Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 9 grudnia 2025 12:08
  • Data zakończenia: 9 grudnia 2025 12:18

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Głównym celem stabilizatora w systemie zawieszenia jest

A. ograniczenie przechyłów bocznych nadwozia
B. ograniczenie przechyłów wzdłużnych nadwozia
C. przymocowanie nadwozia do części układu zawieszenia
D. tłumienie drgań przekazywanych przez elementy zawieszenia
Często błędnie interpretuje się rolę stabilizatora, myląc go z innymi elementami układu zawieszenia. Zamocowanie nadwozia do elementów układu zawieszenia jest funkcją, którą spełniają sprężyny i amortyzatory, które są odpowiedzialne za tłumienie drgań i absorbują nierówności terenu. Stabilizator nie jest zaprojektowany do bezpośredniego zamocowania nadwozia, lecz do ograniczania przechyłów, a jego zadaniem jest harmonizacja pracy układu zawieszenia podczas manewrów. Tłumienie drgań przenoszonych przez elementy zawieszenia jest głównie domeną amortyzatorów, które mają za zadanie kontrolować ruchy sprężyn i eliminować niepożądane wibracje, co również wpływa na komfort podróżowania, jednak nie ma to bezpośredniego związku z rolą stabilizatora. Zmniejszenie przechyłów wzdłużnych nadwozia bardziej odnosi się do problematyki hamowania i przyspieszania, za co odpowiedzialne są inne elementy zawieszenia oraz geometria pojazdu. Nieznajomość tych różnic prowadzi do błędnych wniosków w zakresie funkcji stabilizatora, co może skutkować niewłaściwym doborem części zamiennych lub modyfikacji układu zawieszenia, wpływając tym samym na bezpieczeństwo i osiągi pojazdu.

Pytanie 2

Jakim urządzeniem dokonuje się pomiaru temperatury zamarzania cieczy chłodzącej?

A. multimetrem
B. pirometrem
C. wakuometrem
D. refraktometrem
Pomiar temperatury krzepnięcia cieczy chłodzącej przy użyciu wakuometru, multimetru lub pirometru jest niewłaściwy, ponieważ każdy z tych instrumentów ma zupełnie inne zastosowania i zasadę działania. Wakuometr jest narzędziem służącym do pomiaru ciśnienia w systemach próżniowych, a nie do oceny właściwości termicznych cieczy. Z kolei multimetr, przeznaczony do pomiaru napięcia, prądu i oporu, nie jest w stanie wykryć temperatury krzepnięcia cieczy, ponieważ nie jest zaprojektowany do pomiarów temperatury. Pirometr, który działa na zasadzie pomiaru promieniowania cieplnego, również nie nadaje się do oceny punktu krzepnięcia, gdyż nie mierzy temperatury cieczy w stanie stałym ani nie uwzględnia zmian w jej stanie skupienia. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi często wynikają z mylenia funkcji poszczególnych narzędzi pomiarowych oraz braku zrozumienia specyfiki pomiarów fizycznych. Dlatego kluczowe jest, aby przy wyborze metody pomiaru kierować się ich charakterystyką oraz właściwościami fizycznymi substancji, aby uzyskać dokładne i wiarygodne wyniki.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Na ilustracji przedstawiono silnik typu

Ilustracja do pytania
A. rzędowego.
B. dwusuwowego.
C. Wankla.
D. bokser.
Silnik Wankla, który znajduje się na ilustracji, jest unikalnym rodzajem silnika rotacyjnego, w którym wirnik porusza się w kształcie elipsy w obrębie statora. Jest to rozwiązanie, które zapewnia mniejsze wymiary i niższą masę w porównaniu do tradycyjnych silników tłokowych, takich jak bokser czy rzędowy. Silniki Wankla charakteryzują się również gładkim działaniem i wysoką mocą w stosunku do ich objętości, co sprawia, że są szeroko stosowane w branży motoryzacyjnej, na przykład w niektórych modelach Mazdy. Ponadto silniki te mają prostszą konstrukcję z mniejszą liczbą ruchomych części, co przekłada się na mniejsze zużycie materiałów i niższe koszty produkcji. Warto również zwrócić uwagę na problem emisji spalin, ponieważ silniki Wankla mają tendencję do większego spalania paliwa, co skutkuje wyższymi emisjami. Praktyczne zastosowanie tej technologii wymaga zatem zrozumienia jej zalet i wad oraz odpowiednich działań w zakresie ochrony środowiska.

Pytanie 5

Jakim przyrządem pomiarowym powinno się zastąpić badany czujnik ciśnienia oleju, aby potwierdzić jego prawidłowość działania?

A. Manometrem
B. Pirometrem
C. Barometrem
D. Refraktometrem
Manometr to odpowiedni przyrząd kontrolno-pomiarowy do weryfikacji wskazań czujnika ciśnienia oleju. Jego głównym zadaniem jest pomiar ciśnienia gazów lub cieczy, co czyni go idealnym narzędziem do oceny poprawności działania czujników ciśnienia. Manometry stosowane są w różnych dziedzinach, w tym w motoryzacji, hydraulice czy technologii procesowej. Standardowe manometry są kalibrowane zgodnie z normami takimi jak PN-EN 837-1, co zapewnia ich dokładność i niezawodność. W praktyce, jeśli manometr wskazuje wartości zgodne z danymi odczytanymi z czujnika, można uznać, że czujnik działa prawidłowo. W przypadku rozbieżności należy przeprowadzić dalsze analizy, aby ustalić, czy problem leży w czujniku, czy w manometrze. Dzięki manometrom możliwe jest także monitorowanie ciśnienia w systemach hydraulicznych, co jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Końcową obróbkę kół zębatych w przekładni głównej tylnego mostu realizuje się poprzez metodę

A. ugniatania
B. toczenia
C. honowania
D. szlifowania
Toczenie, honowanie oraz ugniatanie to metody obróbcze, które mogą być stosowane w różnych kontekstach, jednak nie są one odpowiednie do obróbki końcowej kół zębatych w przekładniach głównych. Toczenie jest procesem, który najczęściej stosuje się do obróbki cylindrycznych i stożkowych powierzchni, a jego zastosowanie do kół zębatych jest ograniczone, ponieważ nie pozwala na osiągnięcie wymaganej precyzji w kształtowaniu zębów. Z kolei honowanie, które polega na użyciu narzędzi z ruchomymi wkładkami ściernymi, jest stosowane głównie do poprawy jakości powierzchni otworów lub cylindrów, a nie do obróbki zębów kół zębatych. Natomiast ugniatanie, jako proces deformacji plastycznej, stosowane jest w produkcji elementów o dużej wytrzymałości, ale nie ma zastosowania w precyzyjnej obróbce zębów, która wymaga zachowania wymagań geometrii. Wybór niewłaściwej metody obróbczej często wynika z niedostatecznego zrozumienia specyfiki wymagań konstrukcyjnych oraz standardów jakości, co może prowadzić do problemów z trwałością i funkcjonalnością elementów mechanicznych.

Pytanie 8

Do specyfikacji technicznych i eksploatacyjnych pojazdu zaliczamy:

A. marka, typ napędu, koszty obsługi, przeznaczenie
B. awaryjność, cena, przebieg, parametry ruchowe
C. wymiary, masa, parametry ruchowe i ekonomiczne
D. pojemność, konstrukcja, pochodzenie, wpływ na środowisko
Wymiary, masa, parametry ruchowe i ekonomiczne są kluczowymi elementami techniczno-eksploatacyjnymi pojazdu, które wpływają na jego ogólną funkcjonalność oraz efektywność. Wymiary pojazdu, takie jak długość, szerokość i wysokość, determinują jego zdolność do poruszania się w różnych warunkach drogowych oraz przestrzennych. Masa pojazdu natomiast ma bezpośredni wpływ na zużycie paliwa, stabilność na drodze oraz bezpieczeństwo. Parametry ruchowe obejmują takie aspekty jak przyspieszenie, prędkość maksymalna oraz zdolność do pokonywania wzniesień, co jest istotne w kontekście wydajności pojazdu w różnych warunkach użytkowania. Ekonomiczne parametry, takie jak koszt eksploatacji, spalanie paliwa oraz koszty serwisowe, odgrywają kluczową rolę w wyborze odpowiedniego pojazdu dla użytkowników. W praktyce, zrozumienie tych parametrów pozwala na lepsze dopasowanie pojazdu do potrzeb użytkownika oraz optymalizację kosztów eksploatacji, co jest zgodne z najlepszymi praktykami branżowymi, jak np. normy ISO dla zarządzania flotą pojazdów.

Pytanie 9

Element przedstawiony na ilustracji jest częścią układu

Ilustracja do pytania
A. zapłonowego.
B. hamulcowego.
C. rozruchowego.
D. paliwowego.
Element przedstawiony na zdjęciu to pompa paliwa, kluczowy komponent układu paliwowego pojazdu. Pompa paliwa ma za zadanie transportować paliwo z baku do silnika, co jest fundamentalne dla zapewnienia jego prawidłowej pracy. W nowoczesnych pojazdach standardem jest używanie pomp elektrycznych, które charakteryzują się wysoką efektywnością i niezawodnością. Zgodnie z dobrymi praktykami, pompy paliwa powinny być regularnie sprawdzane, aby zapobiegać problemom z zasilaniem silnika, co może prowadzić do jego zgaśnięcia w trakcie jazdy. W przypadku awarii pompy, objawy mogą obejmować trudności w uruchomieniu silnika, spadki mocy oraz nierówną pracę jednostki napędowej. Ważne jest, aby mechanicy byli dobrze zaznajomieni z tym elementem, aby mogli szybko diagnozować i naprawiać ewentualne usterki. W kontekście standardów, stosowanie wysokiej jakości elementów i regularna konserwacja zapewniają długowieczność układu paliwowego.

Pytanie 10

Płyn o najwyższej temperaturze wrzenia to?

A. DOT 3
B. DA 1
C. DOT 4
D. R3
Prawidłowa odpowiedź to DOT 4, który jest płynem hamulcowym o najwyższej temperaturze wrzenia w porównaniu do innych wymienionych płynów. DOT 4 charakteryzuje się wyższą temperaturą wrzenia, wynoszącą zazwyczaj od 230 do 260°C w porównaniu do DOT 3, który ma temperaturę wrzenia od 205 do 230°C. W kontekście zastosowania płynów hamulcowych, wybór DOT 4 jest szczególnie istotny w samochodach sportowych oraz w pojazdach, które są narażone na intensywne hamowanie, ponieważ wyższa temperatura wrzenia minimalizuje ryzyko zjawiska wrzenia płynu hamulcowego, co może prowadzić do utraty skuteczności hamowania. Zgodnie z normami SAE i DOT, wybór odpowiedniego płynu powinien być zgodny z wymaganiami producenta pojazdu, co zapewnia bezpieczeństwo i efektywność systemu hamulcowego. Dodatkowo, DOT 4 jest bardziej odporny na wchłanianie wilgoci, co przekłada się na dłuższą żywotność i stabilność chemiczną.

Pytanie 11

Aby uzupełnić poziom płynu w systemie hamulcowym, należy zastosować płyn oznaczony symbolem

A. ŁT4
B. 40W10
C. DOT
D. 30W10
Prawidłowa odpowiedź to DOT, co odnosi się do standardu klasyfikacji płynów hamulcowych. Płyny te są klasyfikowane na podstawie temperatury wrzenia oraz właściwości chemicznych. DOT (Department of Transportation) to oznaczenie stosowane w Stanach Zjednoczonych, które wskazuje, że dany płyn spełnia wymagania określone w normach dotyczących wydajności i bezpieczeństwa. Płyny hamulcowe oznaczone jako DOT są dostępne w różnych klasach, takich jak DOT 3, DOT 4 i DOT 5.1, które różnią się między sobą temperaturą wrzenia oraz odpornością na wilgoć. W praktyce, używanie odpowiedniego płynu hamulcowego jest kluczowe dla zapewnienia optymalnej wydajności układu hamulcowego, a także bezpieczeństwa pojazdu. Na przykład, podczas wymiany płynu hamulcowego w samochodzie, zaleca się stosowanie płynu zgodnego z odpornością materiałów uszczelniających w układzie. Przykładowo, wiele nowoczesnych systemów hamulcowych, zwłaszcza w pojazdach sportowych, wymaga płynów klasy DOT 4 lub DOT 5.1 ze względu na ich wyższą temperaturę wrzenia.

Pytanie 12

Który płyn eksploatacyjny oznaczany jest symbolem 10W/40?

A. Płyn chłodzący do silnika
B. Płyn do hamulców
C. Olej silnikowy
D. Płyn do spryskiwaczy
Odpowiedź, że płyn eksploatacyjny oznaczany symbolem 10W/40 to olej silnikowy, jest poprawna. Symbol 10W/40 odnosi się do klasy lepkości oleju silnikowego, podlegającej normom SAE (Society of Automotive Engineers). Liczba '10W' wskazuje na lepkość oleju w niskich temperaturach (W oznacza 'winter'), co oznacza, że olej zachowuje odpowiednią płynność w zimnych warunkach, co jest kluczowe przy uruchamianiu silnika w niskich temperaturach. Druga liczba '40' odnosi się do lepkości w wysokich temperaturach, co czyni olej odpowiednim do użycia w wyższych temperaturach roboczych silnika. Dzięki tym właściwościom, olej 10W/40 zapewnia odpowiednią ochronę silnika, zmniejsza tarcie i zużycie komponentów, a także minimalizuje ryzyko przegrzania. Jest to jeden z najczęściej stosowanych rodzajów olejów silnikowych, szczególnie w pojazdach osobowych oraz dostawczych, co wynika z ich uniwersalności i efektywności w szerokim zakresie warunków eksploatacyjnych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Na rysunku przedstawiono przyrząd używany do

Ilustracja do pytania
A. zablokowania mechanizmu rozrządu.
B. demontażu łożysk alternatora.
C. demontażu zaworów.
D. montażu i demontaż tłoczków hamulcowych.
Odpowiedź dotycząca montażu i demontażu tłoczków hamulcowych jest poprawna, ponieważ przyrząd na zdjęciu jest typowym narzędziem stosowanym w warsztatach samochodowych do tej właśnie czynności. Tłoczki hamulcowe są kluczowym elementem układu hamulcowego, a ich prawidłowa obsługa jest niezbędna dla zapewnienia bezpieczeństwa jazdy. Przyrząd ten, dzięki swojej konstrukcji z ruchomymi ramionami, umożliwia łatwe i skuteczne wypychanie oraz wciąganie tłoczków, co jest szczególnie ważne podczas wymiany klocków hamulcowych. Użycie odpowiednich narzędzi w serwisie samochodowym ma na celu minimalizację ryzyka uszkodzenia elementów układu hamulcowego oraz przyspieszenie pracy. Zastosowanie tego narzędzia zgodnie z zaleceniami producenta i standardami branżowymi zapewnia nie tylko skuteczność, ale również bezpieczeństwo wykonywanych prac. Warto podkreślić, że nieodpowiedni montaż lub demontaż tłoczków hamulcowych może prowadzić do poważnych awarii hamulców, co stanowi zagrożenie dla kierowcy oraz innych uczestników ruchu drogowego.

Pytanie 15

Energia mechaniczna w silnikach cieplnych nie powstaje w wyniku procesu spalania

A. gazu ziemnego
B. oleju silnikowego
C. oleju napędowego
D. benzyny
Odpowiedzi takie jak "olej napędowy", "benzyna" oraz "gaz ziemny" mogą wprowadzać w błąd, gdyż sugerują, że to właśnie te paliwa są bezpośrednio odpowiedzialne za generowanie energii mechanicznej w silnikach cieplnych. W rzeczywistości są one źródłem energii, które przez proces spalania przekształcają chemiczną energię paliwa w energię mechaniczną. Jednakże olej napędowy i benzyna są specyficznymi rodzajami paliw stosowanych w silnikach spalinowych, a ich spalanie w silniku prowadzi do ruchu tłoków, który jest następnie konwertowany na energię mechaniczną. Gaz ziemny, jako paliwo gazowe, również wykorzystywany jest w silnikach spalinowych, jednak i w tym przypadku jego rola polega na dostarczaniu energii spalania. Istotnym błędem myślowym jest mylenie funkcji paliwa i oleju silnikowego. Olej silnikowy, jak wspomniano wcześniej, nie jest paliwem i nie uczestniczy w procesach energetycznych, lecz pełni funkcję smarną, co jest kluczowe dla optymalizacji pracy silnika oraz wydajności jego działania. Niepodważalnym standardem w branży jest podejście do smarowania jako nieodłącznego elementu zapewniającego długotrwałe i efektywne działanie silników, które muszą być odpowiednio eksploatowane z uwzględnieniem właściwych olejów oraz ich parametrów jakościowych.

Pytanie 16

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. typ konstrukcji osnowy opony
B. maksymalne dopuszczalne obciążenie (nośność opony)
C. maksymalną prędkość jazdy
D. średnicę opony
Odpowiedzi dotyczące dopuszczalnego obciążenia (nośności opony) oraz dopuszczalnej prędkości jazdy wskazują na typowe nieporozumienia związane z oznaczeniami opon. Nośność opony jest oznaczona przez odpowiedni indeks nośności, który w tym przypadku to '101'. Oznaczenie to precyzuje maksymalne obciążenie, jakie opona może przenieść przy określonym ciśnieniu powietrza. Z kolei dopuszczalna prędkość jazdy jest określona przez literę w oznaczeniu, która w tym przypadku to 'H', co oznacza, że opona jest przystosowana do jazdy z maksymalną prędkością do 210 km/h. Promień opony także nie jest oznaczony literą R; w rzeczywistości, rozmiar felgi, na której montowana jest opona, wyraża się w calach (17 w tym przypadku) i jest to bezpośrednio związane z wielkością opony. Typowe błędy myślowe wynikają z pomylenia oznaczeń i ich funkcji, co w konsekwencji prowadzi do nieprawidłowych wniosków. Dla prawidłowego doboru opon do pojazdu, ważne jest, aby kierowcy znali zarówno oznaczenia, jak i właściwości opon, co z kolei wpływa na bezpieczeństwo i komfort jazdy.

Pytanie 17

Który z poniższych elementów jest częścią układu dolotowego samochodu?

A. Bęben hamulcowy
B. Uszczelka miski olejowej
C. Sworzeń wahacza
D. Filtr powietrza
Filtr powietrza to kluczowy element układu dolotowego w samochodzie. Jego głównym zadaniem jest oczyszczanie powietrza zasysanego do silnika z zanieczyszczeń takich jak kurz, pyłki czy inne drobne cząsteczki. Dzięki temu chroni wnętrze silnika przed przedwczesnym zużyciem i uszkodzeniami. Filtr powietrza znajduje się zazwyczaj w obudowie filtra, która jest częścią układu dolotowego, i jest umiejscowiony przed przepustnicą. W praktyce, regularna wymiana filtra powietrza jest niezbędna do zapewnienia optymalnej pracy silnika oraz ekonomii spalania. Zaniedbanie tej czynności może prowadzić do zwiększonego zużycia paliwa, spadku mocy silnika oraz potencjalnych uszkodzeń mechanicznych. Współczesne samochody są wyposażone w różne typy filtrów powietrza, w tym papierowe, bawełniane czy piankowe, każdy z nich ma swoje specyficzne właściwości i wymagania serwisowe. Filtr powietrza spełnia także rolę w redukcji emisji szkodliwych związków do atmosfery, co jest zgodne z coraz bardziej restrykcyjnymi normami ekologicznymi na całym świecie.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podczas przeprowadzania próby drogowej zauważono, że pojazd samoczynnie skręca w lewą stronę. Aby ustalić przyczynę oraz ewentualny zakres naprawy, na początku należy

A. ocenić luzy w układzie kierowniczym
B. sprawdzić ustawienie kątów kół kierowanych
C. zweryfikować ciśnienie w oponach
D. wymienić opony na osi przedniej
Sprawdzenie ciśnienia w ogumieniu jest kluczowym krokiem w diagnozowaniu problemów z zachowaniem pojazdu na drodze. Niewłaściwe ciśnienie w oponach może prowadzić do asymetrycznego zużycia bieżnika, a także do niestabilności podczas jazdy, co może objawiać się samoczynnym zbaczaniem w lewą lub prawą stronę. Opony o niewłaściwym ciśnieniu działają nieefektywnie, co wpływa na kierowalność pojazdu i bezpieczeństwo jazdy. Zgodnie z zaleceniami producentów pojazdów, ciśnienie w oponach powinno być regularnie kontrolowane, najlepiej co miesiąc oraz przed dłuższymi podróżami. Przykładowo, niskie ciśnienie w lewych oponach może powodować ich szybsze zużycie, a także wpływać na geometrię jazdy, co z kolei prowadzi do trudności w utrzymaniu prostoliniowego toru jazdy. Warto również pamiętać, że ciśnienie opon powinno być dostosowane do obciążenia pojazdu oraz warunków atmosferycznych, co jest zgodne z najlepszymi praktykami w zakresie utrzymania pojazdów. W związku z tym, sprawdzenie ciśnienia w ogumieniu jako pierwsze działanie ma sens w kontekście diagnozowania problemów z kierowaniem pojazdem i powinno być traktowane jako standardowa procedura w trakcie przeglądów technicznych.

Pytanie 22

Klient zgłosił się do stacji obsługi pojazdów na przegląd techniczny swojego samochodu Po wykonaniu przeglądu wymieniono olej silnikowy, filtr oleju silnikowego, filtr paliwa, filtr powietrza, płyn hamulcowy oraz klocki hamulcowe przednie. Wszystkie płyny eksploatacyjne i części klient dostarczył we własnym zakresie. Pracownik stacji obsługi, na podstawie danych z tabeli, wystawił fakturę na sumę

Lp.Nazwa usługiCena
(brutto)
1przegląd techniczny pojazdu90,00 zł
2wymiana oleju przekładniowego, silnikowego20,00 zł
3wymiana przednich klocków hamulcowych60,00 zł
4wymiana tylnych klocków hamulcowych90,00 zł
5wymiana tarcz hamulcowych80,00 zł
6wymiana płynu hamulcowego30,00 zł
7wymiana płynu chłodzącego25,00 zł
8wymiana filtru kabinowego15,00 zł
10wymiana filtru paliwa lub oleju10,00 zł
11wymiana filtru powietrza15,00 zł
A. 145 zł
B. 235 zł
C. 175 zł
D. 265 zł
Wybierając odpowiedzi inne niż 235 zł, można natknąć się na kilka typowych pułapek myślowych. Często błędne wyliczenia wynikają z niepełnego uwzględnienia wszystkich elementów kosztowych związanych z przeglądem technicznym pojazdu. Na przykład, mniej doświadczone osoby mogą skupić się na jednym aspekcie usługi, takim jak wymiana oleju, a zignorować inne istotne elementy, takie jak wymiana filtrów czy klocków hamulcowych. Tego typu jednostronne podejście prowadzi do pominięcia całościowego obrazu kosztów, co może skutkować zaniżonymi kwotami. Warto również zauważyć, że niektóre osoby mogą pomylić ceny jednostkowe z cenami sumarycznymi, co może prowadzić do jeszcze większych rozbieżności. Dla przykładu, jeśli ktoś zsumuje tylko ceny filtrów lub oleju, ale pominie inne usługi, otrzyma kwoty znacznie niższe niż rzeczywiste. W tym kontekście kluczowe jest nie tylko dokładne zrozumienie wszystkich usług świadczonych podczas przeglądu, ale także umiejętność ich odpowiedniego zestawienia. Wyliczenia kosztów w serwisie samochodowym powinny być zawsze oparte na dokładnych danych i standardach branżowych, aby zminimalizować ryzyko błędów i nieporozumień.

Pytanie 23

Jakim narzędziem dokonuje się pomiaru średnicy cylindrów po zakończonej naprawie silnika?

A. mikrometra
B. średnicówki zegarowej
C. suwmiarki
D. średnicówki mikrometrycznej
Średnicówka zegarowa jest odpowiednim narzędziem do pomiaru średnicy cylindrów po przeprowadzonej naprawie silnika, ponieważ umożliwia uzyskanie bardzo precyzyjnych wyników pomiarowych. To narzędzie działa na zasadzie pomiaru przemieszczenia, gdzie wskazówka na tarczy pokazuje bezpośrednio wartość średnicy. Dzięki temu, średnicówki zegarowe są szczególnie przydatne w sytuacjach, gdzie wymagana jest wysoka dokładność, na przykład w przypadku silników, gdzie tolerancje średnicy cylindrów są kluczowe dla ich prawidłowego funkcjonowania. Przykładowo, przy naprawach silników spalinowych, pomiary średnic cylindrów są niezbędne do oceny stopnia zużycia oraz do dopasowania odpowiednich pierścieni tłokowych. W branży mechanicznej wprowadzenie dobrych praktyk pomiarowych, takich jak stosowanie średnicówek zegarowych, przyczynia się do poprawy jakości wykonywanych usług oraz zwiększenia żywotności naprawianych silników, co jest zgodne z normami ISO. Ponadto, użycie tego narzędzia pozwala na szybkie wykrycie ewentualnych nieprawidłowości w wymiarach, co jest kluczowe dla dalszych etapów naprawy i montażu.

Pytanie 24

Które z poniższych twierdzeń o samochodzie z automatyczną skrzynią biegów jest fałszywe?

A. Nie powinno się holować samochodu na długie odległości
B. Zużycie paliwa jest zazwyczaj trochę wyższe niż w modelu z manualną skrzynią biegów
C. Nie da się uruchomić pojazdu przez zaciągnięcie
D. W pojeździe można ręcznie zmieniać biegi
Tu sprawa z uruchamianiem pojazdu przez zaciągnięcie czy holowanie jest dość skomplikowana. Sporo osób myli automatyczne skrzynie z manualnymi, co prowadzi do pomyłek. W samochodach z automatem zwykle nie da się odpalić go przez zaciągnięcie, a to może uszkodzić hamulec postojowy. Holowanie też nie jest najlepszym pomysłem, bo może przegrzać skrzynię biegów. Lepiej korzystać ze specjalnych narzędzi do transportu takich aut. Co do paliwa, to niektórzy mogą być zaskoczeni, że automaty mogą zużywać więcej niż manuale. To dlatego, że automatyczne skrzynie, mimo że są zaawansowane, mają zwykle trochę większy opór, co wpływa na spalanie. Ważne, żeby znać te rzeczy, bo można łatwo popełnić błędy podczas użytkowania takich samochodów.

Pytanie 25

Aby zmierzyć bicie boczne tarczy sprzęgła, należy zastosować

A. diagnoskop.
B. czujnik zegarowy.
C. średnicówkę mikrometryczną.
D. mikrometr.
Czujnik zegarowy jest urządzeniem pomiarowym, które doskonale nadaje się do precyzyjnego określania bicia bocznego tarczy sprzęgła. Dzięki swojej budowie, czujnik zegarowy umożliwia dokładne pomiary małych odchyleń, co jest kluczowe dla zapewnienia prawidłowej pracy komponentów mechanicznych. Przykładowo, w procesie ustawiania sprzęgła w pojazdach, czujnik zegarowy pozwala na szybkie i dokładne określenie, czy tarcza jest zainstalowana prawidłowo, co w konsekwencji wpływa na efektywność przenoszenia momentu obrotowego. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne sprawdzanie bicia bocznego tarczy sprzęgła z wykorzystaniem czujnika zegarowego jest zalecane, aby zminimalizować ryzyko awarii i przedłużyć żywotność elementów układu napędowego. Należy również zwrócić uwagę na kalibrację czujnika, aby zapewnić jego dokładność oraz wiarygodność odczytów, co jest niezbędne w kontekście diagnostyki pojazdów.

Pytanie 26

Zawodnienie płynu hamulcowego na poziomie 4%

A. istotnie zwiększa jego temperaturę wrzenia.
B. istotnie obniża jego temperaturę wrzenia.
C. praktycznie nie wpływa na jego właściwości.
D. jest typowe po około 6 miesiącach użytkowania.
Wiele osób sądzi, że niewielkie zawodnienie płynu hamulcowego nie wpływa istotnie na jego właściwości, co jest mylne. Negowanie wpływu 4% zawartości wody w płynie hamulcowym jest niepoprawne, ponieważ woda znacząco obniża temperaturę wrzenia płynu, co może mieć katastrofalne skutki dla bezpieczeństwa jazdy. Przykładem może być sytuacja, gdy kierowca hamuje intensywnie w warunkach górskich lub na torze wyścigowym, gdzie temperatura płynu może wzrosnąć do niebezpiecznych poziomów. W takich warunkach, płyn hamulcowy o obniżonej temperaturze wrzenia może wrzeć, co prowadzi do powstania pęcherzyków pary i utraty ciśnienia w układzie hamulcowym. Kolejnym błędnym przekonaniem jest myślenie, że 4% zawodnienia jest normalne po sześciu miesiącach eksploatacji. W rzeczywistości, producenci zalecają regularną wymianę płynu hamulcowego co dwa lata lub wcześniej, jeśli jego stan nie spełnia norm. Ignorowanie tego zalecenia może prowadzić do tragicznych w skutkach wypadków. Prawidłowe postrzeganie roli płynu hamulcowego i jego właściwości jest kluczowe dla bezpieczeństwa pojazdu na drodze, dlatego ważne jest, aby użytkownicy byli świadomi, jak niewielkie zmiany w składzie płynu mogą wpływać na funkcjonalność układu hamulcowego.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie narzędzie należy zastosować do pomiaru średnicy czopów wału korbowego?

A. przymiaru kreskowego
B. czujnika zegarowego
C. śruby mikrometrycznej
D. suwmiarki o dokładności 0,1 mm
Suwmiarka, choć powszechnie używana, nie gwarantuje takiej samej precyzji jak śruba mikrometryczna. Jej dokładność wynosi zazwyczaj około 0,1 mm, co w wielu zastosowaniach jest wystarczające, lecz w kontekście pomiarów średnicy czopów wału korbowego, gdzie wymagana jest większa precyzja, może okazać się niewystarczająca. Ponadto, podczas pomiarów suwmiarką istnieje ryzyko błędów wynikających z niewłaściwego ułożenia narzędzia względem mierzonego obiektu. Czujnik zegarowy, z drugiej strony, jest narzędziem stosowanym do pomiarów względnych i służy głównie do oceny tolerancji oraz oceny zużycia, a nie do precyzyjnego pomiaru średnic. Jego zastosowanie w tym kontekście mogłoby prowadzić do błędnych interpretacji danych. Przymiar kreskowy to narzędzie, które, choć może być użyteczne w pomiarze długości, nie jest odpowiednie w przypadku pomiarów średnic, gdzie precyzja jest kluczowa. Użycie błędnych narzędzi pomiarowych, takich jak suwmiarka czy przymiar kreskowy, może prowadzić do błędów w konstrukcji i negatywnie wpłynąć na jakość finalnego produktu. Ważne jest, aby zrozumieć, że precyzyjne pomiary są fundamentem inżynierii, a wybór odpowiednich narzędzi ma kluczowe znaczenie dla sukcesu w tym obszarze.

Pytanie 29

Omomierz można zastosować do weryfikacji czujnika

A. manometrycznego
B. zegara
C. położenia przepustnicy
D. Halla
Zegarowy, czujnik Halla oraz manometryczny to różne rodzaje czujników, które pełnią inne funkcje i nie są odpowiednie do pomiaru położenia przepustnicy. Czujnik zegarowy służy do pomiaru czasu lub częstotliwości zdarzeń, co jest zupełnie inną dziedziną niż monitorowanie położenia elementów silnika. Z kolei czujnik Halla jest wykorzystywany do detekcji pól magnetycznych i ma zastosowanie np. w systemach zapłonowych lub do pomiaru prędkości obrotowej, natomiast nie nadaje się do bezpośredniego pomiaru kątów otwarcia przepustnicy. Czujnik manometryczny, z drugiej strony, jest stosowany do pomiaru ciśnienia gazów lub cieczy, a więc również nie jest właściwym narzędziem do oceny położenia przepustnicy. Wybór odpowiedniego czujnika jest kluczowy dla uzyskania rzetelnych danych, a mylenie ich funkcji może prowadzić do błędnych wniosków diagnostycznych. Często występującym błędem jest zakładanie, że każdy czujnik może być użyty zamiennie, co jest niezgodne z zasadami inżynierii i diagnostyki pojazdów. Dlatego ważne jest, aby mieć świadomość specyfiki każdego czujnika oraz jego zastosowania w kontekście układów elektronicznych pojazdu.

Pytanie 30

Na rysunku strzałkami oznaczono miejsca pomiaru

Ilustracja do pytania
A. luzu układu tłok-cylinder.
B. szczelności cylindra.
C. zużycia tulei cylindrowej.
D. skoku tłoka w cylindrze.
Odpowiedzi, które dotyczą luzu układu tłok-cylinder, skoku tłoka w cylindrze oraz szczelności cylindra, nie odnoszą się bezpośrednio do kontekstu pomiarów zużycia tulei cylindrowej. Luz układu tłok-cylinder to pojęcie związane z tolerancją pomiędzy tłokiem a cylindrem, które ma znaczenie w kontekście wydajności silnika, ale nie jest to bezpośrednia miara zużycia samej tulei. Często pomiar luzu może być mylony z pomiarem zużycia, co prowadzi do błędnych wniosków o stanie części. Skok tłoka to parametr określający, jak daleko tłok porusza się w cylindrze podczas pracy silnika, i nie ma wpływu na pomiar zużycia tulei, ponieważ odnosi się do ruchu tłoka, a nie jego kontaktu z tuleją. Podobnie, szczelność cylindra jest istotnym parametrem, który dotyczy zdolności cylindra do utrzymania ciśnienia, jednak, aby ocenić szczelność, należy zastosować inne metody pomiarowe, takie jak próby ciśnieniowe. Te koncepcje są istotne dla ogólnego zrozumienia działania silnika, lecz nie dotyczą bezpośrednio metod i miejsc pomiaru zużycia tulei cylindrowej, co prowadzi do potencjalnych nieporozumień w ocenie stanu technicznego silnika.

Pytanie 31

Diagnostyka organoleptyczna opiera się na

A. połączeniu z diagnoskopem
B. użyciu zmysłów
C. przeprowadzeniu samodzielnej diagnozy
D. wykorzystaniu określonych narzędzi
Nieprawidłowe odpowiedzi wskazują na pewne nieporozumienia dotyczące organoleptycznej metody diagnostyki. Podłączenie diagnoskopu, wykonanie samodiagnozy czy zastosowanie specjalnych narzędzi sugerują, że diagnostyka opiera się głównie na technologii lub narzędziach, co jest mylne. Organoleptyczna diagnostyka skupia się przede wszystkim na subiektywnych odczuciach i interpretacji zmysłowych, co czyni ją bardziej osobistym i intuicyjnym procesem. Dobrze przeszkolony specjalista potrafi wykorzystać swoje zmysły w ocenie jakości i stanu produktu, co jest nieosiągalne przy użyciu tylko narzędzi czy urządzeń. Wiele standardów branżowych, takich jak normy ISO, podkreśla znaczenie oceny sensorycznej w procesie kontroli jakości, wskazując, że nie można polegać jedynie na metodach technologicznych, które mogą nie uwzględniać subtelnych różnic w jakości czy smakach. Często przy podejmowaniu decyzji o jakości produktów zapomina się o tym, że zmysły są niezastąpione w ocenie subiektywnych cech, jak smak czy zapach, które nie mogą być dokładnie zmierzone przez instrumenty. W związku z tym, kluczowe jest, aby zrozumieć, że organoleptyczne metody diagnostyki uzupełniają, a nie zastępują techniki oparte na instrumentach, co powinno być istotnym elementem w każdej strategii zapewnienia jakości.

Pytanie 32

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze od następnego wymiaru naprawczego, należy ją poddać regeneracji poprzez

A. azotowanie
B. roztaczanie
C. nawęglanie
D. hartowanie
Hartowanie, nawęglanie oraz azotowanie to procesy obróbcze, które mają na celu zmianę właściwości materiałów, a nie ich wymiarów. Hartowanie jest procesem cieplnym, który zwiększa twardość stali poprzez szybkie schładzanie z wysokiej temperatury. Choć może to poprawić odporność na zużycie, nie wpływa na wymiar gładzi tulei cylindrowej. Z kolei nawęglanie to proces, który polega na wprowadzeniu węgla do powierzchni stali w wysokotemperaturowym środowisku. To podejście ma na celu zwiększenie twardości powierzchni przez utworzenie twardych warstw, jednakże nie ma zastosowania w przypadku regeneracji zużytych gładzi. Azotowanie, z drugiej strony, jest procesem, w którym azot jest wprowadzany w strukturę stali, co prowadzi do zwiększenia twardości i odporności na korozję. Pomimo że wszystkie te procesy są ważne w kontekście obróbki materiałów, ich zastosowanie w regeneracji gładzi tulei cylindrowej jest niewłaściwe. W przypadku zużycia materiału najważniejsze jest przywrócenie odpowiednich wymiarów, co osiąga się jedynie poprzez mechaniczne usunięcie materiału, a nie poprzez zmianę jego struktury chemicznej. Użytkownicy często mylą te procesy, ponieważ wszystkie mają na celu poprawę właściwości mechanicznych, ale kluczowe jest zrozumienie, że każdy z nich ma swoje specyficzne zastosowanie i nie można ich stosować zamiennie w kontekście regeneracji wymiarów. Właściwa interpretacja wymagań przetwarzania materiałów jest kluczowa dla dalszego rozwoju technologii regeneracyjnych i ich efektywności.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby odczytać kod błędu pojazdu z systemem OBDII / EOBD, konieczne jest użycie

A. oscyloskopu
B. diagnoskopu
C. spektrofotometru
D. woltomierza
Odpowiedź "diagnoskopu" jest poprawna, ponieważ diagnoskop to specjalistyczne urządzenie służące do komunikacji z systemem OBDII/EOBD, które jest standardem diagnostyki w nowoczesnych pojazdach. OBDII (On-Board Diagnostics II) to system monitorujący stan najważniejszych podzespołów samochodu, a także kontrolujący emisję spalin. Umożliwia on odczytanie kodów błędów, które są generowane przez komputer pokładowy w przypadku wystąpienia problemów z silnikiem lub innymi istotnymi komponentami. W praktyce użycie diagnoskopu pozwala mechanikom szybko zidentyfikować źródło problemu, co prowadzi do efektywniejszej diagnostyki i naprawy pojazdu. Przykładowo, w przypadku, gdy kontrolka silnika zaświeci się na desce rozdzielczej, diagnoskop umożliwi odczytanie kodu błędu, co pozwoli na szybkie podjęcie działań naprawczych. Stosowanie diagnoskopów jest zgodne z najlepszymi praktykami branżowymi, ponieważ przyspiesza proces diagnostyki i poprawia jakość usług serwisowych, redukując jednocześnie koszty naprawy.

Pytanie 35

Wskaźnik temperatury chłodziwa w trakcie jazdy samochodem pokazał wartość przekraczającą 110 °C (czerwone pole). Co to oznacza?

A. może świadczyć o awarii klimatyzacji
B. może wskazywać na uszkodzenie układu chłodzenia
C. może sugerować niski poziom oleju
D. może być oznaką zatarcia silnika
Błędne odpowiedzi można analizować z różnych perspektyw technicznych. Awaria układu klimatyzacji nie ma bezpośredniego związku z temperaturą płynu chłodzącego silnika. Układ klimatyzacji, mimo że wpływa na komfort jazdy, działa niezależnie i nie wpływa na temperaturę silnika w sposób, który mógłby spowodować wskazanie 110 °C. Z kolei niska ilość oleju silnikowego wpływa na smarowanie mechanizmów, ale nie jest bezpośrednio związana z temperaturą płynu chłodzącego. Niski poziom oleju może prowadzić do zatarcia silnika, ale to zjawisko jest wynikiem słabego smarowania, a nie bezpośredniego przegrzewania. Zatarcie silnika, mimo że jest poważnym problemem, jest skutkiem niewłaściwego smarowania lub niewłaściwego użytkowania, a nie efektem działania układu chłodzenia. Wysoka temperatura płynu chłodzącego jest zawsze symptomem problemów z chłodzeniem, co czyni tę odpowiedź najodpowiedniejszą. Typowym błędem myślowym jest mylenie symptomów z przyczynami oraz ignorowanie rzeczywistych mechanizmów działania układów samochodowych. Kluczowe jest zrozumienie, że układ chłodzenia jest integralny dla utrzymania silnika w optymalnej temperaturze roboczej, a wszelkie odchylenia powinny być traktowane jako poważne ostrzeżenie.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który z poniższych elementów służy do redukcji wibracji w układzie zawieszenia?

A. Wahacz
B. Sworzeń kulowy
C. Półosie napędowe
D. Amortyzator
Sworzeń kulowy, choć jest istotnym elementem układu zawieszenia, nie pełni funkcji tłumienia wibracji. Jego głównym zadaniem jest umożliwienie ruchomego połączenia między różnymi częściami zawieszenia, co pozwala na płynne obracanie i zmianę kąta ustawienia kół. Błędem byłoby oczekiwanie, że element ten wpłynie na komfort jazdy w sposób, w jaki robi to amortyzator. Wahacz, z kolei, jest elementem, który łączy koło z nadwoziem pojazdu, zapewniając odpowiedni ruch koła względem karoserii. Choć wahacze są kluczowe dla prawidłowego funkcjonowania zawieszenia, ich rola skupia się na kontrolowaniu geometrii zawieszenia, a nie na tłumieniu drgań. Półosie napędowe są odpowiedzialne za przenoszenie mocy z silnika na koła, co jest zupełnie inną funkcją niż redukcja wibracji w zawieszeniu. Często mylone są z elementami zawieszenia ze względu na umiejscowienie, jednak ich rola jest związana z napędem, a nie z komfortem jazdy. Typowym błędem jest przypisywanie im funkcji amortyzujących, co wynika z braku zrozumienia ich podstawowego zadania w układzie przeniesienia napędu. Właściwe rozróżnienie funkcji poszczególnych komponentów zawieszenia jest kluczowe dla prawidłowej diagnozy problemów i efektywnej naprawy pojazdów samochodowych.

Pytanie 38

Przed przeprowadzeniem diagnostyki silnika pojazdu przy użyciu analizatora spalin, należy

A. uzupełnić zbiornik paliwa.
B. schłodzić silnik.
C. podnieść temperaturę silnika do wartości eksploatacyjnej.
D. dodać olej silnikowy do maksymalnego poziomu.
Rozgrzewanie silnika do temperatury eksploatacyjnej przed wykonaniem diagnostyki silnika przy użyciu analizatora spalin jest kluczowym etapem, który ma na celu uzyskanie dokładnych i wiarygodnych wyników pomiarów. Silniki spalinowe osiągają optymalną efektywność pracy oraz odpowiednie parametry spalin dopiero po osiągnięciu właściwej temperatury roboczej. W tej temperaturze wszystkie komponenty silnika, w tym systemy wtryskowe i katalizatory, działają w optymalny sposób, co pozwala na zminimalizowanie błędów pomiarowych. Dobrą praktyką jest również przeprowadzenie diagnostyki po pewnym czasie pracy silnika na biegu jałowym, co umożliwia stabilizację parametrów. Na przykład, podczas diagnostyki pojazdu osobowego, który przeszedł dłuższą jazdę, można zauważyć znaczące różnice w składzie spalin w porównaniu z pomiarami przy zimnym silniku. Warto zwrócić uwagę, że wiele instrukcji obsługi producentów zaleca konkretne procedury rozgrzewania silnika, co podkreśla znaczenie tego kroku w kontekście diagnostyki i redukcji emisji szkodliwych substancji.

Pytanie 39

Zanim przystąpisz do badania spalin, powinieneś podgrzać silnik, aby temperatura oleju w misie olejowej wyniosła około

A. 30 °C
B. 90 °C
C. 70 °C
D. 50 °C
Wybierając temperaturę 50 °C, można uznać, że silnik nie był odpowiednio rozgrzany do analizy spalin. Taka temperatura jest zbyt niska, aby zapewnić pełne smarowanie oleju, co wpływa na wyniki pomiarów. W rzeczywistości, przy zbyt niskiej temperaturze, olej silnikowy nie osiąga swojej optymalnej lepkości, co może prowadzić do nieprawidłowego funkcjonowania silnika i zafałszowanych pomiarów. Z kolei 30 °C jest jeszcze bardziej niewłaściwą wartością, ponieważ w tej temperaturze silnik może być wciąż w fazie rozgrzewania. Takie podejście nie spełnia standardów wymaganych do rzetelnej analizy emisji spalin, w tym norm Euro, które wskazują na konieczność przeprowadzenia testów w odpowiednich temperaturach. Z kolei wybór 90 °C, mimo że zbliżony do optymalnych warunków pracy silnika, jest zbyt wysoki na początek analizy spalin. W tej temperaturze ryzykujemy przegrzanie silnika i zjawiska mogące wpłynąć na wyniki, takie jak zmiana charakterystyki spalania czy uszkodzenie komponentów. Dlatego kluczowe jest, aby rozumieć, że odpowiednia temperatura 70 °C nie tylko zapewnia dokładność pomiarów, ale także bezpieczeństwo podczas analizy, co jest niezbędne w procesach diagnostycznych i przestrzeganiu norm środowiskowych.

Pytanie 40

Jaki łączny koszt poniesiemy na wymianę świec zapłonowych w pojeździe z silnikiem sześciocylindrowym, jeśli cena jednej świecy wynosi 20,00 zł, a wymiana powinna zająć 45 minut, przy stawce jednego roboczogodziny równiej 120,00 zł?

A. 240,00 zł
B. 170,00 zł
C. 210,00 zł
D. 120,00 zł
Całkowity koszt wymiany świec zapłonowych w samochodzie z silnikiem sześciocylindrowym wynosi 210,00 zł, co jest wynikiem dokładnego obliczenia zarówno kosztu materiałów, jak i robocizny. Koszt jednej świecy zapłonowej wynosi 20,00 zł, a w silniku sześciocylindrowym potrzeba sześciu świec, co daje 20,00 zł x 6 = 120,00 zł za same świece. Dodatkowo, czas wymiany świec szacowany na 45 minut obliczamy w kontekście stawki robocizny. Ponieważ 45 minut to 0,75 godziny, koszt robocizny wynosi 120,00 zł (stawka za godzinę) x 0,75 = 90,00 zł. Zatem całkowity koszt wymiany świec zapłonowych to 120,00 zł (świece) + 90,00 zł (robocizna) = 210,00 zł. W kontekście praktycznym, regularna wymiana świec zapłonowych jest kluczowa dla utrzymania efektywności silnika, co wpływa na jego wydajność i zużycie paliwa. Zgodnie z zaleceniami producentów, wymianę świec należy przeprowadzać co określoną liczbę kilometrów lub co pewien czas, co przyczynia się do dłuższej żywotności silnika.