Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 października 2025 00:27
  • Data zakończenia: 21 października 2025 00:51

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być wciągane do osłon jako ostatnie
B. być wciągane do osłon jako pierwsze
C. być układane jak najdalej od przewodów silnoprądowych
D. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
Nieodpowiednie podejście do układania przewodów magistrali Profibus w bliskim sąsiedztwie przewodów silnoprądowych może prowadzić do wielu problemów. Przewody silnoprądowe, które są odpowiedzialne za przesyłanie wysokich prądów, generują znaczne pole elektromagnetyczne, które może wprowadzać zakłócenia do sygnałów przesyłanych w magistrali. W konsekwencji, sygnały z czujników i urządzeń pomiarowych mogą być zniekształcone, co wpływa na jakość i dokładność komunikacji w systemie. Zastosowanie nieodpowiednich praktyk, jak układanie przewodów Profibus w pobliżu kabli energetycznych, jest sprzeczne z normami określającymi wymagania dotyczące instalacji elektrycznych, takimi jak IEC 60364, które jednoznacznie zalecają minimalizowanie interakcji pomiędzy różnymi typami przewodów. Ponadto, umieszczanie przewodów magistrali jako ostatnich w osłonach jest niewłaściwe, ponieważ może to prowadzić do sytuacji, w której inne przewody mogą mechanicznie uszkodzić delikatne przewody Profibus. Tego typu błędy w planowaniu instalacji mogą prowadzić do poważnych problemów w późniejszej eksploatacji systemów, w tym częstych awarii, zwiększonych kosztów konserwacji i przestojów produkcyjnych. Dlatego istotne jest, aby stosować się do sprawdzonych praktyk i norm branżowych, aby zapewnić optymalne działanie całego układu. Właściwe układanie przewodów, zwłaszcza w kontekście ich oddalenia od źródeł zakłóceń, jest fundamentem niezawodności systemów automatyki przemysłowej.

Pytanie 3

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Odcinający
B. Zwrotny
C. Przelotowy
D. Rozdzielający
Wybór niewłaściwego zaworu wynika z nieporozumienia dotyczącego funkcji poszczególnych typów zaworów. Zawór rozdzielający nie zapewnia jednokierunkowego przepływu czynnika roboczego, lecz ma na celu kierowanie przepływu do różnych sekcji systemu. Używany jest w aplikacjach, gdzie konieczne jest przełączanie między różnymi obiegami, co czyni go nieodpowiednim w kontekście wymagania o przepływie tylko w jednym kierunku. Zawór odcinający, z kolei, służy do całkowitego zamykania lub otwierania przepływu, a nie do jego kontrolowania w określonym kierunku. W praktyce, zawory odcinające są istotne w sytuacjach, gdzie konieczne jest całkowite odcięcie zasilania do danej linii, jednak nie regulują one kierunku przepływu, co jest kluczowe w kontekście pytania. Zawór przelotowy, podobnie jak zawór odcinający, nie ogranicza przepływu do jednego kierunku, ale raczej umożliwia swobodny przepływ w obu kierunkach. Zrozumienie charakterystyki tych zaworów jest kluczowe dla prawidłowego projektowania i eksploatacji systemów hydraulicznych i pneumatycznych, aby uniknąć błędów, które mogą prowadzić do awarii systemu.

Pytanie 4

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. rozdzielające
B. odcinające
C. redukujące
D. dławiące
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 5

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Gęstość prądu elektrycznego
B. Indukcyjność przewodnika
C. Natężenie prądu elektrycznego
D. Rezystancja przewodnika
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Zgrzewania
B. Lutowania miękkiego
C. Lutowania twardego
D. Klejenia
Zgrzewanie, lutowanie miękkie i klejenie to techniki, które w kontekście łączenia stali nierdzewnej i mosiądzu nie są optymalne. Zgrzewanie polega na połączeniu materiałów poprzez ich miejscowe stopienie w wyniku działania wysokiej temperatury, co w przypadku różnych metali może prowadzić do problemów z różnicami w temperaturze topnienia i rozszerzalności cieplnej. W rezultacie, zgrzewanie stali nierdzewnej z mosiądzem może skutkować osłabieniem struktury materiału i powstaniem pęknięć. Lutowanie miękkie, z drugiej strony, wykorzystuje niższe temperatury i luty, które nie zapewniają wystarczającej wytrzymałości na połączenia między tymi dwoma metalami. Lutowane połączenia miękkie są mniej odporne na wysokie temperatury i obciążenia mechaniczne, co czyni je niewłaściwym wyborem dla zastosowań, gdzie wymagana jest trwałość. Klejenie, mimo że jest skuteczne w wielu aplikacjach, nie oferuje tej samej wytrzymałości strukturalnej jak metody lutownicze. Przekonanie, że klejenie może zastąpić tradycyjne metody łączenia metali, jest często błędne, szczególnie w sytuacjach, gdzie występują zmienne warunki środowiskowe. Warto zatem zrozumieć, że wybór metody łączenia powinien być dokładnie przemyślany, uwzględniając właściwości materiałów, wymagania dotyczące połączeń oraz specyfikę zastosowania.

Pytanie 9

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. ferromagnetyki
B. paramagnetyki
C. antyferromagnetyki
D. diamagnetyki
Antyferromagnetyki, paramagnetyki i diamagnetyki to materiały, które mają różne właściwości magnetyczne, ale nie są odpowiednie do zastosowań w rdzeniach magnetycznych transformatorów. Antyferromagnetyki charakteryzują się tym, że ich momenty magnetyczne są uporządkowane w przeciwnych kierunkach, co prowadzi do zminimalizowania całkowitego momentu magnetycznego. W praktyce oznacza to, że nie mogą one efektywnie wzmocnić pola magnetycznego, co jest kluczowe w transformatorach. Paramagnetyki wykazują jedynie słabe namagnesowanie w obecności pola magnetycznego i tracą je po jego zniknięciu, co czyni je mało użytecznymi. Z kolei diamagnetyki mają tendencję do odpychania pola magnetycznego, co również nie sprzyja ich wykorzystaniu w konstrukcji rdzeni transformatorowych. Wybór niewłaściwego materiału do produkcji rdzeni magnetycznych może prowadzić do znacznych strat energii oraz obniżenia sprawności urządzenia. Zrozumienie różnic między tymi materiałami jest kluczowe dla projektowania efektywnych systemów elektromagnetycznych, a pomyłki związane z ich właściwościami mogą skutkować nieoptymalnymi rozwiązaniami inżynieryjnymi.

Pytanie 10

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. buty na gumowej podeszwie
B. fartuch ochronny
C. kask ochronny
D. okulary ochronne
Fartuch ochronny, okulary ochronne oraz kask ochronny to elementy odzieży ochronnej o ważnym znaczeniu, jednak w kontekście pracy z urządzeniami pneumatycznymi wytwarzającymi drgania ich zastosowanie nie jest adekwatne do specyficznych zagrożeń. Fartuch ochronny ma na celu zabezpieczenie odzieży i ciała przed substancjami chemicznymi czy mechanicznymi uszkodzeniami, ale nie chroni dolnej części ciała ani nie wpływa na stabilność podczas pracy w środowisku, gdzie występują drgania. Okulary ochronne są niezwykle ważne w kontekście ochrony wzroku, zwłaszcza w przypadku ryzyka wystąpienia odłamków czy odprysków, jednak nie mają wpływu na ochronę przed drganiami. Kaski ochronne z kolei są niezbędne w sytuacjach zagrażających głowie, jak w przypadku pracy w pobliżu elementów mogących spaść, ale nie zabezpieczają przed skutkami wibracji. Stosowanie tych środków może prowadzić do błędnego przekonania, że zapewniają pełną ochronę w warunkach pracy z drganiami, co jest mylące. Kluczowe jest zrozumienie, że każda sytuacja robocza wymaga indywidualnej analizy ryzyk, a dobór środków ochronnych powinien być zgodny z zaleceniami dotyczącymi konkretnego rodzaju zagrożeń. W kontekście drgań, obuwie o odpowiedniej konstrukcji staje się najważniejszym elementem zabezpieczającym przed ich szkodliwym wpływem na organizm.

Pytanie 11

W przedstawionym na schemacie układzie sterowania siłownikiem jednostronnego działania tłoczysko siłownika powinno się wysuwać przy jednoczesnym naciśnięciu obu przycisków. Który zawór należy zamontować w układzie w miejscu oznaczonym symbolem X?

Ilustracja do pytania
A. Podwójnego sygnału.
B. Szybkiego spustu.
C. Dławiąco-zwrotny.
D. Przełącznik obiegu.
Zawór podwójnego sygnału jest kluczowym elementem w układzie sterowania siłowników jednostronnego działania, gdzie wymagana jest współpraca dwóch sygnałów sterujących. Główną funkcją tego zaworu jest umożliwienie przepływu medium tylko wówczas, gdy oba przyciski są naciśnięte, co jest niezbędne do prawidłowego wysunięcia tłoczyska siłownika. Takie rozwiązanie zapobiega przypadkowemu uruchomieniu siłownika, co mogłoby prowadzić do niebezpiecznych sytuacji. W praktyce zawory podwójnego sygnału są często wykorzystywane w aplikacjach automatyki przemysłowej, takich jak linie montażowe, gdzie zachowanie ścisłej kontroli nad procesem jest kluczowe. Standardy takie jak ISO 4414 dotyczące bezpieczeństwa w układach pneumatycznych podkreślają znaczenie prawidłowego doboru elementów sterujących, co w tym przypadku potwierdza zasadność wyboru zaworu podwójnego sygnału. Dzięki niemu osiągnięcie precyzyjnego i bezpiecznego działania systemu jest możliwe, co jest fundamentem nowoczesnych rozwiązań automatyzacyjnych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 7,5 V
B. 4,5 V
C. 3,0 V
D. 10,0 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 14

W procesie TIG stosuje się technikę spawania

A. łukiem plazmowym
B. elektrodą wolframową w osłonie argonowej
C. elektrodą topliwą w osłonie dwutlenku węgla
D. strumieniem elektronów
W metodzie TIG kluczowym elementem jest użycie elektrod wolframowych, co odróżnia ją od innych technik spawalniczych. Odpowiedź wskazująca na strumień elektronów odnosi się do spawania elektronowego, które działa na zupełnie innej zasadzie, gdzie wiązka elektronów jest kierowana na spawany materiał w próżni, co nie ma zastosowania w metodzie TIG. Ponadto, spawanie elektrodą topliwą w osłonie dwutlenku węgla odnosi się do metody MAG (Metal Active Gas), która również różni się zasadniczo od TIG, gdyż wykorzystuje elektrodę, która topnieje podczas procesu spawania. Łuk plazmowy to inna forma spawania, która stosuje plazmę do generowania wysokiej temperatury, ale również nie jest tożsama z metodą TIG. Wiele osób myli te metody ze względu na ich podobieństwa w użyciu gazu ochronnego, jednak różnice w zastosowaniu elektrod i mechanizmach spawania są kluczowe dla zrozumienia, która technika jest odpowiednia w danym kontekście. Niezrozumienie tych różnic prowadzi do błędnych wniosków i wyborów technologicznych, co może skutkować problemami z jakością spoin oraz efektywnością produkcji.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości
B. wibracji
C. ciepłoty
D. hałasów
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 23

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 3000 mm2
B. 1500 mm2
C. 1000 mm2
D. 2000 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności F<sub>u</sub> = η ∙ S ∙ p. Wstawiając znane wartości: F<sub>u</sub> = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = F<sub>u</sub> / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m<sup>2</sup>, co odpowiada 2000 mm<sup>2</sup>. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 24

Jakie pomiary należy przeprowadzić, aby zidentyfikować awarię w urządzeniu mechatronicznym, które uruchamia wyłącznik różnicowoprądowy w chwili włączenia zasilania?

A. Rezystancji izolacji
B. Ciągłości uzwojeń
C. Napięcia zasilania
D. Poboru prądu
Wykonanie pomiaru napięcia zasilania, choć istotne w diagnozowaniu układów elektrycznych, nie jest wystarczające do zlokalizowania przyczyny zadziałania wyłącznika różnicowoprądowego. Pomiar ten dostarcza informacji o dostępności zasilania, ale nie daje odpowiedzi na pytanie o stan izolacji czy potencjalne upływy prądu. Z kolei pomiar ciągłości uzwojeń jest również niewłaściwą metodą w kontekście zadziałania wyłącznika różnicowoprądowego, ponieważ dotyczy on jedynie sprawdzenia, czy obwody są zamknięte i nie ma przerw w przewodach. Ciągłość uzwojeń nie dostarcza informacji o stanie izolacji, przez co nie pozwala na identyfikację problemu związanego z upływem prądu. Pomiar poboru prądu, chociaż może wskazywać na obciążenie układu, nie identyfikuje problemów izolacyjnych, które są kluczowe dla działania wyłączników różnicowoprądowych. Często w praktyce technicy mogą mylić zjawisko zadziałania wyłącznika z innymi problemami, co prowadzi do nieefektywnych działań naprawczych. Dlatego tak ważne jest, aby zrozumieć, że diagnostyka oparta na rezystancji izolacji jest fundamentem w zapewnieniu bezpieczeństwa i niezawodności systemów mechatronicznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. skręcanego
B. powierzchniowego
C. zaciskowego
D. przewlekanego
Odpowiedzi, które wskazują na skręcanie, zaciskanie lub montaż powierzchniowy, są nieprawidłowe, ponieważ każda z tych metod różni się zasadniczo od technologii przewlekanego montażu. Skręcanie komponentów to technika, która znajduje zastosowanie w montażu mechanicznym, gdzie elementy są łączone za pomocą śrub lub nakrętek. W kontekście elektroniki, skręcanie może nie zapewniać wymaganej stabilności połączeń elektrycznych, a także jest mniej odpowiednie dla małych komponentów, które często wymagają niższej wagi oraz oszczędności miejsca. Zaciskowy montaż również nie odnosi się do THT; jest to technika używana w połączeniach takich jak złącza przewodowe, gdzie nie stosuje się lutowania. Montaż powierzchniowy (SMT) to nowocześniejsza technologia, w której komponenty są osadzane na powierzchni płytki, co powoduje zmniejszenie rozmiarów i zwiększenie gęstości montażu. Ta metoda ma swoje zastosowanie w wielu nowoczesnych urządzeniach, ale nie jest tożsama z przewlekanym montażem. Istotnym błędem myślowym jest mylenie tych technologii, co może prowadzić do nieprawidłowych założeń dotyczących trwałości, jakości i odpowiedniości technologii dla konkretnych zastosowań. Zrozumienie różnic pomiędzy tymi metodami jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i produkcją układów elektronicznych, aby zapewnić optymalizację procesu produkcji oraz jakości finalnych produktów.

Pytanie 29

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 2916 obr/min
B. 305 obr/min
C. 524 obr/min
D. 5487 obr/min
Często, jak wybiera się prędkość obrotową silnika, to można się zaplątać w zrozumieniu, jak moc, moment obrotowy i prędkość się ze sobą łączą. Wiesz, czasem ludzie myślą, że jak moment obrotowy jest większy, to automatycznie prędkość obrotowa też rośnie, a to nie do końca tak działa. Musisz pamiętać, że prędkość obrotowa i moment obrotowy mają odwrotną zależność: jak moc zostaje stała, to większy moment oznacza niższą prędkość i na odwrót. Jeszcze zdarza się, że ludzie mylą jednostki; na przykład, moc mamy w watach, a nie w niutonometrach, i to może prowadzić do różnych pomyłek. Tak samo z prędkością, jak się źle przelicza, to wychodzą błędy. Jeśli chodzi o inżynierię elektryczną i mechaniczną, to ważne jest, żeby stosować właściwe wzory i rozumieć, jak różne parametry wpływają na działanie silników. W praktyce, złe obliczenia mogą skutkować nieodpowiednim doborem części, co potem przekłada się na to, jak efektywnie działa cały system i jego trwałość w czasie.

Pytanie 30

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Rozwiercanie
B. Wiercenie
C. Wiercenie wtórne
D. Pogłębianie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. zamienić miejscami dwa dowolne fazowe przewody zasilające
B. obniżyć częstotliwość zasilania
C. podłączyć przewód neutralny
D. zwiększyć obciążenie
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.