewłaściwym wyborem w kontekście pytania. EU pełni funkcję wykonawczą, odpowiedzialną za realizację rozkazów, co również nie obejmuje zarządzania przepływem instrukcji ani ich pobierania. Powszechnym błędem jest mylenie tych układów, co wynika z ich współpracy w procesie przetwarzania danych. Każdy z tych układów ma jasno określone zadania w architekturze procesora, a ich pomylenie prowadzi do dezorientacji i nieprawidłowego pojmowania, jak mikroprocesory realizują skomplikowane operacje obliczeniowe. Zrozumienie, że IU pełni kluczową rolę w zarządzaniu instrukcjami, jest fundamentalne dla pełnego zrozumienia architektury mikroprocesorów.

Pytanie 8

Aby system operacyjny był skutecznie chroniony przed atakami złośliwego oprogramowania, po zainstalowaniu programu antywirusowego należy

A. wykupić licencję na oprogramowanie antywirusowe i używać programu chkdsk.
B. aktualizować program i bazy wirusów oraz regularnie skanować system.
C. nie podawać swojego hasła dostępowego oraz wykonywać defragmentację dysków twardych.
D. zainstalować drugi program antywirusowy, aby poprawić bezpieczeństwo.
Wielu użytkowników popełnia niestety błąd, myśląc, że wystarczy zainstalować program antywirusowy lub wykonać kilka dodatkowych, ale przypadkowych czynności, by system był w pełni chroniony. Wybierając instalację drugiego programu antywirusowego, można nieświadomie zaszkodzić swojemu systemowi. Większość producentów wyraźnie odradza używanie dwóch aktywnych antywirusów jednocześnie, bo może to prowadzić do konfliktów, spowolnienia działania komputera, a nawet fałszywych alarmów i obniżenia skuteczności ochrony. To trochę jakby dwie osoby próbowały naraz sterować jednym samochodem – efekt jest raczej opłakany. Z kolei wykupienie licencji na oprogramowanie antywirusowe bez regularnego aktualizowania lub skanowania systemu to trochę jak zapłacenie za alarm w domu i zapomnienie o zamykaniu drzwi. Licencja daje dostęp do pełnych funkcji, ale nie zapewnia automatycznie skutecznej ochrony – wszystko zależy od bieżącej aktualności i używania. Używanie programu chkdsk jest przydatne do sprawdzania integralności dysku, ale nie ma żadnego wpływu na wykrywanie czy usuwanie wirusów. Podobnie niepodawanie swojego hasła oraz defragmentacja dysku są oczywiście dobrymi praktykami ogólnymi, lecz nie mają bezpośredniego wpływu na skuteczność ochrony przed złośliwym oprogramowaniem. To trochę mylące, bo te czynności poprawiają bezpieczeństwo lub wydajność systemu, ale nie są elementem walki z malware. Częstym błędem myślowym jest mylenie ogólnego bezpieczeństwa informatycznego z konkretną ochroną antywirusową – i choć te pojęcia się przenikają, to jednak wymagają odrębnych, wyspecjalizowanych działań. W praktyce, bez regularnych aktualizacji oraz skanowania nawet najlepszy antywirus szybko przestaje być barierą dla nowych zagrożeń, a inne techniki zabezpieczające nie zastąpią tych podstawowych czynności.

Pytanie 9

Aby przeprowadzić instalację bez nadzoru w systemie Windows, konieczne jest przygotowanie pliku odpowiedzi o nazwie

A. boot.ini
B. modprobe.conf
C. unattend.txt
D. pagefile.sys

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'unattend.txt' jest naprawdę na miejscu, bo to standardowy plik, który wykorzystuje się do nienadzorowanej instalacji Windowsa. W środku ma wszystkie potrzebne info i ustawienia, dzięki czemu system sam się ładnie konfiguruje bez potrzeby, żeby użytkownik miał z tym coś do roboty. Wiesz, w firmach, gdzie wiele komputerów trzeba ustawić tak samo, taki plik to zbawienie. Administratorzy mogą sobie stworzyć jeden plik 'unattend.txt' i zastosować go na dziesiątkach maszyn, co oszczędza sporo czasu i zmniejsza szansę na jakieś błędy. W tym pliku można znaleźć takie rzeczy jak klucz produktu, ustawienia regionalne, konfiguracje sieci i wiele innych ważnych rzeczy. Z mojego doświadczenia, przed wdrożeniem go na żywo, dobrze jest przetestować, jak wszystko działa na wirtualnej maszynie, żeby uniknąć problemów później.

Pytanie 10

Jakie polecenie należy zastosować w konsoli odzyskiwania systemu Windows, aby poprawić błędne zapisy w pliku boot.ini?

A. fixboot
B. diskpart /add
C. bootcfg /rebuild
D. fixmbr
W przypadku błędnych odpowiedzi istotne jest zrozumienie, dlaczego niektóre polecenia nie są odpowiednie do naprawy pliku boot.ini. Na przykład, 'fixmbr' jest używane do naprawy rekordu głównego rozruchu (MBR) na dysku twardym. MBR zawiera informacje o partycjach i jest kluczowy dla rozruchu systemu, jednak nie zajmuje się on problemami związanymi z plikiem boot.ini, który jest odpowiedzialny za konfigurację rozruchu systemu Windows. Polecenie 'fixboot' również dotyczy naprawy sektora rozruchowego partycji, ale nie wprowadza zmian w pliku boot.ini. Z kolei 'diskpart /add' to niepoprawne podejście, ponieważ diskpart jest narzędziem do zarządzania partycjami, a nie do konfigurowania plików rozruchowych. Typowe błędy myślowe prowadzące do wyboru tych poleceń mogą wynikać z mylenia pojęć dotyczących różnych aspektów procesu rozruchu. Ważne jest, aby zrozumieć, że każdy z tych programów ma swoje specyficzne zastosowania, a ich użycie w niewłaściwych kontekstach może prowadzić do dalszych problemów z systemem, zamiast ich rozwiązania. Wiedza na temat właściwego użycia narzędzi dostępnych w konsoli odzyskiwania jest kluczowa dla efektywnego zarządzania systemami operacyjnymi i unikania potencjalnych awarii.

Pytanie 11

Jaką maskę podsieci powinien mieć serwer DHCP, aby mógł przydzielić adresy IP dla 510 urządzeń w sieci o adresie 192.168.0.0?

A. 255.255.252.0
B. 255.255.254.0
C. 255.255.255.192
D. 255.255.255.128
Maska 255.255.254.0 (ciężkości /23) pozwala na stworzenie sieci, która może obsłużyć do 510 adresów IP. W kontekście sieci IPv4, każda podmaska dzieli przestrzeń adresową na mniejsze segmenty. Maska /23 oznacza, że 23 bity są używane do identyfikacji sieci, co pozostawia 9 bitów dla hostów. Wzór na obliczenie liczby dostępnych adresów IP w sieci to 2^(liczba bitów hostów) - 2, gdzie odejmujemy 2 z powodu adresu sieci i adresu rozgłoszeniowego. W tym przypadku: 2^9 - 2 = 512 - 2 = 510. Taka konfiguracja jest często stosowana w lokalnych sieciach komputerowych, gdzie serwery DHCP przydzielają adresy IP w oparciu o zdefiniowaną pulę. Dobre praktyki w zarządzaniu adresacją IP sugerują staranne planowanie puli adresów, by uniknąć konfliktów i zapewnić odpowiednią ilość dostępnych adresów dla wszystkich urządzeń w danej sieci.

Pytanie 12

Najwyższą prędkość transmisji danych w sieciach bezprzewodowych zapewnia standard

A. 802.11 a
B. 802.11 g
C. 802.11 b
D. 802.11 n
Standard 802.11 n, znany również jako Wi-Fi 4, wprowadza szereg zaawansowanych technologii, które znacznie zwiększają prędkość transmisji danych w sieciach bezprzewodowych. W porównaniu do wcześniejszych standardów, takich jak 802.11 a, b i g, 802.11 n może osiągać prędkości do 600 Mb/s, co jest wynikiem zastosowania technologii MIMO (Multiple Input Multiple Output), która umożliwia równoległe przesyłanie danych poprzez wiele anten. To oznacza, że w praktyce, użytkownicy korzystający z 802.11 n mogą doświadczać znacznie szybszego ładowania stron internetowych, płynniejszego strumieniowania wideo w jakości HD oraz bardziej stabilnych połączeń w sieciach domowych i biurowych. Dodatkowo, 802.11 n działa zarówno w paśmie 2,4 GHz, jak i 5 GHz, co oznacza większą elastyczność i mniejsze zakłócenia w porównaniu do starszych standardów. W związku z tym, wdrożenie standardu 802.11 n w infrastrukturze sieciowej jest zgodne z dobrą praktyką branżową, pozwalając na efektywniejsze wykorzystanie dostępnych pasm oraz zapewnienie lepszej jakości usług dla użytkowników.

Pytanie 13

Aby uniknąć różnic w kolorystyce pomiędzy zeskanowanymi zdjęciami na wyświetlaczu komputera a ich oryginałami, konieczne jest przeprowadzenie

A. modelowanie skanera
B. interpolację skanera
C. kalibrację skanera
D. kadrowanie skanera
Kalibracja skanera to proces, w którym dostosowuje się parametry urządzenia, aby osiągnąć maksymalną zgodność kolorystyczną między zeskanowanymi obrazami a oryginałami. Proces ten jest niezbędny, ponieważ różnice w kolorach mogą wynikać z różnic w oprogramowaniu, sprzęcie, a także z ustawień skanera. Kalibracja polega na wykorzystaniu wzorców kolorystycznych, które pozwalają na dokładne odwzorowanie barw. Przykładem zastosowania kalibracji może być sytuacja, gdy grafika drukarska musi być zgodna z jej cyfrowym odpowiednikiem. Aby to osiągnąć, operator skanera wykonuje kalibrację na podstawie znanych standardów kolorów, takich jak sRGB czy Adobe RGB, co zapewnia spójność i powtarzalność kolorów. Ponadto, regularna kalibracja jest zalecana jako dobra praktyka w branży, aby zminimalizować błędy kolorystyczne, które mogą wystąpić z biegiem czasu.

Pytanie 14

Przed przystąpieniem do modernizacji komputerów osobistych oraz serwerów, polegającej na dodaniu nowych modułów pamięci RAM, konieczne jest sprawdzenie

A. pojemności i typu interfejsu dysku twardego oraz rodzaju gniazda zainstalowanej pamięci RAM
B. modelu pamięci RAM, maksymalnej pojemności oraz liczby modułów wspieranej przez płytę główną
C. gniazda interfejsu karty graficznej oraz wydajności zamontowanego zasilacza
D. producenta modułów pamięci RAM oraz zewnętrznych interfejsów zainstalowanej płyty głównej
Wybór odpowiedzi, która koncentruje się na producencie pamięci RAM i interfejsach zewnętrznych płyty głównej, jest niepoprawny z kilku powodów. Przede wszystkim, producent pamięci RAM jest istotny, ale nie jest kluczowym czynnikiem w kontekście samej modernizacji. Ważniejsze jest, aby pamięć była zgodna z wymaganiami płyty głównej, niż aby była od konkretnego producenta. Wybór ten prowadzi do ryzyka zakupu pamięci, która fizycznie pasuje, ale nie jest wspierana przez system. Wskazanie na gniazdo interfejsu karty graficznej oraz moc zasilacza również jest mylne, ponieważ te elementy mają niewielki wpływ na pamięć RAM. Gniazdo karty graficznej dotyczy głównie dedykowanych kart graficznych i ich wydajności, niezwiązaną z pamięcią. Podobnie, moc zasilacza jest ważna, ale jej analiza nie wpływa bezpośrednio na wybór pamięci RAM. Z kolei omijanie kwestii pojemności i rodzaju interfejsu dysku twardego oraz rodzaju gniazda pamięci RAM jest również błędem, ponieważ te informacje nie są kluczowe w kontekście modernizacji pamięci. Kluczowym elementem przy modernizacji RAM jest upewnienie się, że nowa pamięć jest kompatybilna z systemem, co doskonale podsumowuje poprawna odpowiedź. Ignorując ten aspekt, można napotkać poważne problemy z wydajnością lub stabilnością systemu.

Pytanie 15

Jak nazywa się bezklasowa metoda podziału przestrzeni adresowej IPv4?

A. MASK
B. IMAP
C. VLAN
D. CIDR
CIDR, czyli Classless Inter-Domain Routing, jest bezklasową metodą podziału przestrzeni adresowej IPv4, która pozwala na bardziej elastyczne zarządzanie adresami IP. Została wprowadzona w celu zastąpienia tradycyjnego systemu klasowego (A, B, C), który był ograniczony i prowadził do nieefektywnego wykorzystania dostępnych adresów. CIDR wprowadza elastyczność dzięki wykorzystaniu notacji, która pozwala na precyzyjne określenie długości prefiksu sieci (np. /24), co pozwala na przydzielanie adresów zgodnie z rzeczywistymi potrzebami sieci. Przykładem zastosowania CIDR jest podział dużej puli adresów IP dla różnych podsieci w organizacji, co pozwala na optymalizację i lepsze zarządzanie zasobami sieciowymi. Dzięki CIDR możliwe jest efektywne agregowanie tras w routingu, co przyczynia się do zmniejszenia rozmiaru tablic routingu w internecie oraz poprawy wydajności. Standardy ustalone przez IETF w dokumentach RFC 4632 oraz RFC 1519 podkreślają znaczenie CIDR w kontekście nowoczesnych rozwiązań sieciowych, co sprawia, że jest to kluczowa koncepcja w zarządzaniu adresami IP.

Pytanie 16

Jak wygląda liczba 356 w systemie binarnym?

A. 110011000
B. 110011010
C. 101100100
D. 100001100
Liczba 356 w systemie dziesiętnym przekształcona na system binarny daje wynik 101100100. Aby zrozumieć ten proces, należy zastosować metodę dzielenia przez 2. Rozpoczynamy od podziału liczby 356 przez 2, zapisując resztę. Kontynuujemy dzielenie wyniku aż do osiągnięcia zera. W rezultacie otrzymujemy kolejno reszty: 0, 0, 1, 1, 0, 0, 1, 0, 1, co w odwróconej kolejności daje 101100100. Zrozumienie konwersji między systemami liczbowymi jest fundamentalne w informatyce, szczególnie w kontekście programowania, gdzie operacje na liczbach binarnych są powszechne. W praktyce, umiejętność zamiany liczb między systemami jest niezbędna w takich obszarach jak algorytmy, kompresja danych, czy programowanie niskopoziomowe. Dobrą praktyką jest stosowanie narzędzi lub prostych skryptów do konwersji, aby uniknąć ręcznych błędów.

Pytanie 17

Użytkownik systemu Linux, który pragnie usunąć konto innego użytkownika wraz z jego katalogiem domowym, powinien wykonać polecenie

A. userdel -d nazwa_użytkownika
B. sudo userdel -r nazwa_użytkownika
C. sudo userdel nazwa_użytkownika
D. userdel nazwa_użytkownika
W przypadku odpowiedzi 'userdel nazwa_użytkownika', 'sudo userdel nazwa_użytkownika' czy 'userdel -d nazwa_użytkownika', jest parę poważnych błędów w rozumieniu działania polecenia 'userdel'. Na przykład, wybierając 'userdel nazwa_użytkownika', osoba bez uprawnień superużytkownika nie usunie innego konta. To jest kluczowe, bo w systemach, gdzie jest wielu użytkowników, bezpieczeństwo i kontrola dostępu są mega ważne. Odpowiedź 'sudo userdel nazwa_użytkownika' nie bierze pod uwagę usunięcia katalogu domowego, co może być ryzykowne, gdy konto nie jest już potrzebne. Zostawienie danych użytkownika może stwarzać zagrożenia. Co do 'userdel -d nazwa_użytkownika', to jest zła odpowiedź, bo '-d' nie jest standardowym przełącznikiem dla 'userdel' i nie działa jak powinno. Zrozumienie tych różnic jest naprawdę istotne, gdy działasz w świecie Linux, bo złe użycie poleceń może spowodować sporo kłopotów administracyjnych i narazić system na różne niebezpieczeństwa. Zarządzanie użytkownikami w Linuxie to nie tylko kwestia umiejętności usuwania kont, ale też dbania o bezpieczeństwo i odpowiednie praktyki zarządzania danymi.

Pytanie 18

Analiza danych wyświetlonych przez program umożliwia stwierdzenie, że

Ilustracja do pytania
A. partycja rozszerzona zajmuje 24,79 GiB
B. partycja wymiany ma pojemność 2 GiB
C. jeden dysk twardy został podzielony na sześć partycji podstawowych
D. zamontowano trzy dyski twarde oznaczone jako sda1, sda2 oraz sda3
Analiza niepoprawnych opcji wymaga zrozumienia struktury partycji i ich funkcji. Pierwsza opcja sugeruje że jeden dysk twardy został podzielony na sześć partycji podstawowych co jest błędne w kontekście standardów MBR Master Boot Record gdzie maksymalna liczba partycji podstawowych wynosi cztery. Zrzut ekranu ukazuje jedną partycję rozszerzoną która umożliwia tworzenie dodatkowych partycji logicznych jak sda5 i sda6. Druga odpowiedź jest również niepoprawna ponieważ sda1 sda2 i sda3 nie są oddzielnymi dyskami a jedynie partycjami na tym samym dysku sda. Nazewnictwo oparte na literach i cyfrach odnosi się do struktury partycji na pojedynczym dysku twardym co jest standardową konwencją w systemach Linux. Trzecia opcja błędnie identyfikuje wielkość partycji rozszerzonej. Zrzut ekranu pokazuje że partycja rozszerzona sda3 ma wielkość 26.79 GiB a nie 24.79 GiB co jest zauważalne w danych. Te nieporozumienia mogą wynikać z błędnej interpretacji danych wyświetlanych w narzędziach do zarządzania dyskami co jest częstym błędem wśród mniej doświadczonych użytkowników systemów.

Pytanie 19

W wyniku realizacji podanego polecenia ping parametr TTL wskazuje na

Ilustracja do pytania
A. liczbę ruterów, które uczestniczą w przesyłaniu pakietu od nadawcy do odbiorcy
B. czas reakcji z urządzenia docelowego
C. czas trwania testu łączności w sieci
D. liczbę pakietów wysłanych w celu weryfikacji komunikacji w sieci
Powszechnym błędem przy interpretacji parametru TTL w kontekście polecenia ping jest mylenie go z czasem odpowiedzi z urządzenia docelowego lub czasem trwania całej operacji ping. Czas odpowiedzi to zupełnie inna wartość mierzona w milisekundach która wskazuje jak szybko urządzenie docelowe odpowiedziało na zapytanie ping i jest to odrębny parametr od TTL. Wyjaśniając różnice warto zauważyć że czas odpowiedzi zależy od różnych czynników takich jak odległość sieciowa obciążenie sieci czy wydajność urządzenia docelowego. Natomiast TTL dotyczy liczby ruterów które pakiet musi przejść. Kolejną pomyłką jest utożsamianie TTL z liczbą pakietów wysłanych w celu sprawdzenia komunikacji co jest często wynikiem błędnego rozumienia jak działa polecenie ping. Ping standardowo wysyła określoną liczbę pakietów która nie zależy od TTL i jest konfigurowalna przez użytkownika. Ostatnim błędnym założeniem jest przekonanie że TTL oznacza czas trwania całego sprawdzenia komunikacji. Choć podobieństwo terminologiczne może być mylące TTL jest niezależnym mechanizmem mającym na celu zapobieganie nieskończonym pętlom w sieci i nie odnosi się do czasu trwania operacji. Zrozumienie tych różnic jest kluczowe do poprawnej analizy i interpretacji wyników ping co jest istotne w diagnostyce i utrzymaniu infrastruktury sieciowej.

Pytanie 20

W adresacji IPv6 standardowy podział długości dla adresu sieci oraz identyfikatora hosta wynosi odpowiednio

A. 64 bity / 64 bity
B. 32 bity / 96 bitów
C. 16 bitów / 112 bitów
D. 96 bitów / 32 bity
Odpowiedź 64 bity / 64 bity jest poprawna, ponieważ w standardzie adresacji IPv6, adresy są podzielone na dwie zasadnicze części: część sieciową oraz część identyfikującą hosta. W przypadku IPv6, standardowy podział wynosi 64 bity dla identyfikacji sieci oraz 64 bity dla identyfikacji hosta. Taki podział sprzyja efektywnemu zarządzaniu adresami w dużych sieciach, umożliwiając przypisanie ogromnej liczby adresów do urządzeń w ramach jednej sieci. Przykładem może być organizacja, która musi przypisać adresy do tysięcy urządzeń w sieci lokalnej. Dzięki temu podziałowi, przedsiębiorstwa mogą korzystać z unikalnych adresów dla każdego urządzenia, co jest zgodne z zasadami projektowania sieci według standardu RFC 4291 dotyczącym IPv6. Ponadto, użycie 64-bitowego prefiksu sieciowego jest zgodne z dobrymi praktykami, które zalecają stosowanie zasięgów adresowych sprzyjających efektywności routingu i uproszczonemu zarządzaniu.

Pytanie 21

Aby zwiększyć lub zmniejszyć rozmiar ikony na pulpicie, trzeba obracać kółkiem myszy, jednocześnie trzymając klawisz

A. TAB
B. ALT
C. SHIFT
D. CTRL
Użycie klawisza CTRL w połączeniu z kręceniem kółkiem myszy to całkiem standardowy sposób w Windowsie na powiększanie lub zmniejszanie ikon na pulpicie. To fajna funkcjonalność, bo pozwala każdemu łatwo dostosować widok do swoich potrzeb. Na przykład, jeśli chcesz powiększyć ikonę, wystarczy przytrzymać CTRL i kręcić kółkiem myszy w górę. A jeśli kręcisz w dół, to ikona zrobi się mniejsza. To jest zgodne z zasadami użyteczności, czyli z tym, żeby wszystko było intuicyjne i łatwe do ogarnięcia. Co ciekawe, ta metoda nie tylko działa na pulpicie, ale też w wielu aplikacjach, jak edytory tekstu czy przeglądarki, gdzie możesz powiększać lub zmniejszać tekst. Dzięki temu masz większą kontrolę nad tym, co widzisz na ekranie, a to zdecydowanie poprawia komfort korzystania z komputera.

Pytanie 22

W sieciach bezprzewodowych typu Ad-Hoc IBSS (Independent Basic Service Set) wykorzystywana jest topologia fizyczna

A. siatki
B. pierścienia
C. gwiazdy
D. magistrali
Wybór topologii gwiazdy, pierścienia lub magistrali w kontekście sieci Ad-Hoc IBSS jest nieprawidłowy, ponieważ każda z tych struktur ma swoje specyficzne ograniczenia i nie pasuje do natury Ad-Hoc. Topologia gwiazdy opiera się na centralnym punkcie dostępowym, co jest sprzeczne z decentralizowanym charakterem Ad-Hoc, gdzie każde urządzenie może pełnić rolę zarówno nadawcy, jak i odbiorcy. W przypadku topologii pierścienia, w której dane przemieszczają się w jednym kierunku przez wszystkie urządzenia, łatwo o zakłócenia i problemy z wydajnością, co w sieciach Ad-Hoc jest niepożądane. Z kolei magistrala, w której wszystkie urządzenia są podłączone do jednego przewodu, jest również nieodpowiednia, ponieważ wymaga stabilnej struktury, co nie jest możliwe w dynamicznym środowisku Ad-Hoc. Typowym błędem myślowym jest mylenie pojmowania struktury sieci z typowymi, stałymi instalacjami, podczas gdy Ad-Hoc ma na celu umożliwienie szybkiej i elastycznej komunikacji w zmieniających się warunkach. Te nieprawidłowe odpowiedzi nie uwzględniają również praktycznych aspektów rozwoju sieci bezprzewodowych, które opierają się na standardach takich jak IEEE 802.11, które promują elastyczność i decentralizację.

Pytanie 23

Jakiego narzędzia należy użyć do montażu końcówek kabla UTP w gnieździe keystone z zaciskami typu 110?

A. Zaciskarki do wtyków RJ45
B. Narzędzia uderzeniowego
C. Śrubokręta płaskiego
D. Śrubokręta krzyżakowego
Narzędzie uderzeniowe jest kluczowym narzędziem używanym do tworzenia końcówek kabli UTP w modułach keystone wyposażonych w styki typu 110. Jego działanie polega na precyzyjnym wprowadzeniu żył kabla do odpowiednich styków w module, co zapewnia solidne i pewne połączenie. Dzięki zastosowaniu tego narzędzia, można uniknąć problemów związanych z luźnymi połączeniami lub nieprawidłowym osadzeniem żył, co jest szczególnie istotne w przypadku instalacji sieciowych, gdzie stabilność sygnału jest kluczowa. Należy podkreślić, że zgodnie z normami EIA/TIA dla okablowania strukturalnego, stosowanie narzędzi właściwych do typu złącza zwiększa niezawodność sieci. Przykładowo, instalując sieci LAN w biurze, użycie narzędzia uderzeniowego pozwoli na szybkie i efektywne zakończenie kabli, co jest szczególnie ważne w projektach z ograniczonym czasem realizacji. Ponadto, technika ta minimalizuje ryzyko uszkodzenia kabla, co z kolei przekłada się na mniejsze koszty serwisowania i napraw w przyszłości.

Pytanie 24

Jaką maksymalną ilość rzeczywistych danych można przesłać w ciągu 1 sekundy przez łącze synchroniczne o wydajności 512 kbps, bez użycia sprzętowej i programowej kompresji?

A. W przybliżeniu 5 kB
B. W przybliżeniu 55 kB
C. Więcej niż 500 kB
D. Ponad 64 kB
Wybór innych odpowiedzi, takich jak "Ponad 500 kB" czy "Ponad 64 kB", wynika z błędnego zrozumienia podstawowych zasad przesyłu danych w sieciach komputerowych. Przede wszystkim, warto zauważyć, że łącze o przepustowości 512 kbps odnosi się do ilości bitów, które mogą być przesyłane w ciągu jednej sekundy, a nie bezpośrednio do bajtów. 1 kilobit to 1/8 kilobajta, zatem konwersja na bajty jest kluczowa dla uzyskania właściwego wyniku. Stąd wynika, że prawidłowe przeliczenie daje 64 kB, ale to tylko teoretyczna wartość. W praktyce, protokoły sieciowe wprowadzają dodatkowe obciążenie, co oznacza, że rzeczywista ilość przesyłanych danych będzie niższa. Często występującym błędem jest niebranie pod uwagę overheadu związanego z nagłówkami pakietów czy różnymi protokołami komunikacyjnymi. Na przykład, w protokole TCP/IP, część pasma jest wykorzystywana na nagłówki, co wpływa na rzeczywistą przepustowość. W rezultacie, odpowiadając na pytanie, możemy stwierdzić, że przesyłanie danych na poziomie 500 kB czy 64 kB bez uwzględnienia strat przynosi błędne wnioski. Kluczowe jest zrozumienie, że praktyczne zastosowania w sieciach komputerowych wymagają uwzględnienia strat związanych z protokołami, co przyczynia się do bardziej realistycznych prognoz przesyłania danych.

Pytanie 25

Jaką wartość liczbową reprezentuje zapis binarny 01010101?

A. 170
B. 192
C. 85
D. 256
Analizując alternatywne odpowiedzi, można zauważyć, że 256 jest równoważne zapisowi binarnemu 100000000, co oznacza, że każdy błąd w analizie wagi bitów prowadzi do znacznych nieporozumień. Z kolei 192 w zapisie binarnym to 11000000, a 170 to 10101010, co również nie ma nic wspólnego z podanym zbiorem bitów. Typowe błędy w myśleniu często obejmują niepełne zrozumienie potęg liczby 2, co prowadzi do błędnych konwersji. Niektóre osoby mogą mylnie dodawać wartości bitów, nie uwzględniając ich odpowiednich wag lub pomijając niektóre bity podczas obliczeń. Czasami użytkownicy mogą również mylić wartości binarne z liczbami dziesiętnymi, co sprawia, że błędnie interpretują wynik konwersji. Przykład 170 wskazuje na częsty problem, gdzie niewłaściwie rozumiane wzorce w bitach są brane pod uwagę; aby zrozumieć, dlaczego to nie jest poprawne, warto zauważyć, że 170 miałoby inne rozmieszczenie bitów oraz wag. Aby uniknąć takich pomyłek, warto ćwiczyć konwersje oraz zapoznać się z tabelami wartości binarnych dla powszechnie używanych liczb, co może znacząco pomóc w poprawnym rozumieniu zapisu binarnego oraz jego zastosowania w praktyce.

Pytanie 26

Który z poniższych protokołów reprezentuje protokół warstwy aplikacji w modelu ISO/OSI?

A. ICMP
B. FTP
C. ARP
D. UDP
FTP, czyli File Transfer Protocol, jest jednym z protokołów warstwy aplikacji w modelu ISO/OSI, który służy do transferu plików pomiędzy komputerami w sieci. Protokół ten umożliwia użytkownikom przesyłanie, pobieranie oraz zarządzanie plikami na zdalnym serwerze. FTP operuje na bazie architektury klient-serwer, gdzie klient wysyła żądania do serwera, który odpowiada na nie, wykonując odpowiednie operacje na plikach. Przykładem zastosowania FTP jest przesyłanie dużych zbiorów danych z lokalnej maszyny na serwer hostingowy, co jest kluczowe w przypadku publikacji stron internetowych. Dodatkowo, FTP wspiera różne metody uwierzytelniania, co zwiększa bezpieczeństwo danych. W praktyce wiele narzędzi, takich jak FileZilla, wykorzystuje FTP do umożliwienia użytkownikom łatwego i intuicyjnego transferu plików. Warto również zauważyć, że istnieją bezpieczniejsze warianty FTP, takie jak FTPS czy SFTP, które szyfrują dane w trakcie transferu, co jest zgodne z dobrymi praktykami ochrony danych w sieci.

Pytanie 27

W interfejsie graficznym systemów Ubuntu lub SuSE Linux, aby zainstalować aktualizacje programów systemowych, można zastosować aplikacje

A. Pocket lub Dolphin
B. Synaptic lub YaST
C. Chromium lub XyGrib
D. Shutter lub J-Pilot
Wybór odpowiedzi związanych z Shutter, J-Pilot, Pocket, Dolphin, Chromium czy XyGrib świadczy o nieporozumieniu w zakresie funkcji poszczególnych aplikacji w kontekście zarządzania oprogramowaniem w systemie Linux. Shutter to aplikacja do zrzutów ekranu, która umożliwia tworzenie, edytowanie i udostępnianie zrzutów ekranowych, jednak nie ma nic wspólnego z aktualizacjami systemu. J-Pilot to narzędzie do synchronizacji danych z urządzeniami Palm, co ma niewielkie znaczenie dla aktualizacji oprogramowania systemowego. Pocket to aplikacja do zarządzania artykułami w trybie offline, a Dolphin to menedżer plików używany w środowisku KDE, który również nie zajmuje się aktualizowaniem systemu. Z kolei Chromium to przeglądarka internetowa, a XyGrib to oprogramowanie do analizy danych meteorologicznych, co w żadnym wypadku nie odnosi się do zarządzania pakietami w systemie Linux. Mylenie tych aplikacji z narzędziami do zarządzania oprogramowaniem może wynikać z braku zrozumienia ich podstawowych funkcji oraz przeznaczenia. W kontekście Linuxa, kluczowe jest, aby użytkownicy korzystali z odpowiednich narzędzi, jak Synaptic czy YaST, które są zaprojektowane specjalnie do instalacji i aktualizacji oprogramowania, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i zarządzania systemem.

Pytanie 28

Jak nazywa się serwer Windows, na którym zainstalowano usługę Active Directory?

A. kontrolerem domeny
B. serwerem WWW
C. serwerem plików
D. serwerem DHCP
Serwer Windows z zainstalowaną usługą Active Directory nazywa się kontrolerem domeny, ponieważ pełni kluczową rolę w zarządzaniu infrastrukturą informatyczną w organizacjach. Kontroler domeny jest odpowiedzialny za przechowywanie obiektów, takich jak konta użytkowników, komputery oraz zasoby sieciowe, a także za autoryzację i uwierzytelnianie użytkowników, co zapewnia bezpieczeństwo i kontrolę dostępu do zasobów. Korzystając z Active Directory, administratorzy mogą centralnie zarządzać politykami bezpieczeństwa, przypisywać uprawnienia oraz konfigurować zasady grupowe, co jest zgodne z najlepszymi praktykami w zakresie zarządzania systemami informatycznymi. Przykładem zastosowania kontrolera domeny może być organizacja, w której pracownicy logują się do swoich komputerów za pomocą tych samych poświadczeń, co umożliwia im dostęp do wspólnych zasobów i aplikacji w sposób bezpieczny i efektywny. Warto zaznaczyć, że kontrolery domeny mogą być zreplikowane w środowisku, co zwiększa niezawodność i dostępność usług.

Pytanie 29

Podczas próby zapisania danych na karcie SD wyświetla się komunikat „usuń ochronę przed zapisem lub skorzystaj z innego nośnika”. Najczęstszą przyczyną takiego komunikatu jest

A. Zbyt duży rozmiar pliku, który ma być zapisany
B. Ustawienie mechanicznego przełącznika blokady zapisu na karcie w pozycji ON
C. Posiadanie uprawnień 'tylko do odczytu' dla plików na karcie SD
D. Brak wolnego miejsca na karcie pamięci
Ustawienie przełącznika blokady zapisu na karcie SD w pozycji ON to najczęstszy powód, dla którego pojawia się komunikat o błędzie przy zapisywaniu danych. Większość kart SD ma taki mały przełącznik, który pozwala zablokować zapis, żeby uniknąć przypadkowego usunięcia lub zmiany plików. Kiedy przełącznik jest w pozycji ON, to karta jest zablokowana i nic nie można na niej zapisać. W praktyce, żeby móc zapisywać pliki, wystarczy przesunąć ten przełącznik w drugą stronę, co odblokowuje kartę. Też warto zwrócić uwagę, że wiele urządzeń, jak aparaty czy telefony, informuje o tym stanie, co jest zgodne z zasadami użytkowania nośników pamięci. Zrozumienie tego daje ci większą kontrolę nad swoimi danymi i pozwala uniknąć frustracji przy korzystaniu z kart pamięci.

Pytanie 30

Jaką partycją w systemie Linux jest magazyn tymczasowych danych, gdy pamięć RAM jest niedostępna?

A. tmp
B. sys
C. swap
D. var
Wybór odpowiedzi nieprawidłowych może prowadzić do licznych nieporozumień dotyczących zarządzania pamięcią w systemie Linux. Partycja 'var' jest miejscem przechowywania plików danych zmiennych, takich jak logi systemowe czy tymczasowe pliki aplikacji. Nie ma ona jednak funkcji związanej z pamięcią wirtualną ani z zarządzaniem pamięcią, a jej głównym celem jest umożliwienie aplikacjom przechowywanie danych, które mogą się zmieniać w trakcie pracy systemu. Podobnie, 'sys' to interfejs systemowy, który dostarcza informacji o stanie systemu i umożliwia interakcję z jądrem systemu Linux, lecz nie ma związku z zarządzaniem pamięcią. Odpowiedź 'tmp' odnosi się do katalogu, w którym przechowywane są tymczasowe pliki, ale nie jest to partycja ani obszar pamięci, który służyłby jako pamięć wirtualna. Wiele osób myli funkcje tych katalogów i partycji, co prowadzi do przekonania, że mogą one zastąpić swap. Kluczowym błędem jest zrozumienie, że swap jest dedykowaną przestrzenią na dysku, która jest wykorzystywana wyłącznie w celu zarządzania pamięcią RAM, a inne partycje czy katalogi mają zupełnie inne przeznaczenia i funkcje w architekturze systemu operacyjnego. Właściwe zrozumienie tych zależności jest kluczowe dla efektywnego zarządzania zasobami w systemie Linux.

Pytanie 31

W standardzie Ethernet 100Base-TX do przesyłania danych używane są żyły kabla UTP przypisane do pinów

A. 4,5,6,7
B. 1,2,5,6
C. 1,2,3,6
D. 1,2,3,4
W sieci Ethernet 100Base-TX do transmisji danych wykorzystuje się cztery żyły kabla UTP, przypisane do pinów 1, 2, 3 i 6. Te piny odpowiadają za przesyłanie danych w standardzie 100Base-TX, który jest częścią specyfikacji IEEE 802.3u. Piny 1 i 2 są używane do przesyłania danych (D+ i D-), natomiast piny 3 i 6 służą do odbierania danych (D+ i D-). W praktyce oznacza to, że w standardzie 100Base-TX stosuje się technologię Full Duplex, co umożliwia jednoczesne przesyłanie i odbieranie danych przez kabel. Dzięki temu, w porównaniu do starszych technologii, takich jak 10Base-T, Ethernet 100Base-TX zapewnia wyższą przepustowość i efektywność w transferze informacji. Standard ten jest szeroko stosowany w nowoczesnych sieciach lokalnych, co czyni go istotnym elementem infrastruktury IT. Warto również zwrócić uwagę na znaczenie odpowiedniego okablowania oraz jego jakości, które mają kluczowy wpływ na osiągane prędkości i stabilność połączenia.

Pytanie 32

Jakie urządzenie pozwala na podłączenie drukarki, która nie ma karty sieciowej, do lokalnej sieci komputerowej?

A. Koncentrator
B. Punkt dostępu
C. Regenerator
D. Serwer wydruku
Serwer wydruku to urządzenie, które umożliwia podłączenie drukarki do lokalnej sieci komputerowej, nawet jeśli sama drukarka nie ma wbudowanej karty sieciowej. Serwer wydruku działa jako most łączący drukarkę z siecią, dzięki czemu użytkownicy w sieci mogą korzystać z niej bezpośrednio. Serwery wydruku mogą obsługiwać wiele drukarek, co czyni je idealnym rozwiązaniem w biurach i środowiskach, gdzie dostęp do drukowania jest wymagany dla wielu użytkowników. Zastosowanie serwera wydruku pozwala na centralizację zarządzania drukiem, co ułatwia monitorowanie zasobów oraz kontrolowanie kosztów. Dzięki zastosowaniu standardów takich jak IPP (Internet Printing Protocol), serwer wydruku może być łatwo skonfigurowany do działania w różnych systemach operacyjnych i środowiskach sieciowych, co zwiększa jego użyteczność i elastyczność w zastosowaniach biurowych oraz domowych. Dodatkowo, wiele nowoczesnych serwerów wydruku oferuje funkcje takie jak skanowanie i kopiowanie, co dodatkowo zwiększa ich funkcjonalność.

Pytanie 33

Gniazdo LGA umieszczone na płycie głównej komputera stacjonarnego pozwala na zamontowanie procesora

A. Intel Pentium II Xeon
B. Athlon 64 X2
C. AMD Sempron
D. Intel Core i5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Intel Core i5' jest poprawna, ponieważ procesory z tej serii są zaprojektowane z myślą o gniazdach LGA, które są standardem dla wielu współczesnych płyt głównych Intela. Gniazda LGA, w tym LGA 1151 i LGA 1200, obsługują różne generacje procesorów Intel Core, co pozwala na łatwą wymianę lub modernizację sprzętu. Przykładowo, użytkownicy, którzy chcą zwiększyć wydajność swoich komputerów do gier lub pracy z grafiką, mogą zainstalować procesor Intel Core i5, co zapewnia im odpowiednią moc obliczeniową oraz wsparcie dla technologii, takich jak Turbo Boost, co pozwala na automatyczne zwiększenie wydajności w zależności od obciążenia. To gniazdo jest również zgodne ze standardami branżowymi, co gwarantuje wysoką jakość i stabilność połączenia. W praktyce, wybór odpowiedniego procesora do gniazda LGA jest kluczowy dla zbudowania efektywnego systemu komputerowego, który spełnia wymagania użytkownika, zarówno w codziennych zastosowaniach, jak i w bardziej zaawansowanych scenariuszach.

Pytanie 34

Na podstawie oznaczenia pamięci DDR3 PC3-16000 można określić, że ta pamięć

A. ma przepustowość 160 GB/s
B. ma przepustowość 16 GB/s
C. pracuje z częstotliwością 16000 MHz
D. pracuje z częstotliwością 160 MHz
Analizując błędne odpowiedzi, można zauważyć, że niepoprawne stwierdzenia często wynikają z nieporozumienia dotyczącego sposobu, w jaki określa się parametry pamięci. Stwierdzenie, że pamięć ma przepustowość 160 GB/s, jest nieprawidłowe, ponieważ przekracza rzeczywiste możliwości standardu DDR3, który nie osiąga takich wartości. Wartości przepustowości są związane z częstotliwością zegara oraz szerokością magistrali, a 160 GB/s przekracza fizyczne limity technologii DDR3. Kolejną nieścisłością jest stwierdzenie, że pamięć pracuje z częstotliwością 160 MHz. Taka wartość jest znacznie poniżej rzeczywistych parametrów DDR3. Częstotliwość odnosi się do zegara w trybie transferu, gdzie DDR3 pracuje z częstotliwościami rzędu 800 MHz, co odpowiada efektywnym wartościom 1600 MHz, a stąd już wnioskujemy, że przepustowość może osiągnąć 16 GB/s. Z kolei podanie wartości 16000 MHz jest również nieprawidłowe, ponieważ to odnosi się do błędnego przeliczenia jednostek - efektywna częstotliwość DDR3 PC3-16000 to 2000 MHz, a nie 16000 MHz. Poprawne zrozumienie tych parametrów jest kluczowe dla właściwego doboru pamięci w systemach komputerowych, aby zapewnić optymalną wydajność i zgodność z pozostałymi komponentami.

Pytanie 35

Jaką kwotę trzeba będzie przeznaczyć na zakup kabla UTP kat.5e do zbudowania sieci komputerowej składającej się z 6 stanowisk, gdzie średnia odległość każdego stanowiska od przełącznika wynosi 9 m? Należy uwzględnić 1 m zapasu dla każdej linii kablowej, a cena za 1 metr kabla to 1,50 zł?

A. 60,00 zł
B. 90,00 zł
C. 150,00 zł
D. 120,00 zł
Koszt zakupu kabla UTP kat.5e może być mylony z innymi wartościami, co często wynika z niepoprawnych obliczeń dotyczących długości potrzebnego kabla. Niektórzy mogą błędnie uznać, że wystarczy pomnożyć długość jednego kabla przez liczbę stanowisk bez uwzględnienia zapasu, co prowadzi do zaniżenia całkowitego kosztu. Na przykład, jeśli ktoś pomyśli, że wystarczy 9 m na każde stanowisko, mogą obliczyć 54 m (6 x 9 m), a następnie mnożąc przez cenę 1,50 zł, otrzymają tylko 81,00 zł, co jest również błędne. Innym powszechnym błędem jest nieuwzględnienie zapasu, co w przypadku kabli sieciowych jest standardową praktyką. Każda instalacja powinna przewidywać pewien margines bezpieczeństwa, aby umożliwić późniejsze poprawki lub zmiany w konfiguracji. Dodatkowo, można spotkać się z przekonaniem, że cena 1,50 zł za metr może dotyczyć innego typu kabla, co prowadzi do pomylenia rodzaju materiału i jego kosztów. Takie niedopatrzenia mogą prowadzić do nieprawidłowych decyzji zakupowych oraz nieefektywnego wykorzystania budżetu. Dlatego istotne jest, aby przy obliczeniach kosztów inwestycji w sieci komputerowe dokładnie analizować wszystkie parametry oraz stosować się do dobrych praktyk branżowych, co przyczyni się do osiągnięcia optymalnej efektywności oraz stabilności sieci.

Pytanie 36

Jakie polecenia należy zrealizować, aby zamontować pierwszą partycję logiczną dysku primary slave w systemie Linux?

A. mount /dev/hda2 /mnt/hdd
B. mount /dev/hdb5 /mnt/hdd
C. mount /dev/hda4 /mnt/hdd
D. mount /dev/hdb3 /mnt/hdd
Wybór innych opcji montowania, takich jak 'mount /dev/hda2 /mnt/hdd', 'mount /dev/hdb3 /mnt/hdd' czy 'mount /dev/hda4 /mnt/hdd', jest błędny z kilku powodów. Po pierwsze, '/dev/hda' wskazuje na pierwszy dysk twardy w systemie, który jest oznaczony jako primary master, co oznacza, że nie jest to dysk slave. W kontekście montowania partycji logicznych na dysku slave, właściwe urządzenie to '/dev/hdb'. Odpowiedzi zawierające '/dev/hda' odnoszą się do nieprawidłowej lokalizacji partycji, co prowadzi do błędów w dostępie do danych. Ponadto, jeżeli chodzi o numery partycji, partycje logiczne są zazwyczaj oznaczane jako 'hdb5', 'hdb6' itd., w zależności od ich kolejności w ramach partycji rozszerzonej. Zatem, montowanie 'hdb3' byłoby także błędne, ponieważ jest to trzecia partycja logiczna, a nie pierwsza. Typowym błędem w myśleniu jest mylenie rodzajów dysków oraz partycji, co często prowadzi do frustracji i problemów z dostępem do danych. Kluczowe jest zrozumienie struktury dysków i partycji w systemie Linux, co pozwala na poprawne montowanie i administrowanie urządzeniami magazynującymi, zgodnie z najlepszymi praktykami zarządzania systemem.

Pytanie 37

Aby poprawić wydajność procesora serii Intel za pomocą 'podkręcania' (ang. overclocking), należy użyć procesora oznaczonego

A. literą U
B. literą B
C. literą Y
D. literą K
Odpowiedź literą K wskazuje na procesory Intel, które są fabrycznie odblokowane, co umożliwia ich podkręcanie, czyli overclocking. Procesory te są często wykorzystywane przez entuzjastów komputerowych oraz profesjonalnych graczy, którzy pragną maksymalizować wydajność swoich systemów. W praktyce, podkręcanie polega na zwiększeniu częstotliwości pracy rdzeni procesora ponad nominalne wartości, co skutkuje lepszą wydajnością w wymagających aplikacjach oraz grach. Standardowe narzędzia, takie jak Intel Extreme Tuning Utility (XTU), pozwalają na monitorowanie i dostosowanie parametrów pracy procesora w bezpieczny sposób. Warto również zauważyć, że niektóre procesory, oznaczone literami U lub Y, są zoptymalizowane pod kątem oszczędności energii i mobilności, co czyni je mniej odpowiednimi do podkręcania. Dlatego litera K w oznaczeniach procesorów Intel jest kluczowym wskaźnikiem dla tych, którzy pragną osiągnąć wyższą wydajność poprzez overclocking.

Pytanie 38

W systemie Linux dane dotyczące okresu ważności hasła są przechowywane w pliku

A. grub
B. passwd
C. shadow
D. bash
Odpowiedzi takie jak 'bash', 'grub' oraz 'passwd' są błędne, ponieważ nie odnoszą się do pliku przechowującego informacje o okresie ważności haseł w systemie Linux. Bash to interpreter powłoki, który służy do wykonywania poleceń i skryptów, ale nie ma żadnych funkcji związanych z zarządzaniem hasłami. Grub to bootloader, który inicjalizuje system operacyjny, również nie ma związku z zarządzaniem hasłami czy ich ważnością. Z kolei plik passwd, znajdujący się w /etc/passwd, zawiera podstawowe informacje o użytkownikach, takie jak identyfikator, grupa, oraz lokalizacja ich katalogów domowych, ale nie przechowuje informacji dotyczących atrybutów haseł. Często w praktyce błędne odpowiedzi wynikają z pomylenia tych pojęć lub braku zrozumienia, jak działa system przechowywania haseł w Linuxie. Warto zwrócić uwagę na to, że plik shadow jest kluczowym elementem zwiększającym bezpieczeństwo systemu, ponieważ ogranicza dostęp do wrażliwych danych, co jest zgodne z zasadami dobrych praktyk w zakresie bezpieczeństwa. Zaleca się, aby osoby zajmujące się administracją systemami Linux miały solidne zrozumienie różnicy między tymi plikami oraz ich rolą w zarządzaniu użytkownikami i bezpieczeństwem systemu.

Pytanie 39

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. zaciskania wtyków RJ45
B. weryfikacji poprawności połączenia
C. instalacji przewodów w złączach LSA
D. ściągania izolacji z przewodu
Narzędzie przedstawione na rysunku to narzędzie do instalacji przewodów w złączach LSA znane również jako narzędzie Krone. Jest ono powszechnie stosowane w telekomunikacji oraz instalacjach sieciowych do zakończenia przewodów w panelach krosowych lub gniazdach. Narzędzie to umożliwia wciśnięcie przewodów w złącza IDC (Insulation Displacement Connector) bez konieczności zdejmowania izolacji co zapewnia szybkie i niezawodne połączenie. Wciśnięcie przewodu powoduje przemieszczenie izolacji co skutkuje bezpośrednim kontaktem przewodnika z metalowymi stykami. Dzięki temu technologia LSA zapewnia trwałe i stabilne połączenia bez ryzyka uszkodzenia przewodów. Narzędzie to posiada również funkcję odcinania nadmiaru przewodu co jest istotne dla utrzymania porządku w stosowanych instalacjach. Stosowanie narzędzi LSA jest standardem w branży co wynika z ich precyzji oraz wydajności. Wielu specjalistów uznaje je za niezbędny element wyposażenia podczas pracy z systemami telekomunikacyjnymi co potwierdza ich niezastąpioną rolę w procesie instalacji.

Pytanie 40

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. dostarczenia zasilania po kablu U/UTP
B. regeneracji sygnału
C. rozdziału domen kolizji
D. monitorowania ruchu na porcie LAN
Urządzenie przedstawione na rysunku to tzw. injector PoE (Power over Ethernet). Jego główną funkcją jest dostarczanie zasilania do urządzeń sieciowych przez standardowy kabel Ethernet typu U/UTP. Technologia PoE jest szeroko stosowana w sieciach komputerowych, umożliwiając jednoczesne przesyłanie danych i energii elektrycznej do urządzeń takich jak punkty dostępowe WiFi kamery IP telefony VoIP czy urządzenia IoT. Standardy PoE definiują maksymalną moc, którą można przesłać kablem, co eliminuje potrzebę dodatkowych zasilaczy i kabli zasilających, upraszczając instalację i obniżając jej koszty. Istnieją różne standardy PoE takie jak 802.3af 802.3at (PoE+) oraz 802.3bt, które określają różne poziomy mocy. Zastosowanie PoE jest nie tylko praktyczne, ale także zwiększa elastyczność w rozmieszczaniu urządzeń sieciowych, ponieważ nie muszą one być zlokalizowane w pobliżu źródła zasilania. Injector PoE jest kluczowym elementem w wielu nowoczesnych infrastrukturach sieciowych, wspierając efektywność i skalowalność.