Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 16:43
  • Data zakończenia: 17 grudnia 2025 16:44

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Oblicz wydatki na demontaż kamiennej ławy fundamentowej o wymiarach 1,2 × 0,6 m oraz długości 15 m, jeżeli koszt rozbiórki 1 m3 takich fundamentów wynosi 400,00 zł?

A. 6 000,00 zł
B. 240,00 zł
C. 480,00 zł
D. 4 320,00 zł
Błędne odpowiedzi wynikają najczęściej z nieprecyzyjnego zrozumienia zagadnienia dotyczącego obliczania objętości oraz kosztów związanych z rozbiórką. Wiele osób może popełniać błąd, zakładając niewłaściwe wymiary lub nie uwzględniając pełnej objętości fundamentu. Na przykład, odpowiedzi takie jak 480,00 zł czy 240,00 zł mogą wynikać z mylenia jednostkowego kosztu z całkowitym kosztem robót. Osoby te mogą obliczać koszt na podstawie powierzchni zamiast objętości, co jest fundamentalnym błędem w kontekście prac budowlanych. Koszty rozbiórki powinny być obliczane na podstawie objętości, a nie powierzchni, ponieważ materiały budowlane zajmują przestrzeń w trzech wymiarach. Innym typowym błędem jest pomijanie długości ławy fundamentowej, co prowadzi do znacznego zaniżenia obliczeń. Również, bywa, że koszt jednostkowy nie jest pomnożony przez odpowiednią objętość, co skutkuje błędnymi wynikami. Kluczowe jest, aby dokładnie zrozumieć zadanie i stosować poprawne wzory oraz uwzględniać wszystkie parametry dotyczące obliczeń. Takie podejście nie tylko pozwala uniknąć błędów, ale także prowadzi do lepszego zarządzania budżetem i zasobami w projektach budowlanych.

Pytanie 2

Aby wykonać tynk ciągniony, należy zastosować

A. pneumatyczne urządzenia natryskowe
B. stalowe listewki kierunkowe
C. paki oraz profilowane kielnie
D. profile przesuwane po prowadnicach
Wybór innych narzędzi, takich jak pneumatyczne aparaty natryskowe, nie jest zbyt trafiony, jeśli chodzi o tynk ciągniony. Te aparaty, chociaż użyteczne w innych metodach, nie dają takiej kontroli nad grubością i równomiernością, jak profile na prowadnicach. Są bardziej do tynków natryskowych, gdzie trzeba inaczej aplikować materiał. A kierunkowe listwy stalowe? No, mogą wytyczać linie, ale do metody ciągnionej nie są za specjalne, bo tam chodzi o precyzyjność i płynność. Użycie pac czy profilowanych kielni też nie ma sensu w tym kontekście, bo służą do ręcznego wygładzania, a nie zapewniają takiej wydajności jak te profile. Zrozumienie technik tynkarskich to klucz do dobrego wykończenia, a dobór narzędzi ma ogromne znaczenie dla końcowego efektu. Jak się wybierze złe narzędzia, to nie tylko obniża jakość, ale może też wydłużyć czas pracy i podnieść koszty.

Pytanie 3

Aby zbudować 1 m2 jednowarstwowej ściany, potrzebnych jest 8 sztuk bloczków z betonu komórkowego. Jeśli koszt jednego bloczka wynosi 21 zł, to ile wyniesie całkowity koszt bloczków potrzebnych do budowy ściany o powierzchni 15 m2?

A. 2 860 zł
B. 2 520 zł
C. 3 520 zł
D. 3 860 zł
Koszt bloczków z betonu komórkowego dla ściany o powierzchni 15 m<sup>2</sup> można obliczyć jedynie w sposób prawidłowy, bazując na danych dotyczących ilości bloczków na 1 m<sup>2</sup> oraz cenie jednostkowej bloczków. Zdarza się, że osoby obliczające koszty popełniają błędy w sposobie liczenia, na przykład przez pominięcie całkowitej liczby bloczków potrzebnych do stworzenia większej powierzchni. W przypadku tego pytania, ważne było uwzględnienie, że do zbudowania ściany o powierzchni 15 m<sup>2</sup> potrzebne są 120 bloczki, a nie 100, co jest częstym błędem w takich obliczeniach. Osoby mogą również błędnie założyć, że cena za bloczki jest inna niż podana, co może prowadzić do niewłaściwych oszacowań. Ponadto, odpowiedzi o wyższych kwotach mogą sugerować, że osoba myliła jednostki miary lub stosowała niewłaściwy wzór, co jest istotnym błędem w obliczeniach budowlanych. Przy planowaniu budżetu na materiał budowlany należy zawsze dokładnie sprawdzić wielkości oraz ceny, aby uniknąć przeszacowania lub niedoszacowania kosztów, co jest kluczowe w każdej inwestycji budowlanej.

Pytanie 4

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. na tej stronie przegrody, gdzie przeważa wyższa temperatura
B. na tej stronie przegrody, gdzie przeważa niższa temperatura
C. na obydwu stronach przegrody
D. po każdej stronie przegrody
Umieszczanie izolacji cieplnej przegrody budowlanej po stronie, gdzie panuje wyższa temperatura, jest podejściem, które nie tylko łamie zasady fizyki, ale także prowadzi do poważnych konsekwencji w kontekście efektywności energetycznej budynku. Izolacja ma na celu ograniczenie transferu ciepła, a umieszczanie jej w miejscu, gdzie temperatura jest wyższa, po prostu nie spełnia tego zadania. Tego rodzaju podejście wynika z nieporozumienia dotyczącego dynamiki cieplnej. Mylne jest przekonanie, że izolacja powinna być umieszczona tam, gdzie wydaje się, że ciepło jest „przechwytywane”; w rzeczywistości ciepło zawsze przepływa z obszaru o wyższej temperaturze do obszaru o niższej temperaturze. Umieszczając izolację w niewłaściwym miejscu, ryzykujemy nie tylko straty ciepła, ale także wzrost ryzyka kondensacji pary wodnej wewnątrz przegrody, co może prowadzić do powstawania pleśni oraz uszkodzeń konstrukcyjnych. Ponadto, zgodnie z normami budowlanymi, takim jak PN-EN 13370, istotne jest, aby izolacja była stosowana w sposób, który zapewnia optymalny komfort cieplny i minimalizuje zużycie energii. W rezultacie, umieszczanie izolacji w nieodpowiednich lokalizacjach, takich jak strona z wyższą temperaturą, jest nie tylko technicznie błędne, ale również ekonomicznie niekorzystne w dłuższej perspektywie.

Pytanie 5

Na ilustracji przedstawiono fragment lica muru wykonanego w wiązaniu

Ilustracja do pytania
A. weneckim.
B. holenderskim.
C. polskim.
D. słowiańskim.
No to odpowiedź 'polskim' jest rzeczywiście trafiona. To wiązanie ceglne, które widzisz na obrazku, ma taki ciekawy układ cegieł, gdzie każda warstwa jest przesunięta o pół cegły w stosunku do poprzedniej. To nie tylko fajnie wygląda, ale też sprawia, że mur jest bardziej stabilny i wytrzymały. Wiązanie polskie jest popularne w tradycyjnej architekturze w Polsce, zwłaszcza w zabytkowych budynkach. Możesz je zauważyć w zamkach, kościołach czy starych kamienicach z czasów renesansu i baroku. Fajnie jest znać różne rodzaje wiązań ceglanych, szczególnie jeśli planujesz być architektem albo budowlańcem. Wiedza o tym, jakie techniki stosować, jest ważna – przemyśl, co będzie pasować do stylu budynku i jakie ma być wrażenie wizualne. No i warto też znać lokalne tradycje budowlane, bo to pomaga zachować nasze dziedzictwo kulturowe.

Pytanie 6

Izolacja przeciwwilgociowa podłogi na parterze budynku bez piwnicy jest układana

A. na warstwie chudego betonu
B. bezpośrednio na ziemi
C. bezpośrednio na podsypce z piasku
D. na warstwie izolacji cieplnej
Układanie poziomej izolacji przeciwwilgociowej podłogi parteru bezpośrednio na gruncie jest praktyką, która niesie za sobą wiele ryzyk. Bezpośredni kontakt z gruntem naraża izolację na działanie wilgoci gruntowej, co może prowadzić do jej degradacji oraz obniżenia efektywności ochrony budynku przed wilgocią. Z kolei układanie izolacji na warstwie izolacji termicznej, mimo że teoretycznie może wydawać się sensowne, w praktyce stwarza problemy z utrzymaniem odpowiedniej ciągłości izolacji przeciwwilgociowej. Izolacja termiczna, jak styropian czy wełna mineralna, nie jest zaprojektowana do absorbowania wody i może ulegać uszkodzeniu w warunkach nieodpowiedniej izolacji przeciwwilgociowej, co prowadzi do strat energetycznych oraz problemów z wilgocią w budynku. Co więcej, stosowanie podsypki z piasku jako bazy dla izolacji również budzi wątpliwości. Mimo że piasek może wydawać się stabilny, jego właściwości absorpcyjne mogą powodować, że wilgoć z gruntu przenika do konstrukcji. W każdym z przypadków, brak odpowiedniej warstwy chudego betonu prowadzi do sytuacji, w której skuteczność izolacji przeciwwilgociowej jest znacznie obniżona, co może skutkować kosztownymi naprawami i rewitalizacją budynku w przyszłości. Zrozumienie tych zasad jest kluczowe dla właściwego projektowania i budowy budynków, co potwierdzają odpowiednie normy budowlane oraz wytyczne branżowe.

Pytanie 7

Masa używana do tynków cienkowarstwowych powinna być wolna od

A. wody i spoiwa
B. zbryleń
C. pigmentów
D. drobnego kruszywa
Gotowa zaprawa do tynków cienkowarstwowych musi być gładka i bez zbryleń. To ważne, bo jak są zbrylenia, to potem na ścianie wychodzą nierówności i ogólnie tynk wygląda słabo. Z własnego doświadczenia wiem, że dobre wymieszanie składników to klucz do sukcesu. Jeśli dobrze się przygotujesz, to unikniesz tych zbryleń. Normy branżowe, jak PN-EN 998-1, mówią, że ważny jest też dobór surowców, takich jak piaski o właściwej granulacji. One razem z odpowiednimi spoiwami dadzą jednorodność mieszanki. Jeśli zaprawa będzie dobrze przygotowana, to nie tylko ładniej wygląda, ale też będzie trwała na różne warunki atmosferyczne. Dlatego warto zwracać uwagę na instrukcje producentów oraz normy, bo to daje pewność, że tynki będą wysokiej jakości.

Pytanie 8

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 1 500,00 zł
B. 600,00 zł
C. 750,00 zł
D. 1 350,00 zł
Aby policzyć, ile będzie kosztowało zrobienie tynku mozaikowego na ścianie o powierzchni 30 m², musimy zsumować koszty robocizny i materiałów. Koszt robocizny to 25 zł za m², więc przy 30 m² wychodzi 750 zł. Koszt materiałów to 20 zł za m², co daje 600 zł. Zatem całkowity koszt wynosi 1 350 zł. W branży budowlanej to standardowe podejście do obliczeń. Dobrze jest też pamiętać o innych wydatkach, które mogą się pojawić, jak np. transport materiałów czy wynajem sprzętu – to wszystko może mieć wpływ na ostateczną cenę.

Pytanie 9

Tynk dekoracyjny stworzony z zaprawy gipsowej lub gipsowo-wapiennej, naśladujący marmur, to

A. fresk
B. stiuk
C. sgraffito
D. sztukateria
Sgraffito to technika zdobnicza, w której zdrapuje się warstwy kolorowej zaprawy, aby uzyskać różne wzory. Zazwyczaj jest to metoda stosowana na elewacjach budynków, więc nie pasuje do pytania o stiuk. Fresk to natomiast technika malarska, gdzie pigmenty mieszają się z wodą i nakłada się je na mokry tynk. Zazwyczaj widzimy freski na wielkich ścianach i sufitach, ale nie mają one nic wspólnego z imitowaniem marmuru. Z kolei sztukateria to dekoracyjne elementy, jak gzymsy czy kolumny, a nie tynkowane powierzchnie. Błędy myślenia, które prowadzą do takich pomyłek to często mylenie tych technik wykończeniowych. Czasem można nie rozumieć, że stiuk to konkretna technika, która ma swoje unikalne cechy, co prowadzi do złego wyboru odpowiedzi.

Pytanie 10

Na podstawie danych zamieszczonych w tablicy z KNR 2-02 oblicz, ile zaprawy potrzeba do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m każdy, na zaprawie cementowo-wapiennej.

Słupy i filary międzyokienne z cegieł budowlanych pełnych
Nakłady na 1 mTabela 0124 (fragment)
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filary prostokątne na zaprawie
wapiennej lub cementowo-wapiennej
o wymiarach w cegłach
1×11×1½1½×1½1½×22×22×2½2½×2½
ace01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągim-g0,100,150,250,430,430,530,67
A. 0,276 m3
B. 0,444 m3
C. 0,588 m3
D. 0,828 m3
W przypadku udzielenia innej odpowiedzi, może to wynikać z kilku typowych błędów obliczeniowych lub nieporozumień dotyczących metodyki obliczeń. Na przykład, jeżeli wzięto pod uwagę objętość jednego filaru bez uwzględnienia zaprawy, z pewnością uzyskano zaniżoną wartość. Istnieje również ryzyko nieuwzględnienia współczynnika, który wskazuje na objętość zaprawy w stosunku do muru, co w efekcie prowadzi do błędnych oszacowań. W praktyce budowlanej ważne jest, aby nie tylko zmierzyć wymiary, ale także zrozumieć, jak różne materiały współdziałają w konstrukcji. Kolejnym błędem jest błędne przeliczenie jednostek miar, co często zdarza się przy przejściu z centymetrów na metry. W szczególności, w przypadku budowy, należy upewnić się, że wszystkie wymiary są spójne i poprawnie przeliczone na jednostki metryczne. Zrozumienie, jak poszczególne elementy konstrukcyjne wpływają na całość, jest kluczowe. Aby uniknąć pomyłek, należy korzystać z aktualnych norm budowlanych oraz dobrych praktyk, takich jak standardy PN-EN dotyczące materiałów budowlanych, które dostarczają wytycznych w zakresie obliczania ilości materiałów. To ważne, aby nie tylko dążyć do uzyskania poprawnych wyników, ale także rozumieć, jak te obliczenia wpływają na kosztorys, jakość wykonania i trwałość obiektu budowlanego.

Pytanie 11

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 4400 zł
B. 4920 zł
C. 4000 zł
D. 5412 zł
W przypadku błędnych odpowiedzi można zauważyć, że wiele osób może mieć trudności z prawidłowym obliczeniem wartości brutto z powodu niedostatecznego zrozumienia zasad dotyczących podatku VAT oraz kosztów produkcji. Na przykład, odpowiedzi takie jak 5412 zł mogą wynikać z błędnego założenia, że stawka VAT jest naliczana na kwotę brutto zamiast netto, co jest fundamentalnym błędem. W praktyce VAT oblicza się od wartości netto, a nie od kwoty, która obejmuje już podatek. Inne odpowiedzi, takie jak 4400 zł, mogą sugerować, że użytkownik dodał niewłaściwą kwotę VAT lub pominął jego obliczenia całkowicie. Tego typu błędy mogą wynikać z nieznajomości procedur kalkulacyjnych w branży budowlanej, które są kluczowe dla zarządzania projektami oraz finansów. Kolejnym typowym błędem jest nieprawidłowe mnożenie kosztów jednostkowych, co może prowadzić do znacznych różnic w końcowych obliczeniach. Dlatego tak ważne jest, aby zrozumieć zasady obliczania kosztów oraz podatków, aby uniknąć nieporozumień i błędów w przyszłych projektach.

Pytanie 12

Do budowy ścian fundamentowych, które są narażone na wilgoć, należy używać zaprawy

A. wapiennej
B. gipsowej
C. cementowej
D. wapienno-gipsowej
Zaprawa wapienna, wapienno-gipsowa oraz gipsowa nie są odpowiednie do stosowania w konstrukcjach fundamentowych narażonych na zawilgocenie. Ich właściwości mechaniczne i odporność na wilgoć są znacznie niższe niż w przypadku zapraw cementowych. Zaprawa wapienna, chociaż ma swoje zastosowania, głównie w budownictwie zabytkowym i renowacyjnym, jest mniej odporna na działanie wody i nie zapewnia wystarczającej wytrzymałości w sytuacjach, gdzie występuje ciągła ekspozycja na wilgoć. Wapienno-gipsowa i gipsowa zaprawa charakteryzują się jeszcze większą podatnością na degradację pod wpływem wody, co sprawia, że ich użycie w fundamentach byłoby katastrofalnym błędem. Często błędnie sądzimy, że materiały oparte na wapnie mogą być wystarczająco trwałe, jednak w rzeczywistości ich zastosowanie w wilgotnych warunkach może prowadzić do poważnych uszkodzeń konstrukcji, co wymaga później kosztownych napraw. Standardy budowlane i dobre praktyki wyraźnie zalecają stosowanie zapraw cementowych w takich konstrukcjach, aby zapewnić zarówno trwałość, jak i bezpieczeństwo budynku. Zrozumienie tych różnic jest kluczowe dla każdego zajmującego się budownictwem.

Pytanie 13

Szerokość filarka międzyokiennego na fragmencie rzutu kondygnacji wynosi

Ilustracja do pytania
A. 90 cm
B. 130 cm
C. 50 cm
D. 110 cm
Wybór zbyt szerokiego filarka międzyokiennego to naprawdę sporo problemów, i to widać w odpowiedziach, gdzie zaznaczono szerokości jak 90 cm czy więcej. Te wymiary mogą wydawać się sensowne, bo większe wydają się bardziej estetyczne i przestronne, ale w praktyce to może nie działać jak powinno. Wiesz, szerokości 90 cm czy więcej mogą powodować, że cała konstrukcja będzie za ciężka, co odbije się na fundamentach i ścianach. Jak filarek będzie za szeroki, to jego rola nośna może być zaburzona, co prowadzi do nieprawidłowego rozkładu obciążeń. W budownictwie ważne jest, żeby znaleźć równowagę między tym, co wygląda dobrze, a tym, co jest funkcjonalne. Pamiętaj też, że za małe albo za duże filarki mogą zrujnować akustykę i temperaturę w pomieszczeniach. Projektując takie rzeczy, warto zawsze patrzeć na normy i wskazówki inżynierów, by mieć spokój i bezpieczeństwo w budynku.

Pytanie 14

Warstwę izolacji oznaczoną na rysunku cyfrą 5 należy wykonać z

Ilustracja do pytania
A. jastrychu anhydrytowego.
B. dwóch warstw papy asfaltowej na lepiku.
C. wełny mineralnej granulowanej.
D. twardych płyt styropianowych.
Wybór innych materiałów na warstwę izolacyjną, takich jak jastrych anhydrytowy, wełna mineralna granulowana czy papa asfaltowa na lepiku, oparty jest na błędnym zrozumieniu funkcji, jakie pełni izolacja termiczna. Jastrych anhydrytowy to materiał stosowany głównie jako podkład podłogowy, który nie ma odpowiednich właściwości izolacyjnych. Jego głównym zadaniem jest zapewnienie stabilnej powierzchni do dalszej obróbki, a nie izolacji termicznej, co prowadzi do nieefektywnego zatrzymywania ciepła. Z kolei wełna mineralna granulowana, mimo że ma pewne właściwości izolacyjne, jest najczęściej stosowana w przegrodach pionowych, a nie w podłogach, gdzie wymagana jest solidność i jednolitość warstwy izolacyjnej. Ponadto, jej zastosowanie w podłogach może prowadzić do osiadania materiału, co negatywnie wpływa na jego właściwości izolacyjne. Zastosowanie papy asfaltowej na lepiku jest także nieodpowiednie, gdyż materiał ten jest przeznaczony głównie do hydroizolacji, a nie izolacji termicznej. Nieadekwatne podejście do wyboru materiałów izolacyjnych może prowadzić do znacznych strat ciepła w budynku, co z kolei podnosi koszty ogrzewania oraz wpływa negatywnie na komfort mieszkańców. Zrozumienie specyfiki materiałów oraz ich zastosowań w kontekście izolacji termicznej jest kluczowe dla efektywności energetycznej budynków.

Pytanie 15

Aby zmniejszyć ilość wody w betonie przy temperaturze otoczenia od +5°C do +10°C, warto zastosować dodatek

A. uszczelniającą
B. napowietrzającą
C. przeciwmrozową
D. uplastyczniającą
Odpowiedzi "uszczelniającą", "przeciwmrozową" i "napowietrzającą" mogą wydawać się odpowiednie, jednak każda z nich odnosi się do innych celów i właściwości materiałów budowlanych. Domieszki uszczelniające mają na celu poprawę szczelności betonu, co jest ważne w kontekście ochrony przed wodą, ale nie wpływają na redukcję ilości wody w mieszance. W przypadku domieszek przeciwmrozowych, ich główną rolą jest ochrona betonu przed uszkodzeniem w wyniku zamarzania i rozmarzania, co jest szczególnie istotne w niskich temperaturach, ale nie dotyczą one bezpośrednio zmniejszenia wody w mieszance. Z kolei domieszki napowietrzające wprowadzają powietrze do mieszanki, co zwiększa jej odporność na cykle mrozowe, lecz również nie prowadzą do redukcji wody. Typowym błędem myślowym jest zakładanie, że wszystkie domieszki mają podobne działanie, podczas gdy ich funkcje są zróżnicowane i związane z wymaganiami technologicznymi. Właściwe zastosowanie domieszek wymaga zrozumienia ich specyficznych właściwości oraz wpływu na zachowanie betonu w różnych warunkach, co jest kluczowe dla zapewnienia jakości i trwałości konstrukcji budowlanych.

Pytanie 16

Cena realizacji 1 m2 tynku cementowo-wapiennego to 15,50 zł, natomiast przygotowanie 1 m2 podłoża pod tynk wymaga wydatku 7,70 zł. Oblicz całkowity koszt otynkowania ścian o łącznej powierzchni 250 m2.

A. 3 875,00 zł
B. 2 900,00 zł
C. 1 925,00 zł
D. 5 800,00 zł
Koszt otynkowania ścian o powierzchni 250 m² można obliczyć poprzez zsumowanie kosztów przygotowania podłoża oraz wykonania tynku. Przygotowanie podłoża pod tynk kosztuje 7,70 zł za m², co dla 250 m² daje 1 925,00 zł. Natomiast koszt wykonania tynku cementowo-wapiennego wynosi 15,50 zł za m², co dla tej samej powierzchni daje 3 875,00 zł. Suma tych dwóch kosztów to: 1 925,00 zł + 3 875,00 zł = 5 800,00 zł. Jest to poprawne podejście, ponieważ uwzględnia wszystkie etapy prac budowlanych, które są kluczowe w procesie otynkowania. W praktyce, takie wyliczenia są istotne dla budżetowania projektów budowlanych oraz dla zapewnienia, że wszystkie aspekty kosztowe są odpowiednio zaplanowane i zrealizowane zgodnie z obowiązującymi standardami branżowymi.

Pytanie 17

Zgodnie z Zasadami obmiaru robót tynkarskich podczas obmiaru tynku wewnętrznego ściany z jednym otworem okiennym o tynkowanych ościeżach należy odjąć powierzchnię tego otworu, jeżeli wynosi ona ponad

Zasady obmiaru robót tynkarskich
(fragment)
(...) Z powierzchni tynków nie odlicza się powierzchni nieotynkowanych lub ciągnionych mających więcej niż 1 m2 i powierzchni otworów do 3 m2, jeżeli ościeża ich są tynkowane. (...)
A. 1,0 m2
B. 0,5 m2
C. 2,0 m2
D. 3,0 m2
Wybór odpowiedzi, które nie uwzględniają kluczowych zasad dotyczących odliczania powierzchni otworów okiennych, wskazuje na brak zrozumienia podstawowych przepisów związanych z obmiarami robót tynkarskich. Na przykład, odpowiedź "2,0 m2" sugeruje, że odliczenie powinno nastąpić w każdym przypadku, kiedy powierzchnia otworu przekracza 1 m2, co jest błędnym podejściem. Zgodnie z zasadami, odliczamy powierzchnię otworów tylko w przypadku, gdy wynosi ona powyżej 3 m2, a także tylko jeśli ościeża tych otworów są tynkowane. W przypadku odpowiedzi "1,0 m2" mylone jest pojęcie, że każde otwarcie na ścianie musi być traktowane jako element do odliczenia. To prowadzi do sytuacji, w której kosztorys robót tynkarskich będzie niepoprawny, co może skutkować błędnymi wyliczeniami finansowymi. Z kolei wybór "0,5 m2" może sugerować, iż nie uwzględnia się otworów w ogóle, co jest absolutnie niezgodne z praktyką. Takie podejście może prowadzić do nadmiernych kosztów i strat materiałowych, ponieważ brak odpowiednich obliczeń może skutkować zamówieniem niewłaściwej ilości materiału. Dobrą praktyką jest zawsze odniesienie się do zatwierdzonych norm i wytycznych, aby uniknąć kosztownych błędów. Kluczowym aspektem jest również zrozumienie, jak obmiary wpływają na całościowy budżet projektu oraz jakość wykonanych prac budowlanych.

Pytanie 18

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. ustaleniu stopnia zagęszczenia kruszywa
B. przesianiu kruszywa przez sito o oczkach 5 mm
C. przesianiu kruszywa przez sito o oczkach 2 mm
D. ustaleniu gęstości pozornej kruszywa
Przesiewanie kruszywa przez sito o oczkach 5 mm nie jest odpowiednie dla produkcji zaprawy tynkarskiej, ponieważ nie eliminuje wystarczająco dużych zanieczyszczeń, które mogą negatywnie wpłynąć na jakość tynku. Odpowiedni rozmiar kruszywa ma kluczowe znaczenie dla uzyskania jednorodnej mieszanki, a zbyt duże cząstki mogą przyczynić się do powstawania pęknięć i nierówności na powierzchni tynku. Ustalanie stopnia zagęszczenia kruszywa, choć istotne w kontekście ogólnych właściwości materiału, nie jest kluczowym krokiem w przypadku tynków, gdzie bardziej istotne jest zapewnienie odpowiedniej granulacji kruszywa. Ustalanie gęstości pozornej kruszywa również nie ma bezpośredniego wpływu na przygotowanie zaprawy tynkarskiej, a bardziej odnosi się do ogólnej charakterystyki materiału budowlanego. W kontekście praktycznym, wiele osób myli te aspekty z przygotowaniem betonu, gdzie zagęszczenie może być bardziej kluczowe. Dlatego niepoprawne podejście do wyboru metody przesiania kruszywa może prowadzić do poważnych błędów w wykonawstwie, które skutkują nie tylko niewłaściwymi parametrami technicznymi, ale także zwiększonymi kosztami napraw w przyszłości.

Pytanie 19

Czym charakteryzuje się tynk trójwarstwowy, który składa się z następujących po sobie warstw?

A. 1. gładź, 2. narzut, 3. obrzutka
B. 1. gładź, 2. obrzutka, 3. narzut
C. 1. narzut, 2. obrzutka, 3. gładź
D. 1. obrzutka, 2. narzut, 3. gładź
Wybór kolejności kolejnych warstw tynku trójwarstwowego, przedstawiony w niepoprawnych odpowiedziach, jest oparty na niepełnym zrozumieniu zasad aplikacji tynków i ich funkcji. Niezrozumienie roli obrzutki jako pierwszej warstwy prowadzi do ryzyka niewłaściwego przygotowania podłoża, co może skutkować odspajaniem się kolejnych warstw. Obrzutka, ze względu na swoją gruboziarnistą strukturę, jest kluczowa do zapewnienia przyczepności narzutu. Zastosowanie gładzi jako pierwszej warstwy jest technicznie błędne, ponieważ bez odpowiednio przygotowanej powierzchni, gładź nie będzie się trzymać, co może prowadzić do jej pękania i łuszczenia się. Z kolei błędne umiejscowienie narzutu przed obrzutką sprawia, że cała konstrukcja traci swoje właściwości izolacyjne i estetyczne. W praktyce, brak właściwego zastosowania kolejności warstw może prowadzić do kosztownych napraw i konieczności usunięcia i ponownego nałożenia tynku, co jest nieefektywne i niezgodne z zaleceniami branżowymi. Dlatego tak ważne jest, aby zrozumieć, jak każda warstwa przyczynia się do ostatecznego efektu i trwałości tynku, oraz aby stosować się do ustalonych standardów w budownictwie.

Pytanie 20

Do wymurowania ściany o wymiarach 10,0 x 5,0 m i grubości 0,24 m zaplanowano bloczki Ytong łączone na pióro i wpust. Korzystając z danych zawartych w tabeli wskaż, ile 20-kilogramowych worków zaprawy należy kupić, aby sporządzić potrzebną ilość zaprawy.

Zużycie na 1 m³ muru zaprawy do cienkich spoin Ytong
Bloczki gładkieBloczki z piórem i wpustemWielkość opakowania
20 kg15 kg20 kg
A. 7
B. 6
C. 8
D. 9
W przypadku nieprawidłowych odpowiedzi należy zwrócić uwagę na kilka kluczowych aspektów związanych z obliczeniami oraz podstawami technicznymi. Istotnym błędem może być niewłaściwe obliczenie objętości ściany, co prowadzi do niepoprawnych dalszych kalkulacji. Niektórzy mogą błędnie założyć, że zużycie zaprawy na 1 m³ muru jest jednolite dla wszystkich typów bloczków, co jest niezgodne z praktyką budowlaną. Różne metody łączenia, takie jak pióro i wpust, wymagają różnej ilości zaprawy, co może prowadzić do zaniżonego lub zawyżonego oszacowania. Często pojawia się także problem z przeliczeniem objętości zaprawy na ilość worków. Niekiedy można spotkać się z błędnym przyjęciem masy zaprawy w jednym worku, co jest kluczowe dla prawidłowego obliczenia. Pomijanie wartości gęstości zaprawy może doprowadzić do jeszcze większych nieścisłości. Dlatego ważne jest nie tylko zrozumienie, jak obliczać potrzebne materiały, ale również znajomość standardów dotyczących zużycia zaprawy w kontekście konkretnego rodzaju budowli. Dobre praktyki budowlane wymagają dokładnych obliczeń, które uwzględniają wszystkie aspekty związane z materiałami oraz metodami budowlanymi.

Pytanie 21

Która z poniższych cech jest typowa dla nowo przygotowanej zaprawy?

A. Mrozoodporność
B. Wytrzymałość na ściskanie
C. Podatność na ścieranie
D. Urabialność
Mrozoodporność jest cechą, która odnosi się do zdolności materiału do przetrwania cykli zamarzania i rozmrażania bez utraty właściwości mechanicznych. Jest to ważny parametr, jednak nie ma bezpośredniego związku z świeżo zarobioną zaprawą, ponieważ mrozoodporność dotyczy przede wszystkim gotowego produktu, który musi spełniać określone normy, takie jak PN-EN 998-1. W przypadku zapraw, mrozoodporność jest wynikiem odpowiedniego doboru składników oraz ich proporcji, a nie cechą świeżo zarobionego materiału. Podatność na ścieranie jest również niewłaściwym wyborem, gdyż dotyczy głównie trwałości zaprawy po wyschnięciu oraz jej odporności na mechaniczne uszkodzenia. Wytrzymałość na ściskanie, choć istotna w kontekście późniejszego użytkowania zaprawy, również nie jest charakterystyczna dla świeżo zarobionej mieszanki, ponieważ ta cecha rozwija się dopiero w miarę schnięcia i utwardzania zaprawy. Typowym błędem jest mylenie właściwości materiałów w różnych etapach ich zastosowania; świeżo zarobiona zaprawa ma inne kryteria oceny, które nie powinny być mylone z właściwościami gotowego produktu. Dlatego kluczowe jest zrozumienie, że urabialność determinuje skuteczność aplikacji zaprawy, a inne właściwości nabierają znaczenia w późniejszych fazach użytkowania.

Pytanie 22

Na którym rysunku przedstawiono podłużny układ konstrukcyjny budynku?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Na rysunku A przedstawiono budynek, w którym ściany nośne są zorganizowane wzdłuż dłuższego boku budynku, co jest kluczowym elementem podłużnego układu konstrukcyjnego. Tego typu układ jest często stosowany w budownictwie, szczególnie w dużych obiektach komercyjnych i przemysłowych, gdzie efektywność przestrzenna i łatwość wprowadzenia zmian w układzie wnętrza są istotne. W takim układzie ściany nośne są z reguły równoległe do kierunku płyt stropowych, co sprzyja lepszemu rozkładowi obciążeń oraz umożliwia łatwiejsze wprowadzenie otworów na okna czy drzwi, bez wpływu na integralność konstrukcyjną. Przykłady zastosowania tej metodologii można znaleźć w projektowaniu fabryk, magazynów, a także budynków biurowych, gdzie podłużny układ zapewnia większą elastyczność w użytkowaniu przestrzeni. Dodatkowo, zgodnie z normami budowlanymi, takie podejście minimalizuje ryzyko uszkodzeń w wyniku obciążeń dynamicznych, co czyni je preferowanym w wielu aspektach projektowania budynków.

Pytanie 23

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 1092,00 zł
B. 945,00 zł
C. 546,00 zł
D. 1386,00 zł
Aby obliczyć koszt całkowity wykonania tynku maszynowego gipsowego, należy najpierw ustalić powierzchnię ściany, która ma być pokryta tynkiem. Ściana o wymiarach 7 m na 3 m ma powierzchnię wynoszącą 21 m². Ponieważ tynk ma być wykonany po obu stronach, całkowita powierzchnia do pokrycia wynosi 21 m² x 2 = 42 m². Następnie obliczamy koszty robocizny i materiałów. Koszt jednostkowy robocizny wynosi 19,00 zł/m², co daje 42 m² x 19,00 zł/m² = 798,00 zł. Koszt materiałów wynosi 7,00 zł/m², co daje 42 m² x 7,00 zł/m² = 294,00 zł. Suma kosztów robocizny i materiałów wynosi 798,00 zł + 294,00 zł = 1092,00 zł. Taki sposób obliczeń jest zgodny z standardami branżowymi, gdzie uwzględnia się zarówno koszty pracy, jak i koszty materiałów, co jest kluczowe w procesie przygotowania kosztorysu budowlanego. Praktyczne zastosowanie tej wiedzy pozwala na dokładne zaplanowanie budżetu na prace budowlane i remontowe.

Pytanie 24

Oblicz powierzchnię ściany przedstawionej na rysunku, jeżeli zgodnie z zasadami przedmiarowania od powierzchni ścian należy odjąć powierzchnię otworów większych od 0,5 m2.

Ilustracja do pytania
A. 18,91 m2
B. 22,04 m2
C. 18,55 m2
D. 22,40 m2
Wielu studentów może mieć tendencję do wyboru odpowiedzi, które wydają się na pierwszy rzut oka logiczne, lecz nie uwzględniają wszystkich istotnych zasad obliczeniowych. Często błędne odpowiedzi wynikają z pominięcia kluczowego kroku, jakim jest odejmowanie powierzchni otworów. Osoby, które wybierają wartości takie jak 22,40 m2, mogą zapomnieć o obliczeniu, które otwory powinny być wliczone w powierzchnię do odjęcia. Wynik 22,04 m2 sugeruje, że błędnie uwzględniono mniejsze otwory, które nie powinny wpływać na końcowy rezultat. Z kolei odpowiedź 18,55 m2 może wynikać z nieprawidłowego pomiaru powierzchni ściany lub otworów. Właściwe podejście wymaga również zrozumienia, że nie wszystkie otwory są traktowane jednakowo; otwory poniżej 0,5 m² nie wlicza się do obliczeń. Kluczowym problemem jest również zrozumienie, że każdy błąd w pomiarach może prowadzić do znacznych różnic w ostatecznym wyniku, co ma swoje konsekwencje w kosztorysowaniu i planowaniu budowlanym. Dlatego tak istotne jest, aby zachować dokładność w trakcie przeprowadzania wszelkich obliczeń oraz przestrzegać uznawanych standardów, co pomoże uniknąć typowych pułapek w miarę postępu w nauce przedmiarowania.

Pytanie 25

Jakie materiały są wymagane do naprawy pojedynczych pęknięć w murze o głębokości przekraczającej 30 mm?

A. Cięgna z prętów stalowych i kątowniki mocujące
B. Klamry stalowe Ø15-18 mm oraz zaczyn cementowy
C. Kotwy stalowe rozporowe gwintowane oraz mieszanka betonowa
D. Klamry stalowe Ø6-8 mm oraz zaczyn gipsowy
Podczas analizy pozostałych odpowiedzi można zauważyć kilka istotnych błędów koncepcyjnych. Cięgna z prętów stalowych i kątowniki oporowe, chociaż mogą być użyte w lepszym wzmocnieniu konstrukcji, nie są odpowiednie do prostych napraw pęknięć muru. Kątowniki oporowe wymagają znacznie większej ingerencji w strukturę budynku i zastosowania skomplikowanej technologii montażu, co czyni je niepraktycznymi w przypadku drobnych uszkodzeń. Propozycja użycia kotew stalowych rozporowych gwintowanych i mieszanki betonowej, mimo że jest bardziej właściwa w kontekście dużych uszkodzeń, jest zdecydowanie zbyt mocna dla pęknięć o głębokości 30 mm. Zastosowanie mieszanki betonowej mogłoby prowadzić do problemów związanych z różnicami w skurczu czy rozszerzalności termicznej, co w dłuższym okresie mogłoby zniweczyć efekty wzmocnienia. W końcu, klamry stalowe Ø6-8 mm i zaczyn gipsowy nie zapewniają wystarczającej nośności ani odporności na wilgoć, co jest kluczowe w kontekście długotrwałych napraw murów. Zastosowanie gipsu jako materiału wiążącego w stresujących warunkach jest nieodpowiednie, ponieważ gips jest materiałem o niskiej odporności na działanie wody i ulega szybkiemu osłabieniu w trudnych warunkach atmosferycznych. Właściwe podejście do naprawy pęknięć muru wymaga zrozumienia nie tylko materiałów, ale także ich interakcji i wpływu na długoterminową stabilność konstrukcji.

Pytanie 26

Jakie narzędzia są niezbędne do wykonania tynku wypalanego?

A. Kielnia tynkarska, łata murarska, młotek murarski
B. Paca stalowa, kielnia tynkarska, młotek gumowy
C. Kielnia tynkarska, packa obłożona filcem, poziomnica
D. Paca stalowa, kielnia tynkarska, łata murarska
Wybór narzędzi do wykonania tynku wypalanego jest istotny dla uzyskania wysokiej jakości wykończenia. W przypadku zestawów narzędzi, które nie zawierają łaty murarskiej, jak w odpowiedzi z młotkiem gumowym czy packą obłożoną filcem, pojawiają się poważne ograniczenia. Młotek gumowy, choć użyteczny w niektórych pracach budowlanych, nie ma zastosowania w kontekście aplikacji tynku, ponieważ nie służy ani do nakładania, ani do wygładzania materiału. Packi obłożone filcem są odpowiednie do wygładzania delikatnych powierzchni, jednak w przypadku tynku wypalanego, kluczowe jest użycie narzędzi o większej sztywności, takich jak paca stalowa. Dodatkowo, brak łaty murarskiej uniemożliwia równomierne wyrównanie tynku, co jest nieodłącznym elementem procesu tynkarskiego. W praktyce, pomijanie odpowiednich narzędzi prowadzi do nierównomiernych powierzchni i problemów z trwałością wykończenia, co jest niezgodne z branżowymi standardami. Dlatego właściwy dobór narzędzi jest podstawą skutecznego wykonania tynku wypalanego, a ignorowanie tego aspektu z pewnością wpłynie negatywnie na jakość pracy.

Pytanie 27

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. krzemionkowych
B. ciepłochronnych
C. szamotowych
D. kwasoodpornych
Wybór odpowiedzi dotyczących zapraw szamotowych, krzemionkowych czy kwasoodpornych nie jest uzasadniony w kontekście właściwości keramzytu. Zaprawy szamotowe są stosowane głównie w budowie pieców i kominków, gdzie kluczowe są ich właściwości ogniotrwałe, co nie ma związku z lekkim kruszywem, jakim jest keramzyt. Z kolei zaprawy krzemionkowe, charakteryzujące się dużą odpornością na działanie wysokich temperatur, są dedykowane dla struktur wymagających specyficznych właściwości termicznych, co nie odpowiada funkcji izolacyjnej, jaką pełni keramzyt. Odpowiedzi wskazujące na zaprawy kwasoodporne są równie nietrafione, gdyż te materiały mają zastosowanie w warunkach, gdzie występuje kontakt z agresywnymi chemikaliami, a nie w kontekście właściwości cieplnych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują mylenie właściwości materiałów budowlanych oraz ich zastosowania w różnych kontekstach. Ważne jest zrozumienie, że wybór materiałów budowlanych powinien być oparty na ich specyficznych zastosowaniach oraz wymaganiach projektowych, co potwierdzają standardy branżowe oraz dobre praktyki inżynieryjne.

Pytanie 28

Korzystając z danych zawartych w tablicy 0102 z KNR 4-04, oblicz czas przewidziany na rozebranie 4 słupów wolnostojących o przekroju 40 x 40 cm i wysokości 5 m wykonanych z cegły na zaprawie cementowej.

Ilustracja do pytania
A. 7,23 r-g
B. 10,40 r-g
C. 10,66 r-g
D. 4,99 r-g
Poprawna odpowiedź to 10,40 r-g, co wynika z obliczeń opartych na danych zawartych w tabeli KNR 4-04. Dla słupów wolnostojących wykonanych z cegły na zaprawie cementowej, przy wysokości do 9 m, nakład pracy wynosi 3,25 r-g na 1 m³. Aby obliczyć czas przewidziany na rozebranie czterech słupów o przekroju 40 x 40 cm i wysokości 5 m, najpierw obliczamy objętość jednego słupa: 0,4 m x 0,4 m x 5 m = 0,8 m³. Następnie obliczamy objętość czterech słupów: 0,8 m³ x 4 = 3,2 m³. Mnożymy objętość przez nakład pracy: 3,2 m³ x 3,25 r-g/m³ = 10,40 r-g. Taki sposób kalkulacji jest zgodny z najlepszymi praktykami w branży budowlanej, które sugerują, aby przed przystąpieniem do rozbiórki obliczyć dokładne nakłady pracy w oparciu o rzeczywiste wymiary i zastosowane materiały. Znajomość takich norm jest kluczowa dla efektywnego planowania etapów budowy oraz rozbiórki, co pozwala na minimalizację kosztów i czasu realizacji.

Pytanie 29

Określona stawka robocizny za 1 m2wykonania tynku maszynowego cementowo-wapiennego wynosi 20 zł, natomiast koszt materiałów to 15 zł/ m2. Oblicz całkowity wydatek na tynkowanie 300 m2ścian?

A. 4 500 zł
B. 15 000 zł
C. 6 000 zł
D. 10 500 zł
W przypadku błędnych odpowiedzi na to pytanie, często pojawiają się nieporozumienia dotyczące sposobu obliczania kosztów tynkowania. Na przykład, niektóre odpowiedzi mogą wynikać z pomylenia kosztu robocizny z całkowitym kosztem projektu lub z niepoprawnego dodawania wartości. Osoby, które wybierają błędne kwoty, mogą nie uwzględniać zarówno robocizny, jak i materiałów, co prowadzi do znacznych niedoszacowań całkowitego kosztu. Często zdarza się, że niektórzy uczeni pomijają etap dodawania kosztów robocizny i materiału, a także nie analizują jednostkowych cen, co skutkuje błędnymi obliczeniami. Innym typowym błędem jest błędne przyjęcie, że koszt materiałów powinien być wyższy niż stawka robocizny, co nie jest zgodne z rzeczywistością w większości projektów budowlanych. Dobre praktyki w zakresie planowania finansowego wymagają dokładnego zrozumienia, jak różne elementy kosztowe wpływają na ostateczną kwotę do zapłaty. Każdy profesjonalista w branży budowlanej powinien być w stanie precyzyjnie ustalić całkowity koszt, uwzględniając jednocześnie zarówno robociznę, jak i koszty materiałów, co jest kluczowe dla sukcesu każdego projektu.

Pytanie 30

Kiedy wykonuje się poziomą izolację przeciwwilgociową na ścianie fundamentowej?

A. z folii paroizolacyjnej
B. z polistyrenu ekstrudowanego
C. ze styropianu
D. z papy asfaltowej
Izolacja przeciwwilgociowa ściany fundamentowej jest niezbędna dla ochrony konstrukcji przed działaniem wody, jednak zastosowanie materiałów innych niż papa asfaltowa może być nieodpowiednie. Styropian, mimo że jest materiałem o dobrych właściwościach termoizolacyjnych, nie zapewnia wystarczającej ochrony przed wilgocią. Jego struktura jest porowata, co może prowadzić do absorpcji wody, a w efekcie do uszkodzeń fundamentów oraz osłabienia całej konstrukcji. Polistyren ekstrudowany, chociaż lepszy od styropianu pod względem trwałości i odporności na wilgoć, nie jest przeznaczony do stosowania jako materiał izolacyjny w bezpośrednim kontakcie z wodą gruntową. Użycie folii paroizolacyjnej w tym kontekście również jest niewłaściwe, ponieważ folia ma inne przeznaczenie – jej główną funkcją jest ochrona przed migracją pary wodnej, a nie wody gruntowej. Izolacja fundamentów musi być wykonana z materiałów odpornych na długotrwałe działanie wody, co wyklucza stosowanie nieodpowiednich produktów. Niewłaściwy dobór materiałów do izolacji fundamentów może prowadzić do poważnych problemów, takich jak infiltracja wilgoci, co z kolei może prowadzić do powstawania pleśni, rozwoju grzybów oraz uszkodzeń strukturalnych budynku. Dlatego kluczowe jest, aby zawsze stosować się do rekomendacji branżowych i standardów budowlanych przy wyborze materiałów do izolacji przeciwwilgociowej.

Pytanie 31

Przedstawione na rysunku narzędzie, które służy do przycinania twardych bloków wapienno-piaskowych, to

Ilustracja do pytania
A. piła.
B. gilotyna.
C. prowadnica.
D. strug.
Odpowiedź "gilotyna" jest prawidłowa, ponieważ narzędzie to jest specjalnie zaprojektowane do precyzyjnego przycinania twardych materiałów, takich jak wapień i piaskowiec. Gilotyna do kamienia wykorzystuje mechaniczny nacisk ostrza, co pozwala na uzyskanie dokładnych i czystych cięć. W praktyce, zastosowanie gilotyny jest niezbędne w kamieniarstwie, gdzie precyzja cięcia jest kluczowa dla zachowania estetyki i funkcjonalności końcowych produktów. Gilotyny tego typu są standardem w wielu zakładach zajmujących się obróbką kamienia, a ich stosowanie przyczynia się do zwiększenia efektywności pracy oraz redukcji odpadów materiałowych. Warto również wspomnieć, że gilotyny są wykorzystywane w różnych technikach budowlanych i dekoracyjnych, w tym w tworzeniu nagrobków, elementów architektonicznych i rzeźb. Zastosowanie odpowiednich narzędzi, jak gilotyna, jest zgodne z najlepszymi praktykami branżowymi, co podkreśla ich znaczenie w profesjonalnej obróbce materiałów kamiennych.

Pytanie 32

Gdzie można wykorzystać zaprawy gipsowe?

A. do murowania fundamentów z elementów betonowych
B. do tynkowania elewacji budynków
C. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
D. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
Stwierdzenie, że zaprawy gipsowe można stosować do tynkowania ścian zewnętrznych, jest nieprawidłowe, ponieważ gips nie jest materiałem odpornym na działanie warunków atmosferycznych, takich jak deszcz czy zmiany temperatury. Tynki gipsowe, ze względu na swoją strukturę i właściwości, nadają się jedynie do stosowania w pomieszczeniach zamkniętych, gdzie nie występuje duża wilgotność ani agresywne czynniki zewnętrzne. Podobnie, tynkowanie ścian działowych w pomieszczeniach wilgotnych również nie jest zalecane, gdyż gips w takim środowisku może ulegać degradacji, co prowadzi do uszkodzenia struktury i estetyki wykończenia. Co więcej, wykorzystanie zapraw gipsowych do murowania ścian fundamentowych z elementów betonowych jest błędne, ponieważ fundamenty wymagają materiałów o wysokiej wytrzymałości na ściskanie i odporności na wilgoć, a gips nie spełnia tych wymagań. Typowe błędy myślowe związane z tymi odpowiedziami to nieznajomość właściwości materiałów budowlanych oraz ich zastosowania w kontekście różnorodnych warunków środowiskowych. Rekomendacje dotyczące stosowania zapraw budowlanych powinny być oparte na ich specyfikacjach technicznych oraz na normach budowlanych, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 33

W przedstawiony na rysunku graficzny sposób oznacza się w dokumentacji projektowej beton

Ilustracja do pytania
A. lekki zbrojony.
B. zwykły niezbrojony.
C. lekki niezbrojony.
D. zwykły zbrojony.
Wybór odpowiedzi, która nie jest "zwykły niezbrojony", jest błędny, ponieważ każda z pozostałych opcji odnosi się do betonu, który ma dodatkowe właściwości lub różnice w składzie. Beton "zwykły zbrojony" oznacza zastosowanie zbrojenia, które podnosi jego wytrzymałość na rozciąganie, co jest istotne w konstrukcjach narażonych na takie obciążenia, ale nie ma to zastosowania w przypadku, gdy rysunek przedstawia beton niezbrojony. Z kolei "lekki zbrojony" oraz "lekki niezbrojony" odnosi się do betonu o obniżonej gęstości, co jest często stosowane w wypadku budowy lekkich konstrukcji, gdzie wymagana jest oszczędność masy, np. w budynkach wysokich. Te błędne odpowiedzi mogą wynikać z nieporozumienia dotyczącego klasyfikacji betonu oraz jego właściwości. Ważne jest zrozumienie podstawowych różnic między tymi rodzajami betonu oraz ich zastosowaniem w praktyce budowlanej, ponieważ niewłaściwe oznaczenie może prowadzić do poważnych konsekwencji w projektowaniu i wykonawstwie, w tym obniżonej nośności i trwałości konstrukcji.

Pytanie 34

Na podstawie informacji zamieszczonych w tabeli określ maksymalną dopuszczalną grubość tynku pospolitego dwuwarstwowego na siatce stalowej.

Rodzaj tynkuGrubość tynku [mm]Dopuszczalne odchyłki grubości [mm]
pospolity dwuwarstwowy na podłożu z prefabrykowanych płyt betonowych5+3
pospolity dwuwarstwowy na stalowej siatce20±3
pospolity trójwarstwowy na podłożu gipsowym12-4
+2
pospolity trójwarstwowy na podłożu betonowym18-4
+2
A. 20 mm
B. 23 mm
C. 22 mm
D. 17 mm
Wybór wartości, która nie wynosi 23 mm, jest wynikiem nieporozumienia dotyczącego zasad określania maksymalnej grubości tynku. Na przykład, odpowiedzi takie jak 22 mm, 20 mm czy 17 mm ignorują ważny aspekt, jakim jest maksymalne dodatnie odchylenie, które w tym przypadku wynosi 3 mm. Odpowiedź 20 mm jest równoznaczna z podstawową grubością tynku, ale nie uwzględnia możliwości zastosowania dodatkowej warstwy tynku, co w praktyce jest często wykorzystywane dla poprawy estetyki oraz izolacji. Wartością maksymalną jest zatem nie tylko sama grubość, ale także uwzględnienie dodatkowej warstwy, która może być niezbędna w specyficznych warunkach budowlanych. W kontekście standardów branżowych, takich jak PN-EN 998-1, błędne podejście do grubości tynku może prowadzić do poważnych problemów w przyszłości, takich jak pęknięcia, odpadający tynk oraz inne defekty, które są kosztowne w naprawie. Dlatego kluczowe jest, aby dostosować się do ustalonych norm i zaleceń dotyczących grubości tynku, aby uniknąć problemów związanych z nieodpowiednimi parametrami wykonawczymi.

Pytanie 35

Sposób spoinowania zewnętrznej powierzchni muru, który nie będzie pokrywany tynkiem, powinien być przeprowadzony za pomocą

A. listwy tynkarskiej
B. odbijaka dłutowego
C. żelazka do spoinowania
D. gwoździa tynkarskiego
Żelazko do spoinowania jest narzędziem zaprojektowanym specjalnie do wygładzania i formowania spoin w murach, co czyni je idealnym do spoinowania zewnętrznych powierzchni muru, które nie są przeznaczone do tynkowania. Użycie żelazka do spoinowania pozwala na precyzyjne uformowanie spoin, co wpływa na estetykę oraz trwałość konstrukcji. Dzięki odpowiedniej technologii pracy z tym narzędziem, można uzyskać gładkie, równe i estetycznie wyglądające spoiny, które nie tylko poprawiają walory wizualne muru, ale także przyczyniają się do jego ochrony przed czynnikami atmosferycznymi. W standardach budowlanych i dobrych praktykach branżowych zaleca się stosowanie żelazek do spoinowania, aby zapewnić pełną kontrolę nad procesem i uzyskać maksymalną jakość wykonania. Przykładem zastosowania żelazka do spoinowania może być praca z cegłami lub bloczkami betonowymi, gdzie odpowiednia technika zapewnia nie tylko estetykę, ale i wytrzymałość konstrukcji.

Pytanie 36

W jakim wiązaniu wykonano mur przedstawiony na rysunku?

Ilustracja do pytania
A. Krzyżykowym.
B. Wozówkowym.
C. Pospolitym.
D. Główkowym.
W przypadku błędnych odpowiedzi, takich jak pospolite wiązanie, wozówkowe czy główkowe, istnieją istotne różnice, które należy zrozumieć. Pospolite wiązanie cechuje się tym, że cegły są układane jedna na drugiej w linii, co prowadzi do powstawania długich spoin pionowych. Taki sposób układania jest mniej stabilny i może prowadzić do pęknięć w murze, zwłaszcza w przypadku dużych obciążeń. Wiązanie wozówkowe z kolei, gdzie cegły są układane w sposób naprzemienny, również nie zapewnia takiej stabilności jak krzyżykowe, ponieważ nie przeciwdziała rozwojowi pęknięć. Główkowe wiązanie, polegające na układaniu cegieł wzdłuż krawędzi, jest stosowane w specyficznych konstrukcjach, ale nie ma zastosowania w typowych murach, jak te przedstawione na rysunku. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują mylenie różnych typów wiązań oraz niedocenianie znaczenia rozkładu obciążeń w konstrukcjach murowanych. Znajomość i umiejętność rozróżniania tych technik jest kluczowa dla każdego fachowca w dziedzinie budownictwa, aby zapewnić trwałość i bezpieczeństwo budowli.

Pytanie 37

W hurtowni "Bud-kom" sprzedaż bloczków z betonu komórkowego odbywa się wyłącznie w pełnych paletach. Zgodnie z potrzebami do budowy ścian budynku wymagane jest 375 sztuk bloczków o wymiarach 480×199×599 mm. Na jednej palecie mieści się 24 bloczki o tych rozmiarach. Cena tych bloczków wynosi 631,00 zł za paletę. Jakie będą całkowite koszty zakupu bloczków w tej hurtowni zgodnie z wymaganiami?

A. 10 096,00 zł
B. 9 465,00 zł
C. 9 750,00 zł
D. 10 125,00 zł
W przypadku niepoprawnych odpowiedzi często pojawiają się błędy wynikające z nieprawidłowego podejścia do obliczania potrzebnych palet. Niektóre osoby mogą myśleć, że wystarczy podzielić całkowitą liczbę bloczków przez liczbę bloczków na palecie i zaokrąglić w dół, co prowadzi do błędnych obliczeń. W rzeczywistości, przy zakupie materiałów budowlanych, zawsze należy zaokrąglać w górę, aby uniknąć niedoborów podczas budowy. Ponadto, część osób może zignorować fakt, że konieczne jest uwzględnienie pełnych palet, co jest standardową praktyką w branży budowlanej. Kiedy przyjmujemy błędne liczby lub nie uwzględniamy zasadności zaokrąglania, możemy nie tylko źle oszacować koszty, ale także napotkać problemy z realizacją zamówienia. Warto także zwrócić uwagę na koszt jednostkowy palety, który w naszym przypadku wynosi 631,00 zł i należy go prawidłowo pomnożyć przez właściwą liczbę palet, co w kontekście profesjonalnego zarządzania projektami budowlanymi ma kluczowe znaczenie. Właściwe obliczenia są niezbędne do zachowania płynności finansowej projektu oraz do efektywnego zarządzania budżetem.

Pytanie 38

Jakie składniki należy podgrzać podczas przygotowywania zaprawy murarskiej w chłodnych miesiącach, gdy temperatura otoczenia spada poniżej +5°C?

A. Piasek i wodę przed ich wymieszaniem
B. Piasek i cement przed ich wymieszaniem
C. Wodę i piasek po ich wymieszaniu
D. Wodę i cement po ich wymieszaniu
Tu pojawił się błąd! Podgrzewanie wody i cementu po ich zmieszaniu nie jest zgodne z tym, co mówi technologia wiązania zaprawy. Cement potrzebuje dokładnej ilości wody, żeby dobrze działać. Jak dodasz wodę do już wymieszanej zaprawy, to może obniżyć efekt wiązania. A woda, która była podgrzana po zmieszaniu, nie pomoże, bo nie będzie miała odpowiedniego wpływu na proces hydratacji. Może to prowadzić do osłabionej wytrzymałości zaprawy. Poza tym, podgrzewanie piasku i cementu przed wymieszaniem może zmieniać ich właściwości przez niepożądane reakcje chemiczne. Cement nie powinien być poddawany wysokim temperaturom, bo traci swoją zdolność do wiązania z wodą. Generalnie, każdy etap przygotowania zaprawy powinien być przemyślany, a jak coś pójdzie nie tak, to może osłabić cały budynek i kosztować później dodatkowo. Lepiej trzymać się zalecanych procedur, które mówią o podgrzewaniu składników przed połączeniem.

Pytanie 39

Kolejność technologiczna działań na pierwszym etapie prac rozbiórkowych budynku przy użyciu metod ręcznych przedstawia się następująco:

A. rozbiórka dachu, demontaż okien, demontaż instalacji budowlanych
B. demontaż okien, rozbiórka ścianek działowych, demontaż instalacji budowlanych
C. demontaż instalacji budowlanych, demontaż okien i drzwi, rozbiórka ścianek działowych
D. rozbiórka dachu, rozbiórka ścianek działowych, demontaż instalacji budowlanych
W analizie niepoprawnych odpowiedzi dostrzegamy kilka kluczowych błędów w podejściu do kolejności prac rozbiórkowych. Pierwszym z nich jest pomijanie znaczenia demontażu instalacji budowlanych na samym początku. Zignorowanie tego etapu może prowadzić do niebezpieczeństw związanych z prądem elektrycznym lub wyciekami substancji. Każde z wymienionych podejść zaczyna od rozbiórki dachu lub innych elementów konstrukcyjnych, co jest niewłaściwe, gdyż może to stwarzać ryzyko przygniecenia pracowników przez opadające materiały. Kolejnym błędem jest niezrozumienie, że odpowiednia kolejność prac wpływa na efektywność całego procesu. Demontaż okien i drzwi przed rozbiórką dachu czy ścianek działowych spowodowałby, że z wnętrza budynku wydostaje się kurz i zanieczyszczenia, co dodatkowo komplikowałoby prace. W kontekście praktycznym, doświadczenia na budowach pokazują, że niewłaściwa kolejność może prowadzić do niepotrzebnych opóźnień oraz wzrostu kosztów. Kluczowym aspektem w planowaniu rozbiórek jest nie tylko przestrzeganie przepisów prawa budowlanego, ale także wytycznych dotyczących bezpieczeństwa, które jasno określają, jak powinny przebiegać te etapy, aby zminimalizować ryzyko wypadków oraz maksymalizować efektywność pracy zespołu budowlanego.

Pytanie 40

Jak należy przeprowadzać wewnętrzne tynki gipsowe jednowarstwowe z gipsu tynkarskiego GTM?

A. Ręcznie poprzez nakładanie rzadkiej zaprawy czerpakiem
B. Mechanicznie przy użyciu agregatu tynkarskiego
C. Ręcznie poprzez rozkładanie zaprawy gęstoplastycznej pacą
D. Mechanicznie przy pomocy działka natryskowego
Ręczne natryskiwanie tynku czerpakiem oraz stosowanie działka natryskowego są metodami, które mogą wydawać się atrakcyjne, jednak niosą ze sobą szereg ograniczeń i potencjalnych problemów. Ręczne narzucanie rzadkiej zaprawy czerpakiem często prowadzi do nierówności powierzchni, co wymaga późniejszych poprawek i może zwiększać całkowity czas realizacji projektu. Taka metoda wymaga od pracownika dużej wprawy, aby uzyskać zadowalający efekt, a także jest bardziej czasochłonna, co w kontekście komercyjnych budów stanowi istotny minus. Z kolei mechaniczne aplikowanie tynku przy użyciu działka natryskowego, choć może oferować pewne korzyści, nie jest typowym rozwiązaniem dla tynków jednowarstwowych. Takie urządzenia są zazwyczaj stosowane w przypadku innych materiałów, jak np. farby lub masy izolacyjne, co może wprowadzać w błąd. Ręczne naciąganie zaprawy gęstoplastycznej pacą również ma swoje ograniczenia, ponieważ wymaga dużej precyzji i doświadczenia, co nie zawsze jest dostępne na placu budowy. Stosowanie tego typu technik wiąże się z ryzykiem rozczarowujących efektów końcowych, co może obniżyć jakość i trwałość tynków. Właściwe wykonanie tynków gipsowych wymaga zastosowania technologii, które zapewniają zarówno efektywność, jak i wysoką jakość, a agregaty tynkarskie zdecydowanie spełniają te wymagania.