Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 17 grudnia 2025 12:57
  • Data zakończenia: 17 grudnia 2025 13:00

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie połączenia rozłączne wykorzystuje się przy montażu rur?

A. Skręcane
B. Lutowane
C. Klejone
D. Zgrzewane
Połączenia skręcane to jeden z najczęściej wybieranych sposobów łączenia rur w montażu. Są naprawdę fajne, bo można je szybko zamontować i rozmontować bez większych problemów. Z tego, co widziałem, to te połączenia działają dzięki gwintom, co sprawia, że wszystko trzyma się mocno i da się łatwo rozłączyć, kiedy trzeba coś naprawić. Przede wszystkim, są super w hydraulice i pneumatyce, gdzie często coś trzeba wymieniać. W budownictwie i przemyśle korzysta się z nich do łączenia rur stalowych, mosiężnych i innych materiałów, co jest zgodne z normami, takimi jak PN-EN 10220 i PN-EN 15001. Naprawdę, te połączenia są niezawodne, zwłaszcza tam, gdzie jest wysokie ciśnienie. To czyni je świetnym wyborem w aplikacjach, które są bardziej krytyczne, jak systemy chłodnicze czy przemysł naftowy.

Pytanie 2

Który zabieg przedstawiono na rysunku?

Ilustracja do pytania
A. Piłowanie płaszczyzn.
B. Ścinanie ręczne płaszczyzn.
C. Prostowanie blach.
D. Przerzynanie ręczne.
Odpowiedź "Piłowanie płaszczyzn" jest trafna, bo w rysunku widać jak się posługuje pilnikiem. Ta technika ma na celu stworzenie gładkich i prostych powierzchni, czy to w metalu, czy w drewnie. Ważne jest, żeby materiał był dobrze zamocowany, czego przykładem jest materiał w imadle, który jest pokazany na rysunku. Użycie pilnika do usuwania zbędnego materiału to standard w obróbce skrawaniem. W obszarze metalurgii piłowanie płaszczyzn to istotny krok, który pozwala uzyskać precyzyjne wymiary i jakość powierzchni. Co więcej, różne gradacje pilników pozwalają dopasować obróbkę do potrzeb projektu. Można to wykorzystać do przygotowania części do dalszej obróbki lub do poprawy wyglądu finalnego produktu.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Tuleję konika na przedstawionej ilustracji oznaczono cyfrą

Ilustracja do pytania
A. 3
B. 4
C. 1
D. 2
Tuleja konika, oznaczona cyfrą 1 na ilustracji, jest kluczowym elementem w narzędziach skrawających, który umożliwia szybkie i efektywne mocowanie wierteł czy rozwiertaków. Tuleja ta działa na zasadzie mechanizmu chwytnika, który pozwala na precyzyjne osadzenie narzędzia oraz jego stabilizację podczas obróbki materiałów. Jest to istotne, ponieważ niewłaściwe mocowanie narzędzi może prowadzić do nieprecyzyjnych otworów lub nawet uszkodzenia samego narzędzia. W branży obróbczej stosuje się różne standardy dotyczące mocowania narzędzi, a tuleje konika są projektowane z uwzględnieniem tych norm. Dobrze zaprojektowane tuleje konika zapewniają nie tylko łatwość w wymianie narzędzi, ale także bezpieczeństwo podczas pracy. Prawidłowe zrozumienie funkcji tulei konika jest niezbędne dla każdego operatora maszyn CNC, co może znacząco wpłynąć na efektywność i jakość produkcji.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W której obrabiarce znajduje się stół krzyżowy?

A. Wtryskarki dźwigniowej
B. Wytłaczarki planetarnej
C. Frezarki wspornikowej
D. Piły taśmowej pionowej
Frezarka wspornikowa to maszyna, która wykorzystuje stół krzyżowy do precyzyjnego ustawiania obrabianego materiału w dwóch osiach - poziomej i pionowej. Stół krzyżowy, wyposażony w prowadnice, umożliwia dokładne przesuwanie detalu, co jest niezbędne w procesach frezowania, gdzie precyzja i powtarzalność są kluczowe. W frezarkach wspornikowych stół krzyżowy współpracuje z narzędziem skrawającym, co pozwala na wykonanie skomplikowanych kształtów i detali. Przykładowo, w przemyśle metalowym, frezarki wspornikowe używane są do produkcji elementów maszyn, gdzie wymagane są dokładne tolerancje wymiarowe. Ponadto, stół krzyżowy w tych obrabiarkach często posiada możliwość mocowania dodatkowych akcesoriów, co zwiększa wszechstronność maszyny i jej zdolność do obróbki różnych materiałów. Standardy przemysłowe, jak ISO 9001, podkreślają znaczenie precyzyjnych procesów obróbczych, co czyni frezarki wspornikowe odpowiednimi narzędziami w spełnianiu tych wymagań.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie połączenia charakteryzują się dużą elastycznością deformacyjną oraz zdolnością do powrotu do pierwotnej formy?

A. Nitowanie.
B. Guma.
C. Roztłaczanie.
D. Klejenie.
Odpowiedź "gumowe" jest prawidłowa, ponieważ materiały gumowe charakteryzują się wyjątkowymi właściwościami elastycznymi, które umożliwiają im odkształcanie się pod wpływem sił zewnętrznych, a następnie powracanie do pierwotnego kształtu po ich usunięciu. Te właściwości sprawiają, że gumowe połączenia są często stosowane w aplikacjach wymagających amortyzacji, takich jak uszczelki, podeszwy obuwia czy elementy zawieszenia pojazdów, gdzie potrzebna jest zdolność do absorpcji drgań i wstrząsów. W branży budowlanej oraz motoryzacyjnej stosuje się materiały gumowe także w produkcji wibracyjnych i elastycznych połączeń, które są w stanie wytrzymać znaczne obciążenia, jednocześnie nie ulegając deformacji. Dodatkowo, normy takie jak ISO 14001 i BS 9001 podkreślają znaczenie elastyczności materiałów w projektowaniu komponentów, co sprzyja ich długowieczności oraz efektywności energetycznej.

Pytanie 9

Aby zamocować wiertło przedstawione na ilustracji we wrzecionie wiertarki, należy zastosować

Ilustracja do pytania
A. uchwyt 3-szczękowy.
B. trzpień drążony.
C. tuleję redukcyjną.
D. oprawkę wiertarską.
Tuleja redukcyjna to element, który umożliwia dostosowanie średnicy trzpienia wiertła do uchwytu wiertarki, co jest szczególnie istotne w przypadku wierteł o nietypowych średnicach. Użycie tulei redukcyjnej pozwala na stabilne zamocowanie wiertła, co z kolei przekłada się na bezpieczeństwo i precyzję pracy. W profesjonalnym rzemiośle, gdzie wykorzystywane są różne średnice wierteł, tuleje redukcyjne są niezbędnym akcesorium, które umożliwia optymalne wykorzystanie narzędzi wiertarskich. Dobrze dobrana tuleja nie tylko zapewnia właściwe dopasowanie, ale także minimalizuje drgania, które mogą wpływać na jakość wiercenia oraz żywotność zarówno wiertła, jak i wrzeciona. W sytuacjach, gdy wiertło nie pasuje do standardowego uchwytu, zastosowanie tulei redukcyjnej jest standardem, który zapewnia efektywność oraz bezpieczeństwo prowadzonych prac. Warto również zaznaczyć, że przy doborze tulei redukcyjnej należy kierować się jej parametrami technicznymi, które powinny być zgodne z wymaganiami używanej wiertarki oraz rodzaju obrabianego materiału.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Na rysunku pokazano proces wykonywania gwintów z zastosowaniem

Ilustracja do pytania
A. walcowania.
B. przeciągania.
C. toczenia.
D. frezowania.
Odpowiedź "frezowania" jest poprawna, ponieważ ten proces obróbczy idealnie nadaje się do wykonywania gwintów. Frezowanie polega na usuwaniu materiału z obrabianego przedmiotu za pomocą narzędzia z wieloma krawędziami skrawającymi. W przypadku gwintów, narzędzia frezarskie są specjalnie zaprojektowane do kształtowania gwintów o określonym profilu, co pozwala na uzyskanie precyzyjnych wymiarów oraz wysokiej jakości powierzchni. Przykładem zastosowania frezowania w produkcji gwintów jest wytwarzanie elementów, takich jak śruby czy nakrętki, które wymagają dużej dokładności. Proces ten jest zgodny z najlepszymi praktykami przemysłowymi, ponieważ zapewnia dużą efektywność oraz możliwość obróbki różnych materiałów, od stali po tworzywa sztuczne. Warto także zauważyć, że frezowanie pozwala na łatwe dostosowywanie parametrów obróbczych, co czyni je elastycznym rozwiązaniem w warsztatach obróbczych.

Pytanie 13

W trakcie trasowania niektórych produktów walcowych jako podstawy wykorzystuje się

A. kątownik
B. cyrkiel
C. liniał
D. pryzmę
Pryzma jest kluczowym elementem w procesie trasowania wyrobów walcowych, ponieważ zapewnia stabilność i dokładność podczas wykonywania pomiarów oraz cięcia. Jest to szczególnie ważne, gdy mamy do czynienia z wyrobami o dużych średnicach i niewielkich długościach, gdzie precyzja i równoległość są istotne dla końcowej jakości produktu. Pryzmy są często stosowane w warsztatach mechanicznych oraz przemysłowych, jako podstawki do precyzyjnego ustawienia obrabianych elementów, co pozwala na uzyskanie doskonałych tolerancji wymiarowych. Dobrą praktyką jest również stosowanie pryzm wykonanych z materiałów o wysokiej twardości, które minimalizują ryzyko deformacji w trakcie pracy. W standardach branżowych, takich jak ISO 2768, podkreśla się znaczenie precyzyjnego ustawienia elementów w procesie obróbki, co czyni pryzmy niezastąpionym narzędziem w każdym warsztacie. Używanie pryzm w trasowaniu wyrobów walcowych zwiększa efektywność i jakość pracy, co jest kluczowe w kontekście nowoczesnych metod produkcyjnych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Rysunek przedstawia element stosowany w połączeniu

Ilustracja do pytania
A. śrubowym.
B. kołkowym.
C. kołnierzowym.
D. wpustowym.
Poprawna odpowiedź to "wpustowym", ponieważ na rysunku przedstawiony jest element wpustu, który jest kluczowy w połączeniach wpustowych. Wpusty to elementy mechaniczne, które umożliwiają przenoszenie momentu obrotowego z wału na piastę, co jest istotne w wielu zastosowaniach inżynieryjnych, takich jak silniki, przekładnie czy systemy przeniesienia napędu. Ich charakterystyczny kształt prostokątny z zaokrąglonymi końcami zapewnia odpowiednie dopasowanie i minimalizuje ryzyko wystąpienia luzów, co z kolei zwiększa efektywność przenoszenia mocy. W praktyce wpusty są szeroko stosowane w budowie maszyn, co jest zgodne z normami ISO 8765, które określają standardy dla tych elementów. Właściwe zastosowanie wpustów zapewnia nie tylko efektywność, ale także bezpieczeństwo operacyjne, eliminując możliwość niekontrolowanego poślizgu elementów połączenia. Dlatego wiedza na temat wpustów oraz ich właściwości jest niezbędna dla inżynierów i projektantów.

Pytanie 16

Do wykonania wycięcia w metalowym kolanku wykonanym z blachy 0,5 mm, jak na ilustracji należy użyć wiertła oraz

Ilustracja do pytania
A. skrobaka.
B. nożyc ręcznych.
C. prasy ręcznej.
D. przecinaka.
Nożyce ręczne to narzędzie, które jest idealne do precyzyjnego cięcia cienkiej blachy, jak w przypadku blachy o grubości 0,5 mm. Ich konstrukcja umożliwia wygodne trzymanie i kontrolowanie siły cięcia, co jest kluczowe, aby uniknąć zniekształceń materiału. W branży metalowej, gdzie precyzja jest niezbędna, nożyce ręczne są powszechnie stosowane do wycinania kształtów i otworów w blachach. Dobre praktyki przewidują, aby podczas cięcia materiału nie używać zbyt dużej siły, co może skutkować uszkodzeniem blachy. Zamiast tego, warto prowadzić ruchy cięcia w sposób płynny i kontrolowany, co zwiększa jakość wykonania i estetykę cięcia. Warto również wspomnieć, że nożyce ręczne są bardziej mobilne i mogą być używane w różnych warunkach roboczych, co czyni je bardziej praktycznym narzędziem w codziennej pracy. Dlatego też, wybór nożyc ręcznych do wycięcia w blachy 0,5 mm, jak przedstawiono na ilustracji, jest uzasadniony i zgodny z najlepszymi praktykami branżowymi.

Pytanie 17

Jakiego surowca należy użyć, aby w łatwy sposób połączyć rury podczas lutowania?

A. Miedź
B. Stal
C. Staliwo
D. Żeliwo
Miedź to naprawdę super materiał do lutowania! Ma świetną przewodność cieplną, więc wszystko działa jak powinno. W branży hydraulicznej i przy instalacjach sanitarno-grzewczych lutowanie miedzi to norma. Łączenie jej z użyciem lutowia, które topnieje poniżej 450°C, daje trwałe i szczelne połączenia. Proces lutowania miedzi jest też dość szybki, co przydaje się w przemyśle. A jak wiadomo, miedź jest odporna na korozję, więc nadaje się idealnie do systemów wodociągowych. Pamiętaj tylko, że żeby wszystko zadziałało, trzeba odpowiednio przygotować powierzchnię – odpalać ją trzeba, użyć dobrego topnika, żeby lepiej się trzymało. Przykładem, gdzie lutowanie miedzi sprawdza się świetnie, jest montaż rur w instalacjach grzewczych. Tu ważne, żeby połączenia były szczelne, bo to klucz do efektywności całego systemu.

Pytanie 18

Jakie narzędzie jest używane do wykonywania otworów na prasie mimośrodowej?

A. wykrojnik
B. nóż tokarski
C. wiertło lufowe
D. frez
Wykrojnik to narzędzie specjalistyczne używane do wykonywania otworów w materiałach, które charakteryzują się wysoką precyzją i powtarzalnością. Jest to narzędzie o stałym kształcie, które działa na zasadzie wycinania materiału z podłoża, co czyni je idealnym do produkcji seryjnej. Wykrojniki są najczęściej stosowane w procesach takich jak tłoczenie, gdzie materiał jest umieszczany pomiędzy wykrojnikiem a matrycą. W przypadku prasy mimośrodowej, wykrojnik jest umieszczany w ruchomym ramieniu, które, poprzez swoje działanie mimośrodowe, generuje dużą siłę niezbędną do przecinania. Przykłady zastosowań wykrojników obejmują przemysł motoryzacyjny, gdzie wykorzystywane są do produkcji blach karoserii oraz w branży elektronicznej, gdzie precyzyjne otwory są kluczowe dla montażu podzespołów. Wykrojniki spełniają normy branżowe dotyczące jakości i precyzji, co czyni je niezastąpionym narzędziem w nowoczesnym przemyśle produkcyjnym.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Rozwiercanie stosuje się w celu

A. poprawy precyzji wymiarowej otworów po procesie wiercenia
B. zwiększenia szorstkości powierzchni otworów wierconych
C. umożliwienia wykorzystania docieraków płaskich w otworach
D. zmniejszenia precyzji wymiarowej otworów nawiercanych
Rozwiercanie to zaawansowany proces obróbczy, który ma na celu poprawę dokładności wymiarowej otworów po wcześniejszym wierceniu. Technika ta polega na używaniu narzędzi o odpowiedniej geometrii, które umożliwiają precyzyjne usunięcie materiału, co przekłada się na osiągnięcie wymaganych tolerancji wymiarowych. W praktyce, rozwiercanie jest często stosowane w produkcji komponentów, gdzie kluczowe są dokładne wymiary, na przykład w branży motoryzacyjnej, lotniczej czy w przemyśle maszynowym. Dzięki rozwiercaniu, otwory mogą być doprowadzone do bardzo wąskich tolerancji, co jest niezbędne w aplikacjach wymagających dużej precyzji, takich jak montaż elementów z dużą dokładnością. Dodatkowo, proces ten wpływa pozytywnie na jakość powierzchni otworów, co zwiększa ich trwałość i funkcjonalność. Stosując rozwiercanie, inżynierowie mogą zapewnić, że komponenty będą działać zgodnie z wymaganiami norm ISO oraz innych standardów branżowych, co w dłuższej perspektywie prowadzi do zmniejszenia kosztów produkcji i poprawy efektywności operacyjnej.

Pytanie 21

W trakcie spawania gazowego używana jest mieszanina

A. acetylenu i helu
B. acetylenu i tlenu
C. argonu i acetylenu
D. azotu i tlenu
Podczas spawania gazowego wykorzystuje się mieszaninę acetylenu i tlenu, co wynika z unikalnych właściwości chemicznych tej kombinacji. Acetylen, jako gaz palny, charakteryzuje się najwyższą temperaturą płomienia spośród wszystkich gazów spawalniczych, osiągając temperatury do 3200°C w atmosferze tlenu. Taki wysoki stopień ciepłoty jest kluczowy w procesach spawania, gdyż pozwala na skuteczne łączenie metali o różnych właściwościach. W praktyce, spawanie gazowe acetylenu i tlenu jest szeroko stosowane w branży metalowej, w tym w spawaniu stali węglowej, stali nierdzewnej czy miedzi. Zastosowanie tej mieszanki jest zgodne z normami bezpieczeństwa i najlepszymi praktykami w spawalnictwie, co sprawia, że jest to metoda zarówno efektywna, jak i bezpieczna, gdyż odpowiednie techniki i sprzęt mogą zminimalizować ryzyko pożaru oraz eksplozji. Warto również zauważyć, że spawanie gazowe z wykorzystaniem acetylenu i tlenu często towarzyszy innym technikom, takim jak cięcie gazowe, co dodatkowo podkreśla jego wszechstronność w przemyśle.

Pytanie 22

Tępa krawędź narzędzi skrawających prowadzi do

A. wzrostu zużycia energii elektrycznej przez obrabiarkę
B. podniesienia wydajności obrabiarek tradycyjnych
C. obniżenia kosztów jednostkowych produkcji
D. redukcji ilości dostarczanego płynu chłodzącego do narzędzia
Stępienie ostrzy narzędzi skrawających wpływa na zwiększone zużycie energii elektrycznej przez obrabiarkę, ponieważ narzędzia o tępych ostrzach wymagają większej siły do skrawania materiału. W praktyce oznacza to, że przy takim narzędziu wzrasta opór podczas obróbki, co prowadzi do większego obciążenia silnika obrabiarki. W wyniku tego silnik musi pracować bardziej intensywnie, co przekłada się na wyższe zużycie energii. Dobrym przykładem są operacje frezowania, gdzie ze stępionym narzędziem może występować nie tylko większe zużycie energii, ale także gorsza jakość obrabianego detalu. Standardy branżowe wskazują, że regularne ostrzenie narzędzi skrawających jest kluczowe dla zachowania efektywności energetycznej oraz jakości produkcji. Ponadto, użycie narzędzi w dobrym stanie pozwala na optymalizację dużych kosztów operacyjnych, co jest szczególnie istotne w długoterminowych procesach produkcyjnych.

Pytanie 23

Do czego służy proces elektrodrążenia?

A. Aplikacja powłok antykorozyjnych
B. Pokrywanie powierzchni farbą
C. Łączenie elementów metalowych
D. Obróbka materiałów trudnoskrawalnych
Proces elektrodrążenia jest zaawansowaną technologią obróbki materiałów, która polega na usuwaniu materiału za pomocą wyładowań elektrycznych. Jest szczególnie przydatna w przypadku materiałów trudnoskrawalnych, takich jak stopy tytanu, węgliki spiekane czy stal hartowana, które są wyjątkowo odporne na tradycyjne metody obróbki mechanicznej. Proces ten umożliwia precyzyjne kształtowanie i wykańczanie elementów, które są trudne do obróbki innymi metodami. Elektrodrążenie jest szeroko stosowane w przemyśle narzędziowym do wykonania form wtryskowych, matryc, a także w przemyśle lotniczym i motoryzacyjnym. Dzięki możliwości uzyskania skomplikowanych kształtów oraz wysokiej dokładności wymiarowej, elektrodrążenie staje się niezastąpionym procesem w produkcji komponentów o wysokiej jakości. Technologia ta wykorzystuje właściwości erozyjne wyładowań elektrycznych, co pozwala na obróbkę bez bezpośredniego kontaktu narzędzia z materiałem, eliminując przy tym naprężenia mechaniczne. Jest to zgodne ze standardami przemysłowymi, które wymagają wysokiej precyzji oraz dbałości o jakość powierzchni obrabianych elementów.

Pytanie 24

Co oznacza skrót DTR?

A. dodatkowy tryb działania
B. tryb pracy rotacyjnej
C. Discrete Track Recording
D. Dokumentację Techniczno-Ruchową
Skrót DTR, który oznacza Dokumentację Techniczno-Ruchową, jest kluczowy w kontekście zarządzania infrastrukturą techniczną, szczególnie w branży transportowej oraz energetycznej. Dokumentacja ta zawiera szczegółowe informacje dotyczące technicznych aspektów funkcjonowania danego obiektu, obejmując specyfikacje techniczne, instrukcje obsługi, schematy oraz procedury eksploatacyjne. Przykładowo, w przypadku infrastruktury kolejowej, DTR jest niezbędna dla zapewnienia bezpieczeństwa operacji, pozwalając na właściwe zarządzanie ruchem oraz konserwację urządzeń. Dobre praktyki wymagają, aby DTR była aktualizowana regularnie, co pozwala na szybsze reagowanie na zmiany w systemie czy też wprowadzenie nowych technologii. Trzeba również pamiętać, że posiadanie odpowiedniej dokumentacji technicznej jest często wymogiem prawnym, co czyni ją nie tylko użytecznym narzędziem, ale także elementem zgodności z regulacjami branżowymi.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie są metody naprawy uszkodzonej śruby?

A. Spawanie z częściowo zerwanym łbem
B. Złączenie kołkiem uszkodzonych elementów
C. Wymiana na nową
D. Skrócenie o długość usuniętej części
Wymiana zerwanej śruby na nową jest najbardziej zalecaną metodą naprawy, ponieważ zapewnia pełną integralność strukturalną połączenia. Nowa śruba gwarantuje odpowiednią twardość i właściwości materiałowe, które mogą być nieosiągalne w przypadku prób naprawy uszkodzonej śruby. Na przykład, w przemyśle motoryzacyjnym stosowanie nowych śrub podczas montażu silnika jest kluczowe dla bezpieczeństwa i niezawodności pojazdu. Wiele norm i standardów, takich jak ISO 898-1 dotyczący mechanicznych właściwości śrub, podkreśla znaczenie stosowania komponentów spełniających ściśle określone parametry. W przypadku konstrukcji, takich jak maszyny, użycie nowej śruby minimalizuje ryzyko awarii, co jest szczególnie ważne w zastosowaniach, gdzie bezpieczeństwo i wydajność są priorytetami. Warto również dodać, że wymiana śruby powinna być przeprowadzana z uwzględnieniem odpowiednich momentów dokręcania i materiałów, aby uniknąć przyszłych problemów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Zdejmowanie ciągadła z ciągarki prowadzi do

A. ograniczenia ilości wiórów w procesie ciągnienia
B. zwiększenia dokładności wymiarowej elementów ciągnionych
C. niedokładności wymiarowych w elementach ciągnionych
D. poprawy odprowadzania powstającego ciepła
Wytarcie ciągadła ciągarki prowadzi do niedokładności wymiarowych w elementach ciągnionych, ponieważ ciągadło odgrywa kluczową rolę w procesie ciągnienia. W przypadku zużycia lub niewłaściwego ustawienia ciągadła, może dojść do odkształceń, co z kolei wpływa na geometrię i wymiarowanie końcowego produktu. Przykładowo, w branży przetwórstwa metali, dokładność wymiarowa jest niezwykle istotna, aby zapewnić odpowiednią pasowność elementów w dalszych etapach produkcji. Warto zwrócić uwagę na standardy ISO 2768 dotyczące tolerancji wymiarowych, które wskazują na konieczność zachowania odpowiednich marginesów tolerancji podczas obróbki. Regularne sprawdzanie i konserwacja ciągadła są kluczowe, aby zminimalizować ryzyko niedokładności. Praktyczne zastosowanie tej wiedzy polega na wprowadzeniu planów konserwacyjnych i monitorowaniu stanu technicznego maszyn, co pozwala zredukować koszty związane z reklamacji i poprawić efektywność produkcji.

Pytanie 29

Regeneracja elementów maszyn, która polega na pokryciu ich powierzchni metalową warstwą w procesie elektrolitycznym, to

A. malowanie proszkowe
B. metalizacja natryskowa
C. pokrywanie galwaniczne
D. elektroliza metali
Pokrywanie galwaniczne to technika regeneracji części maszyn, która polega na osadzaniu metalowego pokrycia na powierzchni elementów za pomocą procesu elektrolitycznego. W tej metodzie, przedmiot uruchamiany jest jako katoda w kąpieli elektrolitycznej, co pozwala na osadzanie metalu (najczęściej miedzi, niklu lub chromu) z roztworu. Dzięki temu uzyskuje się idealnie gładką i odporną na korozję powierzchnię, co jest kluczowe w wielu zastosowaniach przemysłowych. Przykłady zastosowania pokrywania galwanicznego obejmują elementy w przemyśle motoryzacyjnym, gdzie regeneracja części silników czy elementów układów hamulcowych jest niezwykle istotna dla zachowania ich funkcjonalności i wydajności. Metoda ta jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją uznaną techniką w branży. Warto również zauważyć, że pokrywanie galwaniczne pozwala na naprawę części, co jest bardziej ekonomiczne i ekologiczne niż ich wymiana na nowe.

Pytanie 30

Którego surowca nie wykorzystuje się w łożyskach ślizgowych?

A. Stopu aluminium
B. Wolframu
C. Boksytu
D. Stopu cyny
Boksyt, będący naturalnym minerałem aluminium, nie jest materiałem stosowanym w łożyskach ślizgowych ze względu na swoje właściwości fizyczne i chemiczne. Łożyska ślizgowe wymagają materiałów o wysokiej odporności na ścieranie, niskim współczynniku tarcia oraz dobrej odporności na obciążenia. Stop aluminium i stop cyny są powszechnie stosowane w przemyśle ze względu na ich dobre właściwości mechaniczne oraz niską gęstość, co przekłada się na lepsze osiągi w aplikacjach łożyskowych. Wolfram, z kolei, jest materiałem o wysokiej twardości i odporności na wysokie temperatury, co czyni go użytecznym w aplikacjach wymagających dużej niezawodności. W przypadku boksytu jego struktura i właściwości nie są przystosowane do pracy w łożyskach, co może prowadzić do szybkiego zużycia oraz awarii, co jest sprzeczne z zasadami projektowania efektywnych systemów łożyskowych.

Pytanie 31

Obróbkę wykańczającą powierzchni podstawy czujnika wskazaną strzałką na rysunku wykonano w operacji

Ilustracja do pytania
A. nagniatania.
B. przeciągania.
C. piłowania.
D. szlifowania.
Szlifowanie to kluczowy proces obróbczy, który ma na celu uzyskanie wysokiej jakości wykończenia powierzchni. W kontekście podstawy czujnika, obróbka ta jest szczególnie istotna, ponieważ czujniki wymagają dużej precyzji oraz gładkości powierzchni dla optymalnego funkcjonowania. Szlifowanie pozwala na usunięcie niewielkich nierówności i zadrapań, co jest niezbędne dla dokładnych pomiarów. W praktyce, szlifowanie wykorzystuje się w wielu gałęziach przemysłu, takich jak motoryzacja, elektronika czy mechanika precyzyjna. Standardy dotyczące szlifowania, takie jak ISO 1302, podkreślają znaczenie precyzyjnych tolerancji oraz jakości powierzchni, co wpływa na właściwości użytkowe podzespołów. Warto zauważyć, że szlifowanie różni się od innych metod obróbczych, takich jak piłowanie, które dąży do szybkiego usunięcia materiału, a nie do uzyskania gładkiej powierzchni. Umiejętne zastosowanie szlifowania przyczynia się do wydłużenia żywotności komponentów i ich niezawodności w działaniu.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Wosk jako materiał używany do wytwarzania modelu znajduje zastosowanie w procesie odlewania

A. ciągłego
B. ciśnieniowego
C. odśrodkowego
D. precyzyjnego
Wosk jest materiałem, który jest szeroko stosowany w metodzie odlewania precyzyjnego ze względu na swoje unikalne właściwości. Odlewanie precyzyjne, znane również jako odlewanie na wosk tracony, polega na wykonaniu formy z wosku, która następnie zostaje pokryta warstwą materiału ceramicznego lub metalowego. Po utwardzeniu formy, wosk jest podgrzewany i usuwany, co pozostawia precyzyjny odlew w formie. Tego rodzaju technika jest niezwykle przydatna w branżach takich jak jubilerstwo, medycyna oraz przemysł lotniczy, gdzie wymagana jest wysoka jakość detali oraz doskonałe wykończenia. Wosk, dzięki swojej łatwej obróbce i możliwości uzyskania skomplikowanych kształtów, pozwala na tworzenie modeli, które są wiernym odwzorowaniem zamierzonych detali. Standardy, takie jak ISO 9001, podkreślają znaczenie precyzji w procesach produkcyjnych, co czyni tę metodę wyjątkowo wartościową.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Na podstawie rysunku wskaż wynik pomiaru wykonanego za pomocą suwmiarki warsztatowej.

Ilustracja do pytania
A. 36,10 mm
B. 80,10 mm
C. 41,00 mm
D. 53,05 mm
Dobra robota, poprawna odpowiedź to 41,00 mm. Odczyt suwmiarki to w zasadzie dwie rzeczy: główna skala i noniusz. Główna skala mówi nam o 4 cm, co daje 40 mm, a noniusz dodaje jeszcze 1 mm, czyli razem mamy 41 mm. Umiejętność odczytywania suwmiarki jest naprawdę ważna w różnych branżach, na przykład w mechanice czy inżynierii. Precyzyjne pomiary są kluczowe, bo wpływają na jakość produktów, które tworzymy. Suwmiarka dzięki różnym funkcjom pozwala na dokładne mierzenie długości i różnych wymiarów wewnętrznych i zewnętrznych. Z mojego doświadczenia, dobrym pomysłem jest regularne kalibrowanie narzędzi pomiarowych, żeby mieć pewność, że są dokładne i niezawodne, zwłaszcza kiedy chodzi o normy ISO 9001, które mówią o jakości.

Pytanie 36

Do wykonania wycięcia w metalowym kolanku wykonanym z blachy 0,5 mm, jak na rysunku należy użyć wiertła oraz

Ilustracja do pytania
A. przecinaka.
B. skrobaka.
C. nożyc ręcznych.
D. prasy ręcznej.
Nożyce ręczne są narzędziem idealnym do cięcia cienkich blach, takich jak ta o grubości 0,5 mm, z której wykonane jest metalowe kolanko. Użycie nożyc ręcznych umożliwia precyzyjne cięcie, co jest kluczowe w pracach blacharskich, gdzie dokładność jest niezbędna. Dzięki ich konstrukcji, użytkownik może łatwo kontrolować siłę cięcia oraz kierunek, co pozwala na zachowanie integralności materiału. W praktyce, nożyce ręczne minimalizują ryzyko powstawania ostrych krawędzi, które mogą prowadzić do uszkodzeń zarówno materiału, jak i narzędzi. Przykładem zastosowania nożyc ręcznych może być przygotowanie elementów do spawania, gdzie wymagana jest dokładność i czystość cięcia. Stosowanie tych narzędzi jest zgodne z branżowymi standardami, które zalecają użycie odpowiednich narzędzi do cięcia w zależności od grubości materiału, aby zapewnić wysoką jakość pracy i bezpieczeństwo użytkownika.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Obróbkę wykańczającą powierzchni podstawy czujnika wskazaną strzałką na ilustracji wykonano w operacji

Ilustracja do pytania
A. przeciągania.
B. piłowania.
C. nagniatania.
D. szlifowania.
Szlifowanie jest procesem obróbki, który polega na usuwaniu materiału z powierzchni przy użyciu narzędzi ściernych, co pozwala na uzyskanie wysokiej precyzji wymiarowej oraz gładkości powierzchni. W kontekście podstawy czujnika, zastosowanie szlifowania umożliwia osiągnięcie wymaganych standardów jakości, co jest kluczowe w aplikacjach, gdzie dokładność pomiarów jest kluczowa. W branży inżynieryjnej, zwłaszcza w produkcji precyzyjnych komponentów elektronicznych i mechanicznych, szlifowanie jest powszechnie stosowane w celu zapewnienia odpowiedniego wykończenia powierzchni. Na przykład, w produkcji czujników temperatura czy ciśnienia, precyzyjne wykończenie jest niezbędne do zapewnienia właściwego działania urządzenia. Warto również zaznaczyć, że dobre praktyki szlifowania obejmują dobór odpowiednich materiałów ściernych oraz parametrów procesu, co wpływa na efektywność obróbki oraz jakość końcową produktu.

Pytanie 39

Tuleję konika na przedstawionym rysunku oznaczono numerem

Ilustracja do pytania
A. 4
B. 2
C. 3
D. 1
Odpowiedź 1 jest dobra, bo odnosi się do tulei konika, a to ważny element w tokarkach. Tuleja konika jest najbliżej wrzeciona i ma za zadanie trzymać narzędzia tokarskie. W obróbce skrawaniem, jak wiadomo, odpowiednie ustawienie narzędzi ma ogromne znaczenie, jeśli chodzi o jakość i precyzję wyrobu. Dobrze zaprojektowane tuleje konika pomagają w stabilności i ograniczają wibracje, co zdecydowanie poprawia efektywność pracy maszyny. W branży mówi się dużo o dokładności, jak na przykład w standardach ISO 9001. Z tego, co wiem, każdy operator maszyny powinien dobrze znać budowę tokarki, a tuleja konika to jeden z kluczowych elementów, które muszą być znane, żeby praca szła sprawnie i bezproblemowo.

Pytanie 40

Przy naprawie uszkodzonego gwintu w otworze, najczęściej stosuje się

A. klejenie na zimno
B. spawanie łukowe
C. rozszerzanie otworu
D. wstawki gwintowe
Stosowanie wstawek gwintowych jest jednym z najczęściej używanych i najbardziej efektywnych sposobów naprawy uszkodzonych gwintów. Wstawki te, często nazywane helicoilami, są specjalnie zaprojektowanymi spiralnymi elementami, które wprowadza się do uszkodzonego otworu w celu odtworzenia jego gwintu. Metoda ta jest nie tylko ekonomiczna, ale również bardzo skuteczna, ponieważ wstawki zwiększają wytrzymałość gwintu, a także poprawiają jego trwałość. W praktyce, wstawki gwintowe są szeroko stosowane w przemyśle motoryzacyjnym, lotniczym i maszynowym, gdzie zachowanie precyzyjnych wymiarów i wytrzymałości ma kluczowe znaczenie. Proces instalacji wstawki gwintowej obejmuje kilka etapów, począwszy od rozwiercenia uszkodzonego otworu, poprzez nacięcie nowego gwintu, aż do wprowadzenia wstawki. To podejście jest zgodne z dobrą praktyką inżynierską, ponieważ minimalizuje potrzebę wymiany całego elementu, co mogłoby być kosztowne i czasochłonne. Dlatego właśnie wstawki gwintowe są preferowaną metodą w naprawie uszkodzonych gwintów.