Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 lutego 2026 01:51
  • Data zakończenia: 8 lutego 2026 02:10

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. posiadający aparat różnicowoprądowy
B. który działa z przekaźnikiem czasowym
C. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
D. który współdziała z przekaźnikiem sygnalizacyjnym
Wyłącznik zabezpieczający przewody przed przeciążeniem i zwarciem jest kluczowym elementem systemu elektroinstalacyjnego. Właściwie dobrany wyłącznik, wyposażony w wyzwalacze przeciążeniowe i zwarciowe, automatycznie odcina zasilanie w przypadku, gdy prąd przekroczy dozwoloną wartość. Wyzwalacze przeciążeniowe działają na zasadzie detekcji nadmiernego natężenia prądu, co może prowadzić do przegrzania przewodów i ryzyka pożaru. Z kolei wyzwalacze zwarciowe są odpowiedzialne za natychmiastowe odłączenie obwodu w przypadku zwarcia, co chroni zarówno urządzenia, jak i instalację elektryczną. Przykładem zastosowania takiego wyłącznika może być jego instalacja w domowych instalacjach elektrycznych, gdzie chroni obwody zasilające gniazda elektryczne i urządzenia gospodarstwa domowego. Zgodnie z normami IEC oraz polskimi standardami, instalacje powinny być zabezpieczone przed skutkami przeciążeń i zwarć, co podkreśla znaczenie tego typu wyłączników w zapewnieniu bezpieczeństwa.

Pytanie 2

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. DC 500 V i AC 100 V
B. AC 500 V i DC 50 V
C. AC 500 V i DC 10 V
D. DC 500 V i AC 50 V
Podstawowym błędem w rozważanych opcjach jest nieodpowiednie dopasowanie zakresów pomiarowych do specyfiki zasilania w systemie sterowania bramą garażową. W przypadku, gdy silniki pracują na napięciu stałym 24 V, zakres DC powinien być wystarczająco niski, aby precyzyjnie mierzyć to napięcie. Odpowiedzi sugerujące zakres DC 10 V są niewystarczające, ponieważ nie pozwolą na dokładne pomiary w obrębie 24 V. Z kolei wybór zakresu AC 50 V w innych odpowiedziach również nie jest odpowiedni, biorąc pod uwagę, że zasilanie układu sterowania wynosi 230 V. Bezpieczne pomiary napięcia zmiennego w takich warunkach wymagają zakresu co najmniej 500 V. Użytkownicy, którzy wybierają te nieodpowiednie zakresy mogą być narażeni na ryzyko pomiaru, które może skutkować uszkodzeniem sprzętu lub błędnymi diagnozami. Ważne jest, aby technicy pamiętali o tym, że pomiary napięcia powinny być dokonywane w sposób zgodny z normami elektrycznymi i dobrymi praktykami, aby zapewnić zarówno dokładność wyników, jak i bezpieczeństwo pracy. Właściwy dobór zakresów pomiarowych jest kluczowy i nie można go zbagatelizować, gdyż ma to wpływ na efektywność konserwacji i bezpieczeństwo operacji elektrycznych.

Pytanie 3

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 130 mA
B. 170 mA
C. 106 mA
D. 208 mA
W przypadku, gdy wybrano inną wartość niż 208 mA, można zauważyć, że takie błędne odpowiedzi mogą wynikać z kilku nieporozumień dotyczących odczytów z miliamperomierza. Często zdarza się, że osoby nie zwracają uwagi na położenie wskazówki lub nie potrafią prawidłowo oszacować wartości, co skutkuje błędnymi wnioskami. Wartości takie jak 130 mA, 170 mA czy 106 mA są znacznie niższe niż rzeczywiste wskazanie. To może sugerować, że osoba udzielająca takiej odpowiedzi nie przeanalizowała dokładnie skali, na której dokonuje się pomiaru, lub nie rozumie, jak działa miliamperomierz. Zrozumienie, jak interpretować odczyty, jest niezbędne w praktyce inżynierskiej. Odczytywanie wartości z miliamperomierza wymaga precyzyjnego spojrzenia na wskaźnik, a także uwzględnienia tolerancji błędu pomiaru, co jest szczególnie istotne w obwodach wymagających ścisłej kontroli parametrów. Zastosowanie niewłaściwej wartości prądu w projektach elektronicznych może prowadzić do uszkodzenia komponentów lub niewłaściwego działania całego układu. Dlatego tak ważne jest, aby umiejętnie korzystać z narzędzi pomiarowych i rozumieć ich zasady działania.

Pytanie 4

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Wkrętakiem z nacięciem Torx.
B. Kluczem nasadowym.
C. Wkrętakiem z nacięciem Phillips.
D. Kluczem imbusowym.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 5

Ile wynosi wartość międzyszczytowa przedstawionego przebiegu napięcia?

Ilustracja do pytania
A. 6,0 V
B. 5,0 V
C. 1,5 V
D. 2,5 V
Poprawnie – na przedstawionym wykresie napięcie zmienia się między poziomem bliskim 0 V a poziomem 5 V, więc wartość międzyszczytowa wynosi 5,0 V. Wartość międzyszczytowa (często oznaczana jako Upp, Uppk lub Upk-pk) to po prostu różnica między wartością maksymalną a minimalną sygnału: Upp = Umax − Umin. Na rysunku widać, że dolny poziom przebiegu praktycznie dotyka osi 0 V, a górny poziom jest na wysokości 5 V, więc: Upp = 5 V − 0 V = 5 V. W praktyce pomiarowej, szczególnie przy przebiegach prostokątnych, trójkątnych czy dowolnych niestandardowych, wartość międzyszczytowa jest jednym z podstawowych parametrów opisu sygnału, obok wartości skutecznej i wartości średniej. Oscyloskopy cyfrowe mają nawet dedykowaną funkcję pomiaru Vpp, którą w serwisie i w laboratorium stosuje się praktycznie non stop. Moim zdaniem dobrze jest odruchowo patrzeć na przebieg i automatycznie oceniać, czy podane napięcie jest amplitudą, wartością międzyszczytową, czy może wartością skuteczną. W układach z elektroniką cyfrową, np. z mikrokontrolerami, ten konkretny poziom 5 V jest typowy dla zasilania logiki TTL/CMOS, więc taki prostokąt 0–5 V to typowy sygnał sterujący. Z kolei przy badaniu zasilaczy impulsowych albo generatorów funkcji na oscyloskopie projektant często sprawdza właśnie, czy napięcie międzyszczytowe zgadza się z założeniami katalogowymi i czy nie dochodzi do przesterowania wejść urządzeń. Warto też pamiętać, że dla przebiegów symetrycznych sinusoidalnych wartości międzyszczytowej nie mylimy z amplitudą: dla sinusa Upp = 2·Um, a tutaj prostokąt jest niesymetryczny względem zera, więc sprawa jest prostsza – liczymy zwykłą różnicę między górą i dołem.

Pytanie 6

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
B. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
C. Wykorzystywanie urządzeń o zbyt dużej mocy
D. Użycie wyłącznika o zbyt długim czasie reakcji
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 7

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K2, K3, K4, K5, K6, K7
B. K7, K2, K3, K6, K4, K5, K1
C. K1, K5, K4, K6, K3, K7, K2
D. K1, K5, K4, K6, K3, K2, K7
Odpowiedź K1, K5, K4, K6, K3, K7, K2 jest poprawna, ponieważ kolejność załączania styczników odzwierciedla logiczny przepływ energii w układzie rozruchowym silnika pierścieniowego. Po załączeniu wyłączników Q i Q1 oraz przycisku S1, stycznik K1, jako pierwszy w obwodzie, zostaje aktywowany, co jest zgodne z zasadami działania obwodów elektrycznych. Zamykanie styków K1 (13-14) uruchamia stycznik K5, który jest kluczowy w kolejnych etapach rozruchu. Następnie, przez zamknięcie styków K5, do akcji wchodzi K4, a następnie K6, które są połączone szeregowo, co jest typowe dla układów rozruchowych silników. Ważne jest, aby zrozumieć znaczenie takiej kolejności: każdy stycznik aktywuje kolejne elementy układu, co pozwala na kontrolowany i bezpieczny rozruch silnika. Zasady te są zgodne z normami IEC 60947 dotyczącymi aparatury łączycej. W praktyce, taka sekwencja działania jest nie tylko efektywna, ale także minimalizuje ryzyko przeciążenia, co jest kluczowe w projektowaniu systemów automatyki przemysłowej.

Pytanie 8

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Jednobiegunowy.
B. Grupowy.
C. Szeregowy.
D. Dwubiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 9

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Czasu działania wyłącznika RCD
B. Rezystancji uziemienia
C. Prądu zadziałania wyłącznika RCD
D. Rezystancji izolacji
Mierzenie prądu zadziałania wyłącznika RCD oraz czasu jego zadziałania są istotnymi czynnikami w kontekście ochrony przeciwporażeniowej, ale nie są bezpośrednio związane z pomiarem izolacji. RCD, czyli wyłącznik różnicowoprądowy, ma na celu wykrywanie prądów upływowych, które mogą prowadzić do porażenia prądem, jednak jego skuteczność nie zastępuje pomiaru rezystancji izolacji. Mierzenie rezystancji uziemienia jest również ważne, ponieważ zapewnia dobrą drogę powrotną dla prądu w sytuacji awaryjnej, ale nie dostarcza informacji o stanie izolacji przewodów. Typowym błędem myślowym jest mylenie różnych aspektów ochrony elektrycznej i skupienie się wyłącznie na funkcjonowaniu RCD, co może prowadzić do niepełnego zrozumienia zagadnienia ochrony przeciwporażeniowej. Aby zapewnić pełne bezpieczeństwo, konieczne jest jednoczesne uwzględnienie różnych parametrów instalacji, a nie ograniczanie się tylko do jednego z nich. Dlatego kluczowe jest, aby nie tylko polegać na pomiarach RCD, ale również regularnie kontrolować rezystancję izolacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 10

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 20 A, 16 A, 20 A, 16 A
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 11

Który element elektroniczny oznacza przedstawiony symbol graficzny?

Ilustracja do pytania
A. Tyrystor.
B. Diodę Zenera.
C. Diodę LED.
D. Triak.
Na tym schemacie widać symbol diody z dodatkowym, charakterystycznym załamaniem linii przy katodzie. To jest właśnie graficzne oznaczenie diody Zenera, a nie typowych elementów, z którymi bywa mylona. W praktyce uczniowie często patrzą tylko na ogólny kształt symbolu i kojarzą go na przykład z triakiem albo tyrystorem, bo wiedzą, że to też są elementy półprzewodnikowe stosowane w układach mocy. Problem w tym, że triak i tyrystor mają zupełnie inne symbole: zawierają dodatkową elektrodę sterującą (bramkę), a ich struktura na rysunku jest symetryczna lub półsymetryczna względem kierunku przewodzenia. Triak przewodzi w obu kierunkach i symbolicznie pokazany jest jak dwa tyrystory połączone przeciwsobnie, z jedną wspólną bramką. Tyrystor z kolei ma wyraźnie zaznaczoną bramkę (G) oraz kierunek przewodzenia od anody do katody, ale bez żadnego „złamania” kreski jak w diodzie Zenera. Dioda LED ma inny, moim zdaniem bardzo charakterystyczny symbol: od diody wychodzą strzałki symbolizujące emisję światła. Jeśli na rysunku nie ma tych strzałek, to nie jest LED, nawet jeśli w praktyce dioda Zenera bywa montowana w obudowach podobnych gabarytowo do małych diod świecących. Z kolei zwykła dioda prostownicza ma prostą kreskę katody, bez dodatkowego zagięcia czy „ząbka”. To właśnie to zagięcie od strony katody odróżnia symbol diody Zenera od symbolu diody prostowniczej. Typowy błąd myślowy polega na tym, że ktoś widzi oznaczenia A i K, kojarzy to z diodą i zaznacza pierwszą znaną mu diodę, np. LED, bez analizy szczegółów symbolu. W technice, szczególnie przy czytaniu schematów instalacji sterowniczych i układów zasilania, takie pomyłki potrafią mocno namieszać przy diagnozie usterek. Dlatego warto wyrobić sobie nawyk zwracania uwagi na drobne elementy symbolu: obecność lub brak strzałek (LED), kształt katody (Zener), dodatkowe wyprowadzenie bramki (tyrystor, triak), symetrię układu. To są drobiazgi, ale w profesjonalnej praktyce elektryka i elektronika decydują o poprawnym zrozumieniu działania całego obwodu.

Pytanie 12

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YLY 500 V 2,5 mm2
B. ALY 500 V 2,5 mm2
C. ADY 500 V 2,5 mm2
D. YDY 500 V 2,5 mm2
Odpowiedź ADY 500 V 2,5 mm2 jest jak najbardziej trafna. To standardowy symbol przewodu jednożyłowego wykonanego z aluminium, który ma izolację z PVC, czyli polichlorku winylu. W tej nazwie 'A' oznacza, że materiał żyły to aluminium, 'D' informuje nas, że mamy do czynienia z PVC, a 'Y' pokazuje, że to przewód jednożyłowy. Wiedza o takich oznaczeniach jest naprawdę ważna w inżynierii, bo dzięki temu można dobrze dobierać przewody do różnych zastosowań. To jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przewody o średnicy 2,5 mm2 są szeroko stosowane w budynkach mieszkalnych i przemysłowych, gdzie potrzebna jest odpowiednia wydolność prądowa. Napięcie 500 V oznacza maksymalne napięcie, które można stosować, co jest zgodne z normą PN-EN 60228 dotyczącą przewodów elektrycznych.

Pytanie 13

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 500 V
B. 1000 V
C. 120 V
D. 250 V
Wybór wartości 500 V jako minimalnego napięcia izolacji dla narzędzi używanych w pracach pod napięciem w instalacjach mieszkaniowych jest zgodny z normami bezpieczeństwa, które nakładają wymogi dotyczące odpowiedniego poziomu izolacji. Narzędzia izolowane o napięciu 500 V są powszechnie stosowane w branży elektrycznej, aby zapewnić bezpieczeństwo podczas wykonywania czynności konserwacyjnych lub naprawczych. Takie narzędzia są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, a ich izolacja powinna być testowana w odpowiednich warunkach. Przykłady takich narzędzi to wkrętaki, szczypce czy kombinerki, które mają oznaczenia jakościowe i są produkowane zgodnie z międzynarodowymi standardami, takimi jak IEC 60900, które definiują wymagania dla narzędzi izolowanych. Użycie narzędzi o odpowiedniej izolacji nie tylko chroni technika, ale także zapewnia, że prace są wykonywane zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego.

Pytanie 14

Który z przyrządów służy do bezpośredniego pomiaru współczynnika mocy?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź C jest prawidłowa, ponieważ watomierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy czynnej w obwodach elektrycznych. W kontekście współczynnika mocy, który jest kluczowym parametrem w systemach prądu przemiennego, watomierz pozwala na precyzyjne określenie wartości mocy czynnej, co jest niezbędne do obliczenia współczynnika mocy (cosφ). W praktyce, stosując wzór: cosφ = P/S, gdzie P to moc czynna, a S to moc pozorna, można z łatwością ustalić współczynnik mocy. Użycie watomierza jest nieocenione w zastosowaniach takich jak optymalizacja zużycia energii w instalacjach elektrycznych, co pozwala na identyfikację strat energii i poprawę efektywności energetycznej. Współczesne standardy, takie jak IEC 61557, podkreślają znaczenie pomiarów współczynnika mocy dla zapewnienia efektywności systemów zasilania oraz jakości energii elektrycznej.

Pytanie 15

Symbol graficzny przedstawiony na rysunku oznacza w instalacjach elektrycznych

Ilustracja do pytania
A. skrzyżowanie przewodów bez połączenia elektrycznego.
B. przewód ochronny uziemiony.
C. przewód ochronny nieuziemiony.
D. połączenie elektryczne z korpusem, obudową (masą).
Wydaje mi się, że wybór złej odpowiedzi może wynikać z nieporozumień na temat podstawowych zasad połączeń elektrycznych. Przewód ochronny, ten uziemiony, ma na celu zmniejszenie ryzyka porażenia prądem, ale nie oddaje do końca tego, co znaczy połączenie z korpusem. To jest kluczowy element, żeby wszystko działało jak należy. Z kolei przewód ochronny, który nie jest uziemiony, to też zła opcja, bo nie oferuje wystarczającego bezpieczeństwa. Oba wybory pomijają jedną z podstawowych zasad – w instalacjach elektrycznych musimy dążyć do najlepszego uziemienia, by chronić zarówno urządzenia, jak i ludzi. Dodatkowo nie można mylić połączenia elektrycznego z korpusem z zjawiskiem skrzyżowania przewodów, gdzie nie ma złączenia. To może prowadzić do błędnych interpretacji schematów elektrycznych. A te schematy są zaprojektowane tak, żeby dokładnie pokazać, jak i gdzie przewody mają być podłączone. Zrozumienie ich znaczenia to klucz do prawidłowego wykonania instalacji. Jeśli się tego nie zrozumie, mogą się pojawić poważne problemy, jak większe ryzyko pożaru czy uszkodzenia sprzętu. Dlatego korzystanie z odpowiednich oznaczeń, które są zgodne z normami, jest naprawdę istotne dla bezpieczeństwa i efektywnego działania systemów elektrycznych.

Pytanie 16

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 300 V i 500 V
B. 200 V i 300 V
C. 200 V i 500 V
D. 500 V i 300 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 17

Którego miernika należy użyć do pomiaru natężenia oświetlenia w pomieszczeniu biurowym?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Luksomierz to specjalistyczne urządzenie zaprojektowane do pomiaru natężenia oświetlenia, co czyni go idealnym narzędziem do oceny warunków oświetleniowych w pomieszczeniach biurowych. Pomiar natężenia oświetlenia jest kluczowy, aby zagwarantować odpowiednią ergonomię i komfort pracy. Standardy, takie jak PN-EN 12464-1, zalecają minimalne poziomy oświetlenia w różnych typach pomieszczeń, co podkreśla znaczenie tego pomiaru w kontekście zdrowia i wydajności pracowników. Używając luksomierza, można z łatwością określić, czy oświetlenie spełnia wymagania norm dotyczących natężenia oświetlenia, umożliwiając wprowadzenie odpowiednich korekt w celu poprawy warunków pracy. Praktyczne zastosowania luksomierza obejmują także monitorowanie zmian w oświetleniu w ciągu dnia czy ocenę efektywności różnych źródeł światła, co jest nieocenione w projektowaniu przestrzeni biurowych i utrzymaniu zgodności z regulacjami budowlanymi.

Pytanie 18

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Łącznik krańcowy.
B. Dławik.
C. Autotransformator.
D. Gniazdo z transformatorem separacyjnym.
Wybór innych odpowiedzi, takich jak autotransformator, łącznik krańcowy czy dławik, wskazuje na pewne nieporozumienia dotyczące oznaczania elementów w schematach elektrycznych. Autotransformator, na przykład, charakteryzuje się innym symbolem, który odzwierciedla jego funkcję, polegającą na regulacji napięcia na podstawie wtapiania w obwód. Z kolei łącznik krańcowy, używany do kończenia obwodów w aplikacjach, takich jak automatyka przemysłowa, również ma swój unikalny symbol, który różni się od symbolu gniazda z transformatorem separacyjnym. Dławik, z drugiej strony, jest elementem pasywnym używanym do ograniczania prądu w obwodach, a jego symbol graficzny jest zupełnie inny i odnosi się do jego charakterystyki indukcyjnej. Typowym błędem myślowym jest zatem utożsamianie różnych elementów na podstawie podobieństw w funkcjonalności, a nie ich rzeczywistych symboli. Zrozumienie różnorodności symboli oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowej interpretacji schematów elektrycznych. Wymaga to nie tylko znajomości samego sprzętu, ale także umiejętności stosowania norm i standardów, co jest fundamentalne w dziedzinie elektrotechniki.

Pytanie 19

Które czynności i w jakiej kolejności należy wykonać podczas wymiany uszkodzonego łącznika?

A. Załączyć napięcie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik.
B. Wymontować uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń.
C. Odłączyć napięcie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń.
D. Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik.
Prawidłowa odpowiedź pokazuje klasyczną, podręcznikową kolejność czynności przy pracy na uszkodzonym łączniku: najpierw odłączyć napięcie, potem sprawdzić brak napięcia, a dopiero na końcu cokolwiek rozkręcać i wymontowywać. To jest dokładnie to, co wymagają zasady BHP i normy dotyczące eksploatacji urządzeń i instalacji elektrycznych (w praktyce mówi się o zasadzie: wyłącz – zabezpiecz – sprawdź). Samo „odłączyć napięcie” to za mało, bo zawsze może się zdarzyć pomyłka przy wyłączniku, zły opis obwodu w rozdzielnicy albo ktoś w międzyczasie coś przełączy. Dlatego drugi krok – kontrola braku napięcia – jest obowiązkowy. Robi się to odpowiednim przyrządem (wskaźnik dwubiegunowy, miernik), najpierw sprawdzonym na źródle, o którym wiemy, że jest pod napięciem. Dopiero gdy masz pewność, że na przewodach przy łączniku nie ma napięcia, możesz bezpiecznie odkręcić osprzęt, odsunąć go od puszki i wymontować uszkodzony element. W praktyce, przy wymianie łącznika światła w mieszkaniu, wygląda to tak: wyłączasz bezpiecznik danego obwodu w rozdzielnicy, zabezpieczasz go np. kartką „nie załączać – praca na instalacji”, sprawdzasz wskaźnikiem przy łączniku, czy faza faktycznie zniknęła, i dopiero wtedy odkręcasz ramkę, mechanizm i odłączasz przewody. Moim zdaniem warto wyrobić sobie nawyk, że bez sprawdzenia braku napięcia nie dotyka się żadnego przewodu, nawet jak „na 100%” wiemy, że jest wyłączone. To jest standard branżowy, który po prostu ratuje zdrowie i życie. Dodatkowo taka procedura wymusza uporządkowaną pracę: łatwiej zachować kontrolę nad tym, co się robi, nie pogubić się w przewodach i uniknąć przypadkowego zwarcia.

Pytanie 20

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. przycisk zwiemy.
B. styk pomocniczy zwiemy.
C. przycisk rozwierny.
D. styk pomocniczy rozwierny.
Przycisk rozwierny, nazywany również przyciskiem otwierającym, jest kluczowym elementem w wielu zastosowaniach elektrycznych oraz automatyce. W stanie spoczynku przycisk ten zapewnia przepływ prądu, co oznacza, że obwód jest zamknięty. Po jego aktywowaniu, czyli wciśnięciu, obwód zostaje otwarty, co przerywa przepływ prądu. Tego typu przyciski są powszechnie stosowane w różnych urządzeniach, takich jak dzwonki, alarmy czy systemy automatyki budynkowej. Ich działanie opiera się na zasadzie, że w momencie wciśnięcia przycisku, dochodzi do przełączenia stanu obwodu – z zamkniętego na otwarty. Zastosowanie przycisku rozwiernego jest zgodne z dobrymi praktykami w inżynierii elektrycznej, gdzie kluczowe jest zapewnienie bezpieczeństwa użytkowników. Przykładem może być system alarmowy, gdzie przycisk rozwierny umożliwia wyłączenie alarmu przez użytkownika, co jest istotne w sytuacjach awaryjnych. Ponadto, standardy IEC 60947-5-1 definiują wymagania dotyczące bezpiecznego użytkowania i montażu takich elementów, co czyni je niezawodnymi w codziennym użytkowaniu.

Pytanie 21

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. krokowych
B. dotykowych
C. rażeniowych
D. skutecznych
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 22

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 2.
C. Symbolem 1.
D. Symbolem 3.
Odpowiedź oznaczona symbolem 3 jest poprawna, ponieważ ten symbol graficzny w dokumentacji technicznej jednoznacznie przedstawia sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych. W polskich normach, jak PN-IEC 60617, szczegółowo opisano symbole graficzne, które powinny być stosowane w projektowaniu instalacji elektrycznych. Symbol 3 wskazuje na przewody prowadzone wzdłuż listwy przypodłogowej, co jest praktycznym rozwiązaniem dla zachowania estetyki oraz bezpieczeństwa instalacji. Przewody w listwach przypodłogowych są łatwe do instalacji i konserwacji, a ich zastosowanie zmniejsza ryzyko uszkodzeń w porównaniu do przewodów prowadzonych w innych miejscach. Warto także zwrócić uwagę, że stosowanie właściwych symboli graficznych jest zgodne z najlepszymi praktykami branżowymi, co ułatwia zrozumienie dokumentacji przez wykonawców oraz inspektorów. Dlatego znajomość i umiejętność interpretacji tych symboli jest kluczowym elementem w pracy każdego specjalisty zajmującego się instalacjami elektrycznymi.

Pytanie 23

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Przerwa w obwodzie wzbudzenia
B. Uszkodzenie łożysk silnika
C. Zwarcie międzyzwojowe w uzwojeniu twornika
D. Zerwanie połączenia wału silnika z maszyną napędzającą
Przerwa w obwodzie wzbudzenia, zwarcie międzyzwojowe w uzwojeniu twornika oraz uszkodzenie łożysk silnika to sytuacje, które mogą powodować różne problemy w pracy silnika, jednak nie prowadzą one bezpośrednio do rozbiegu silnika szeregowego prądu stałego w taki sposób, jak zerwanie połączenia wału z maszyną napędzaną. Przerwa w obwodzie wzbudzenia powoduje, że silnik traci pole magnetyczne, co skutkuje znacznym spadkiem momentu obrotowego. W efekcie, silnik może zatrzymać się, ale nie będzie miał tendencji do rozbiegu. Zwarcie międzyzwojowe w uzwojeniu twornika również prowadzi do nieprawidłowego działania silnika. To zjawisko wpływa na rozkład prądów w uzwojeniu oraz może generować nadmierne ciepło, co w skrajnych przypadkach prowadzi do uszkodzeń, ale nie wywołuje rozbiegu. Uszkodzenie łożysk silnika, chociaż może powodować zwiększenie oporu obrotowego, również nie prowadzi do rozbiegu. Typowym błędem myślowym jest uznanie, że każdy problem z silnikiem natychmiast prowadzi do niebezpiecznych zjawisk, takich jak rozbieg. Kluczowe jest zrozumienie interakcji pomiędzy różnymi elementami systemu oraz znajomość specyfiki działania silników szeregowych, co pozwala na właściwe diagnozowanie problemów oraz podejmowanie adekwatnych działań naprawczych.

Pytanie 24

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 450/750 V
B. 300/300 V
C. 100/100 V
D. 300/500 V
Izolacja przewodów stosowanych w sieciach trójfazowych niskiego napięcia, takich jak 230/400 V, powinna spełniać określone normy dotyczące napięcia znamionowego. Odpowiedź 300/500 V jest prawidłowa, ponieważ zapewnia odpowiedni margines bezpieczeństwa i wytrzymałość na napięcia krótkotrwałe, które mogą wystąpić w wyniku zakłóceń lub przepięć. Przykładowo, przewody o izolacji 300/500 V są powszechnie stosowane w instalacjach domowych oraz przemysłowych, gdzie wymagane jest zabezpieczenie przed zwarciami i innymi problemami elektrycznymi. Zgodnie z normą PN-EN 60228, przewody te muszą być odporne na wysokie temperatury oraz działanie substancji chemicznych, co czyni je idealnym wyborem do różnorodnych zastosowań. W praktyce, dobór odpowiedniej izolacji ma kluczowe znaczenie dla bezpieczeństwa i efektywności systemów elektrycznych, dlatego ważne jest, aby stosować przewody zgodne z wymaganiami dotyczącymi napięcia znamionowego, zapewniając tym samym wysoką jakość instalacji elektrycznych.

Pytanie 25

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka dystansowa
B. Tuleja kołnierzowa
C. Tuleja redukcyjna
D. Podkładka sprężysta
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 26

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Zasilania napięciem bezpiecznym.
B. Połączeń wyrównawczych.
C. Samoczynnego wyłączenia zasilania.
D. Izolacji roboczej.
Udzielając odpowiedzi na to pytanie, można było się posługiwać różnymi pojęciami związanymi z bezpieczeństwem elektrycznym, jednak niektóre z nich mogą wprowadzać w błąd. Zasilanie napięciem bezpiecznym odnosi się do systemów, które wykorzystują niższe napięcia w celu zminimalizowania ryzyka porażenia, jednak nie jest to związane z pomiarem izolacji, którego celem jest ochrona przed porażeniem w instalacjach o napięciu 230 V. Połączenia wyrównawcze są istotne w kontekście ochrony przed porażeniem, ale ich ocena wymaga innego rodzaju pomiarów, takich jak pomiar oporności połączeń. Samoczynne wyłączenie zasilania to mechanizm zabezpieczający, który działa w przypadku wykrycia nieprawidłowości w instalacji, ale także nie jest bezpośrednio związany z pomiarem izolacji roboczej. Typowym błędem jest mylenie tych pojęć i pomijanie istotności pomiarów rezystancji izolacji w kontekście bezpieczeństwa energetycznego. W rzeczywistości, zrozumienie funkcji izolacji roboczej oraz jej roli w ochronie przed porażeniem elektrycznym jest kluczowe dla każdego, kto pracuje z systemami elektrycznymi, a nieprawidłowe zrozumienie tych zagadnień może prowadzić do niebezpiecznych sytuacji podczas eksploatacji instalacji.

Pytanie 27

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn > UL
B. RA ∙ IΔn ≤ UL
C. RA ∙ IΔn ≥ UL
D. RA ∙ IΔn < UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 28

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 3.
B. Symbol 2.
C. Symbol 1.
D. Symbol 4.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.

Pytanie 29

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 30

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 31

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybierając inne odpowiedzi, można zauważyć szereg nieporozumień dotyczących konstrukcji adapterów. Adaptery, które nie posiadają gwintu E27 po jednej stronie, nie będą mogły być wykorzystane w standardowych oprawach, co ogranicza ich funkcjonalność. Wiele osób myli również rodzaje gniazd, nie zdając sobie sprawy, że gniazdo GU10 wymaga dwóch bolców, a nie gwintu, co jest kluczowe w zastosowaniach oświetleniowych. Gniazdo E27, będące tak powszechnym standardem, jest zaprojektowane do współpracy z tradycyjnymi żarówkami, co czyni go nieodpowiednim do innych typów gniazd. W przypadku, gdy użytkownik wybiera adapter, który nie ma tej kombinacji, może napotkać problemy z montażem i działaniem. Warto również zwrócić uwagę na bezpieczeństwo; zastosowanie adapterów, które nie są zgodne z normami, może prowadzić do uszkodzenia żarówki lub oprawy, a nawet stwarzać zagrożenie pożarowe. Dlatego tak ważne jest zrozumienie, jakie gniazda i adaptery są odpowiednie do danego zastosowania, aby uniknąć nieprzyjemnych niespodzianek oraz zapewnić efektywność energetyczną i właściwe funkcjonowanie systemu oświetleniowego.

Pytanie 32

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,2 sekundy
B. 0,4 sekundy
C. 1 sekundę
D. 5 sekund
Podawana maksymalna wartość czasu samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie do 32 A w sieci TN wynosząca 5 sekund, 1 sekundę czy 0,2 sekundy jest niezgodna z obowiązującymi standardami ochrony elektrycznej, co może prowadzić do niebezpiecznych sytuacji. Różne wartości czasowe dla samoczynnego wyłączenia mają swoje uzasadnienie w kontekście skuteczności ochrony przed dotykiem pośrednim, a czas 0,4 sekundy został ustalony jako maksymalny, po to aby zapewnić minimalizację ryzyka porażenia prądem w przypadku awarii. Czas 5 sekund jest zdecydowanie zbyt długi i nie zapewnia odpowiedniego poziomu ochrony, zwłaszcza w sytuacjach, gdy człowiek ma kontakt z uszkodzonym urządzeniem lub przewodem. Z kolei 1 sekunda, choć jest znacznie krótsza, również nie spełnia wymaganych norm w kontekście niektórych zastosowań, gdzie szybka reakcja jest kluczowa. Odpowiedzi 0,2 sekundy mogą wydawać się bardziej bezpieczne, jednak nie są zgodne z określoną normą, a ich zastosowanie w realnych warunkach użytkowania mogłoby prowadzić do fałszywych alarmów i niepotrzebnych wyłączeń, co w praktyce zakłócałoby funkcjonowanie urządzeń. Niezrozumienie zasad bezpieczeństwa elektrycznego, jak również wymagań normatywnych, prowadzi do nieprawidłowych decyzji i zagrożeń w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 33

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Obcowzbudny prądu stałego
B. Synchroniczny
C. Asynchroniczny klatkowy
D. Szeregowy prądu stałego
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 34

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
B. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
C. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
D. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 35

Na przedstawionej ilustracji wirnika silnika elektrycznego czarną strzałką wskazano

Ilustracja do pytania
A. uzwojenie wirnika.
B. pierścienie ślizgowe.
C. komutator.
D. przewietrznik.
Na zdjęciu przedstawiono wirnik silnika elektrycznego z wyraźnie widoczną częścią, do której dochodzą szczotki, ale nie jest to komutator. W wielu głowach utrwaliło się skojarzenie: szczotki równa się komutator, i stąd bierze się sporo błędnych odpowiedzi. W silnikach pierścieniowych oraz synchronicznych prąd do uzwojeń wirnika doprowadza się właśnie przez pierścienie ślizgowe, czyli kilka gładkich, współosiowych pierścieni z metalu przewodzącego, osadzonych na wale i odizolowanych od siebie. Do nich dociskają się szczotki. Komutator wygląda inaczej: ma postać walca złożonego z wielu wąskich segmentów (lamel) odizolowanych mikanitem. Umożliwia on mechaniczną komutację prądu w uzwojeniach wirnika silnika prądu stałego lub komutatorowego. Na zdjęciu nie ma tych charakterystycznych, pociętych segmentów, tylko pełne pierścienie, więc mówienie o komutatorze jest po prostu niezgodne z budową tej maszyny. Pojawia się też skojarzenie z przewietrznikiem, bo na wirniku widać elementy chłodzące. Przewietrznik to zwykle wirnik wentylatora, łopatki lub tarcza z łopatkami, których zadaniem jest wymuszanie przepływu powietrza przez silnik. Ma kształt koła z łopatkami, często z tworzywa lub metalu, i nie współpracuje ze szczotkami. Na ilustracji przewietrznik jest bardziej w środkowej części wirnika, natomiast strzałka wskazuje wyraźnie inny zespół. Uzwojenie wirnika to z kolei druty nawojowe ułożone w żłobkach rdzenia, najczęściej w izolacji emaliowanej, tworzące cewki. One są schowane w pakiecie blach i nie mają postaci gładkich, metalicznych pierścieni na końcu wału. Typowym błędem myślowym jest patrzenie na zdjęcie zbyt ogólnie i „dopasowywanie” odpowiedzi po jednym skojarzeniu, zamiast odnieść się do konkretnych cech: kształtu, podziału na segmenty, miejsca osadzenia na wale. W praktyce zawodowej rozróżnianie pierścieni ślizgowych, komutatora, uzwojeń i elementów chłodzących wirnika jest kluczowe przy diagnozowaniu usterek, doborze szczotek, pomiarach rezystancji uzwojeń i przy wszelkich pracach serwisowych. Moim zdaniem warto sobie te obrazy mocno utrwalić, bo w warsztacie nikt nie będzie miał czasu na długie zastanawianie się, co jest czym – trzeba to widzieć od razu.

Pytanie 36

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Przerwa w przewodzie neutralnym.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Zwarcie na zaciskach odbiornika Z2 lub Z3.
D. Przerwa na zaciskach odbiornika Z2 lub Z3.
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.

Pytanie 37

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DYc 150
B. DY 100
C. DY 700
D. DYc 750
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 38

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. czerwony
C. szary
D. niebieski
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 39

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór innych opcji jako odpowiedzi wskazuje na błędne zrozumienie zasad klasyfikacji łączników elektrycznych. Wiele osób myli różne typy łączników, co może prowadzić do nieodpowiednich wyborów w kontekście ich zastosowania. Opcja A sugeruje, że mamy do czynienia z łącznikiem wielobiegunowym, co jest nieprawidłowe, gdyż łącznik przedstawiony w pytaniu jest jednobiegunowy. Łączniki wielobiegunowe są stosowane w bardziej skomplikowanych instalacjach, gdzie wymagane jest włączanie i wyłączanie więcej niż jednego obwodu jednocześnie. W przypadku opcji C, błędna klasyfikacja jako łącznik krzyżowy, prowadzi do mylnego założenia, że można nim kontrolować kilka źródeł światła z różnych miejsc. Łączniki krzyżowe są używane w połączeniu z łącznikami schodowymi, co jest znacznie bardziej skomplikowanym rozwiązaniem. Z kolei opcja D, dotycząca łącznika podwójnego, również jest niewłaściwa, ponieważ taki łącznik byłby zdolny do włączania i wyłączania dwóch niezależnych obwodów, co nie ma miejsca w omawianym przypadku. Prawidłowe zrozumienie typów łączników oraz ich odpowiadających symboli graficznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Pomyłki w identyfikacji mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy uszkodzenia sprzętu. Zrozumienie tych podstawowych zasad jest niezbędne dla każdego, kto pracuje w branży elektrycznej.

Pytanie 40

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Metalowe lub gumowe
B. Z PVC lub gumowe
C. Tylko z PVC
D. Tylko metalowe
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.