Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 11:44
  • Data zakończenia: 9 grudnia 2025 11:50

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1 i L2 i L3.
B. Rezystancji żył L1, L2, L3.
C. Sumy rezystancji żył L1, L2, L3 oraz PEN.
D. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
Mierzenie rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowym krokiem w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, ten test pozwala na wykrycie wszelkich uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych zwarć lub porażeń prądem. Rezystancja izolacji powinna być odpowiednio wysoka, aby zapobiegać przepływowi prądu między przewodami. Z mojego doświadczenia, często spotyka się sytuacje, w których niewłaściwa izolacja prowadzi do awarii i przerw w dostawie energii, co w konsekwencji może wpłynąć na działanie całego systemu elektrycznego. Standardy takie jak PN-IEC 60364 wskazują, że minimalna rezystancja izolacji dla większości instalacji powinna wynosić 1 MΩ. Wartości poniżej tego poziomu mogą sugerować, że istnieje problem, który należy rozwiązać przed oddaniem instalacji do użytku. Takie podejście jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie regularnych przeglądów i testów, aby zapewnić niezawodność i bezpieczeństwo systemów elektrycznych. To również elementarne działanie w kontekście prewencji ryzyka pożarowego oraz ochrony zdrowia i życia ludzkiego.

Pytanie 2

W systemie automatyki wszystkie połączenia wykonano przewodem oznaczonym jako 15G0,75. Oznacza to, że jest to przewód

Ilustracja do pytania
A. 15 żyłowy, bez żyły ochronnej, przekrój 0,75 mm²
B. 15 żyłowy, z żyłą ochronną, przekrój 0,75 mm²
C. 15 żyłowy, bez żyły ochronnej, przekrój 0,5 mm²
D. 15 żyłowy, z żyłą ochronną, przekrój 0,5 mm²
Oznaczenie 15G0,75 w przewodach jasno wskazuje na kilka istotnych cech tego przewodu. Przede wszystkim liczba 15 oznacza, że przewód posiada 15 żył. Jest to ważne, gdyż wielożyłowe przewody są często używane w systemach automatyki do przesyłania sygnałów sterujących. Litera 'G' w oznaczeniu informuje nas, że przewód posiada żyłę ochronną, co jest kluczowe dla bezpieczeństwa instalacji. Żyła ochronna zapewnia, że w przypadku awarii elektrycznej nadmiarowe napięcie zostanie odprowadzone, minimalizując ryzyko uszkodzenia urządzeń lub porażenia prądem. Z kolei wartość 0,75 mm² określa przekrój pojedynczej żyły, co ma wpływ na jej zdolność do przewodzenia prądu. W praktyce przewody o mniejszych przekrojach stosuje się do przesyłania sygnałów o niskim natężeniu. Przewody takie są zgodne z normami określającymi minimalne wymagania dla zabezpieczenia elektrycznego, co ma krytyczne znaczenie w instalacjach przemysłowych. Wiedza ta pozwala na odpowiedni dobór przewodów w zależności od potrzeb instalacji, co ma bezpośredni wpływ na jej efektywność i bezpieczeństwo.

Pytanie 3

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. AND
B. NOT
C. NAND
D. OR
Uszkodzona bramka to AND. Analizując schemat krok po kroku: pierwsza bramka to OR (oznaczenie ≥1) – przy wejściach 1 i 1 daje wyjście 1, co jest poprawne. Następnie sygnał trafia do bramki AND wraz z sygnałem 0 z dolnej gałęzi. Działanie logiczne AND wymaga, by oba wejścia były równe 1, aby wyjście było również 1. Tymczasem na rysunku widać, że przy wejściach 1 i 0 wyjście bramki AND wynosi 1 – co jest sprzeczne z jej funkcją logiczną. Prawidłowo wynik powinien wynosić 0. To jednoznacznie wskazuje, że bramka AND nie działa prawidłowo – jest uszkodzona. Moim zdaniem to klasyczny przykład diagnostyki prostych układów cyfrowych, gdzie analiza tablicy prawdy pozwala natychmiast wykryć błąd w logice. W praktyce, przy testowaniu rzeczywistych układów, takie błędy można potwierdzić miernikiem logicznym lub oscyloskopem. Czasem uszkodzenie bramki objawia się właśnie nieprawidłowym utrzymywaniem stanu wysokiego mimo niskiego sygnału wejściowego, co wskazuje na zwarcie wewnętrzne lub przebicie tranzystora wyjściowego. Dobrą praktyką serwisową jest porównanie wyników z modelem symulacyjnym albo sprawnym układem, by uniknąć pomyłki przy interpretacji stanów logicznych.

Pytanie 4

Do bezstykowego pomiaru temperatury gniazda łożyska należy zastosować termometr

A. bimetalowy.
B. rozszerzalnościowy.
C. manometryczny.
D. pirometryczny.
Pirometryczny termometr to narzędzie, które umożliwia bezdotykowy pomiar temperatury. Działa na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na uzyskanie natychmiastowych i dokładnych odczytów. Jest szczególnie przydatny w sytuacjach, gdzie bezpośredni kontakt z mierzonym obiektem jest niemożliwy lub niebezpieczny. Przykładowo, w przemyśle pirometry są stosowane do monitorowania stanu technicznego maszyn i urządzeń, gdzie ważne jest szybkie wykrycie przegrzewania się elementów, takich jak łożyska czy silniki. Zastosowanie pirometru w takich przypadkach pozwala na uniknięcie awarii i kosztownych przestojów w produkcji. Standardy branżowe, takie jak ISO 9001, zalecają użycie pirometrów do monitorowania temperatur w krytycznych punktach procesu produkcyjnego. Pirometry są również używane w laboratoriach, gdzie precyzyjne pomiary temperatury są kluczowe dla dokładności eksperymentów. Moim zdaniem, zrozumienie działania i zastosowania pirometrów to podstawa dla każdego, kto pracuje w branży technicznej, ponieważ pozwala na skuteczne monitorowanie stanu maszyn i zapobieganie ich awariom. Warto więc zagłębić się w ten temat i poznać różne modele i technologie pirometryczne dostępne na rynku.

Pytanie 5

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 1, I3 = 1
B. I2 = 1, I3 = 0
C. I2 = 0, I3 = 1
D. I2 = 0, I3 = 0
Odpowiedź I2 = 1, I3 = 0 jest prawidłowa, ponieważ obrazuje stan, w którym tłoczysko jest wsunięte i czujnik B1 jest aktywowany. W praktyce, gdy tłoczysko siłownika znajduje się w pozycji wsuniętej, czujnik krańcowy B1 jest włączony, co powoduje logiczny '1' na wejściu I2 sterownika PLC. Czujnik B2, natomiast, odpowiada za pozycję wysuniętą i pozostaje w stanie nieaktywnym, więc I3 jest równe '0'. Taki stan logiczny umożliwia sterowanie sekwencją cyklu pracy siłownika w zautomatyzowanych układach. Moim zdaniem, to jedno z kluczowych zastosowań PLC w przemyśle, gdzie precyzyjne sterowanie pozycją elementów ruchomych jest niezbędne. Zgodnie z dobrymi praktykami, zawsze należy upewnić się, że wszystkie czujniki są poprawnie skalibrowane i umieszczone, aby zapewnić bezawaryjne działanie systemu.

Pytanie 6

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. podkładek dystansowych.
C. kołków rozprężnych.
D. pierścieni Segera.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do montażu zabezpieczeń E-ring. E-ring to popularny typ zabezpieczenia osiowego, często stosowany w układach mechanicznych, gdzie wymagane jest szybkie i pewne osadzenie elementu zabezpieczającego. Dzięki swojej konstrukcji zapewniają one pewne mocowanie na wałkach lub osiach. Szczypce do E-ringów posiadają charakterystyczne końcówki, które umożliwiają łatwe rozchylenie i precyzyjne umieszczenie pierścienia na właściwym miejscu. W praktyce, E-ring jest wykorzystywany w wielu aplikacjach przemysłowych, od mechanizmów precyzyjnych po duże maszyny, gdzie ważne jest szybkie i pewne mocowanie. Standardowo, narzędzie to jest wykonane z trwałych materiałów, często odpornych na korozję, co przedłuża jego żywotność. Moim zdaniem, takie szczypce to nieodzowny element w warsztacie, zwłaszcza tam, gdzie praca z mechaniką wymaga wielokrotnych i szybkich montażów. Warto pamiętać, że poprawne narzędzie to podstawa bezpiecznej i efektywnej pracy.

Pytanie 7

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 30 mm
B. 20 mm
C. 10 mm
D. 60 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 8

Który przetwornik pomiarowy umożliwia bezdotykowy pomiar temperatury?

A. Rozszerzalnościowy.
B. Rezystancyjny.
C. Termoelektryczny.
D. Pirometryczny.
Pirometryczny przetwornik pomiarowy to fascynujące urządzenie, które umożliwia bezdotykowe pomiary temperatury dzięki emisji promieniowania podczerwonego przez ciała o temperaturze wyższej od zera absolutnego. Można zatem dokonywać pomiarów na odległość, co jest niezwykle przydatne w przemyśle, gdzie często mamy do czynienia z trudnymi warunkami, jak wysokie temperatury lub niebezpieczne substancje. Moim zdaniem to właśnie ta bezdotykowość czyni pirometry tak popularnymi w aplikacjach przemysłowych, takich jak monitoring wysokotemperaturowych procesów w hutach czy zakładach chemicznych. Zastosowanie pirometrów jest szerokie, od przemysłu spożywczego, gdzie ważne jest utrzymanie odpowiednich temperatur w procesach produkcyjnych, po medycynę, gdzie używa się ich do bezkontaktowego mierzenia temperatury ciała pacjentów. Pirometry są zgodne z normami ISO, co zapewnia ich dokładność i niezawodność. Oczywiście, jak każde urządzenie, wymagają kalibracji i regularnego serwisowania. Są jednak niezwykle precyzyjne i mogą mierzyć temperatury nawet do kilku tysięcy stopni Celsjusza. Pamiętajmy, że wybór odpowiedniego pirometru zależy od specyficznej aplikacji, w której ma być używany, więc warto zwrócić uwagę na wszelkie parametry techniczne przy zakupie.

Pytanie 9

Na rysunku przedstawiono

Ilustracja do pytania
A. elektrozawór.
B. zawór odcinający.
C. zespół przygotowania powietrza.
D. blok rozdzielający.
To, co widzisz na rysunku, to typowy zespół przygotowania powietrza. Składa się z kilku kluczowych elementów: filtr, regulator ciśnienia oraz smarownica. Filtr ma za zadanie usuwać zanieczyszczenia z powietrza, takie jak kurz czy wilgoć, co jest niezwykle ważne w zapewnieniu prawidłowego działania narzędzi pneumatycznych. Regulator ciśnienia pozwala na utrzymanie stałego ciśnienia w systemie, co jest kluczowe dla stabilnej pracy urządzeń. Natomiast smarownica dodaje mgiełkę oleju do przepływającego powietrza, co zmniejsza tarcie i zużycie ruchomych części narzędzi pneumatycznych, wydłużając ich żywotność. Takie zespoły są powszechnie stosowane w warsztatach samochodowych, w przemyśle czy na liniach produkcyjnych. Znajomość ich działania jest kluczowa dla każdego technika zajmującego się systemami pneumatycznymi, ponieważ zapewnia to nie tylko niezawodność, ale także bezpieczeństwo pracy. Praktyka pokazuje, że regularne przeglądy i konserwacja tego typu urządzeń znacząco wpływają na wydajność całego systemu pneumatycznego.

Pytanie 10

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Natlenienia.
B. Natężenia przepływu.
C. Temperatury.
D. Ciśnienia.
Przetwornik przedstawiony na rysunku to przetwornik ciśnienia, co można rozpoznać po kilku charakterystycznych elementach. Po pierwsze, zakres pomiarowy podany w jednostkach bar (0-10 bar) jednoznacznie wskazuje na pomiar ciśnienia. Przetworniki ciśnienia są powszechnie używane w różnych branżach, od przemysłu chemicznego po systemy HVAC, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa i efektywności procesów. Standardowy sygnał wyjściowy 4-20 mA jest szeroko stosowany w automatyce przemysłowej ze względu na swoją odporność na zakłócenia i możliwość przesyłania sygnałów na duże odległości. Przetworniki ciśnienia mogą być stosowane do monitorowania ciśnienia w systemach hydraulicznych, pneumatycznych, a także w aplikacjach związanych z kontrolą procesów. Dodatkowo, przetworniki takie są niezbędne w aplikacjach związanych z bezpieczeństwem, gdzie monitorowanie ciśnienia może zapobiec awariom. Moim zdaniem, znajomość działania i zastosowań przetworników ciśnienia to podstawa dla każdego inżyniera zajmującego się automatyką przemysłową.

Pytanie 11

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku?

Ilustracja do pytania
A. SFC
B. FBD
C. LD
D. IL
Wybrałeś odpowiedź LD, co oznacza język drabinkowy (Ladder Diagram). Jest to najbardziej zrozumiały i popularny język programowania PLC, przypominający schematy elektryczne. Moim zdaniem, to bardzo intuicyjny sposób przedstawiania logiki sterowania, szczególnie dla osób z doświadczeniem w elektrotechnice. LD pozwala na łatwe odwzorowanie działania przekaźników i styczników, co jest niezwykle przydatne w aplikacjach przemysłowych, takich jak sterowanie maszynami lub procesami produkcyjnymi. W standardach IEC 61131-3, LD jest jednym z pięciu akceptowanych języków programowania, co potwierdza jego znaczenie w branży. Praktycznym przykładem może być sterowanie taśmą produkcyjną, gdzie różne czujniki i silniki są zintegrowane za pomocą logicznych warunków przedstawionych w formie drabinki. Dzięki LD możliwe jest szybkie diagnozowanie i modyfikowanie programu, co w środowisku przemysłowym jest kluczowe dla utrzymania ciągłości produkcji. Język ten pozwala także na symulację działania systemu przed jego rzeczywistym uruchomieniem, co jest zgodne z najlepszymi praktykami w zakresie testowania i walidacji systemów sterowania.

Pytanie 12

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Sumy rezystancji żył L1, L2, L3 oraz PEN.
C. Rezystancji żył L1, L2, L3.
D. Rezystancji izolacji między przewodami L1 i L2 i L3.
Wykonanie pomiaru rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowe w ocenie bezpieczeństwa elektrycznego instalacji. Taki pomiar pomaga zidentyfikować możliwe uszkodzenia izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Rezystancja izolacji jest mierzona przy użyciu specjalnych mierników, które podają wysokie napięcie pomiarowe, aby dokładnie ocenić stan izolacji. Standardy branżowe, takie jak PN-HD 60364, zalecają regularne wykonywanie takich pomiarów w celu utrzymania bezpieczeństwa instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w przemyśle budowlanym, gdzie bezpieczeństwo instalacji elektrycznych jest priorytetem. W domowych warunkach, choć rzadko wykonywane przez laików, pomiary te mogą być kluczowe przy odbiorze nowych instalacji. Moim zdaniem, znajomość i wykonywanie takich pomiarów to podstawa zdrowego rozsądku w zawodzie elektryka. Z doświadczenia wiem, że regularne pomiary rezystancji izolacji pozwalają na wczesne wykrycie potencjalnych problemów, co przekłada się na bezpieczeństwo użytkowników.

Pytanie 13

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. areometry.
B. manometry.
C. barometry.
D. higrometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 14

Aby zapewnić właściwy moment siły przy dokręcaniu nakrętek mocujących urządzenie do podłoża, należy zastosować klucz

A. oczkowy.
B. imbusowy.
C. hakowy.
D. dynamometryczny.
Klucz dynamometryczny to narzędzie, które pozwala na dokładne kontrolowanie momentu siły podczas dokręcania śrub i nakrętek. W przemyśle mechanicznym, budowlanym czy motoryzacyjnym jest nieoceniony, ponieważ gwarantuje, że złącze będzie dokręcone zgodnie ze specyfikacją producenta. Każda śruba czy nakrętka ma określony moment dokręcania, który zapewnia odpowiednie napięcie i siłę trzymania bez ryzyka uszkodzenia gwintu lub elementu złącznego. Przykładowo, w warsztacie samochodowym przy wymianie kół, mechanicy używają kluczy dynamometrycznych, by upewnić się, że każda śruba jest dokręcona do określonego momentu, zapobiegając luzowaniu się kół podczas jazdy. W branży lotniczej przestrzeganie właściwych momentów dokręcania jest kluczowe dla bezpieczeństwa. Klucze dynamometryczne są kalibrowane i regularnie sprawdzane pod kątem dokładności, co jest zgodne z normami ISO. Takie narzędzia mogą być mechaniczne, elektroniczne lub hydrauliczne, ale wszystkie mają ten sam cel: precyzyjne kontrolowanie siły dokręcania. Warto zaznaczyć, że stosowanie kluczy dynamometrycznych jest dobrą praktyką, która minimalizuje ryzyko błędów montażowych i przedłuża żywotność konstrukcji, bez względu na branżę. Moim zdaniem, w wielu przypadkach to narzędzie jest po prostu niezbędne do utrzymania wysokich standardów jakości i bezpieczeństwa.

Pytanie 15

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. skuteczności ochrony przeciwporażeniowej.
B. dopuszczalnego spadku napięcia.
C. parametrów ekonomicznych.
D. obciążalności prądowej.
Przy doborze przewodów w instalacji elektrycznej, uwzględnienie parametrów ekonomicznych jest rzeczywiście mniej istotne w porównaniu do innych kryteriów. Choć koszty instalacji mogą mieć znaczenie w kontekście budżetowania projektu, są one drugorzędne w stosunku do kwestii bezpieczeństwa i wydajności. Dla elektryka priorytetem jest zapewnienie, że przewody spełniają odpowiednie normy techniczne i bezpieczeństwa. W praktyce oznacza to, że większą wagę przykłada się do obciążalności prądowej, dopuszczalnego spadku napięcia oraz skuteczności ochrony przeciwporażeniowej. Standardy takie jak PN-IEC 60364 wymagają, aby przewody były dobrane zgodnie z ich zdolnością do przenoszenia prądu i zapewniały minimalny spadek napięcia, co ma kluczowe znaczenie dla efektywności energetycznej systemu. Skuteczność ochrony przeciwporażeniowej jest również nie do przecenienia, ponieważ chroni przed porażeniem prądem elektrycznym. Podsumowując, parametry ekonomiczne są ważne, ale w kontekście projektowania instalacji elektrycznych ustępują miejsca bardziej krytycznym czynnikom technicznym, które zapewniają bezpieczeństwo i niezawodność systemu.

Pytanie 16

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. DIV
B. ADD
C. MUL
D. SUB
Wybór funkcji SUB jako tej odpowiedzialnej za odejmowanie w sterowniku PLC jest trafny. SUB to skrót od 'subtract', co w języku angielskim oznacza odejmowanie. W kontekście programowania PLC, funkcja ta jest używana do odejmowania jednej wartości od drugiej. Może to być przydatne w wielu zastosowaniach przemysłowych, np. gdy trzeba obliczyć różnicę między dwoma pomiarami czujników czy też śledzić zużycie materiałów. Odejmowanie jest jednym z podstawowych działań arytmetycznych, które często są wykorzystywane w automatyce i sterowaniu procesami przemysłowymi. W standardzie IEC 61131-3, który jest często przywoływany w kontekście programowania PLC, funkcje arytmetyczne takie jak ADD, SUB, MUL, DIV są podstawą przy pisaniu algorytmów. W praktyce, dobrze zaprojektowane programy PLC korzystają z tych funkcji, aby realizować precyzyjne operacje matematyczne, co umożliwia osiąganie większej efektywności i dokładności w procesach produkcyjnych. Z mojego doświadczenia, zrozumienie i umiejętność stosowania takich podstawowych operacji jak odejmowanie jest kluczowe dla każdego, kto chce efektywnie pracować z PLC.

Pytanie 17

Wskaż oznaczenie literowe gwintu metrycznego.

A. W
B. S
C. Tr
D. M
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 18

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 2.
B. w pozycji 1.
C. w pozycji 3.
D. w pozycji 4.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 19

W dokumentacji powykonawczej nie należy umieszczać

A. dowodów zakupu z cenami.
B. protokołów pomiarowych.
C. certyfikatów użytych materiałów.
D. warunków gwarancji.
Dokumentacja powykonawcza to kluczowy element w każdej budowie czy projekcie technicznym. Jest jak skarb dla każdego inżyniera czy technika, ponieważ zawiera wszystkie istotne informacje o zakończonym projekcie. Dlatego właśnie nie umieszczamy w niej dowodów zakupu z cenami. Dlaczego? Ponieważ dokumentacja powykonawcza ma być przede wszystkim dokumentem technicznym, a nie finansowym. Skupiamy się w niej na aspektach technicznych, takich jak warunki gwarancji, protokoły pomiarowe czy certyfikaty użytych materiałów. Wszystko to jest niezbędne do utrzymania i ewentualnych napraw, ale ceny zakupu nie mają tu większego znaczenia. Ceny mogą się zmieniać, inflacja robi swoje, ale dokumentacja techniczna powinna być zawsze aktualna i zgodna z faktycznym stanem technicznym obiektu. W praktyce, ceny zakupu są ważne na etapie budżetowania i rozliczeń, ale nie w kontekście późniejszej eksploatacji budynku. Moim zdaniem, skupienie się na jakości i technologiach użytych w projekcie ma większe znaczenie i dlatego dowody zakupu z cenami są pomijane.

Pytanie 20

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. zwrotny.
B. bezpieczeństwa.
C. dławiący.
D. redukcyjny.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 21

Do bezpośredniego pomiaru wartości napięcia zasilającego cewkę elektrozaworu należy użyć

A. amperomierza.
B. omomierza.
C. watomierza.
D. woltomierza.
Woltomierz to narzędzie, które jest nieodzowne, jeśli chcemy zmierzyć napięcie elektryczne w obwodzie, jak na przykład napięcie zasilające cewkę elektrozaworu. Działa on na zasadzie pomiaru różnicy potencjałów między dwoma punktami obwodu. To urządzenie jest skonstruowane tak, by miało wysoką rezystancję, co minimalizuje wpływ na mierzony układ. Kiedy przykładasz woltomierz do cewki, mierzysz napięcie, które dostarczane jest do tego elementu, a nie przepływ prądu czy moc. W praktyce, woltomierze są używane w technice elektrycznej i elektronicznej do diagnozowania i monitorowania systemów, co pozwala na szybką identyfikację ewentualnych problemów z zasilaniem. Standardy przemysłowe, takie jak IEC 61010, określają wymagania bezpieczeństwa i dokładności dla takich urządzeń, co jest istotne w pracy profesjonalistów dbających o bezpieczeństwo i efektywność systemów elektrycznych. Moim zdaniem, każdy kto pracuje z elektryką powinien znać podstawy użycia woltomierza, bo to podstawa w diagnozowaniu problemów z zasilaniem.

Pytanie 22

Który przyrząd należy zastosować, aby zmierzyć z dokładnością 0,1 mm otwory o średnicy φ10 wykonane pod montaż czujników indukcyjnych?

A. Suwmiarkę uniwersalną.
B. Mikrometr zewnętrzny.
C. Czujnik zegarowy.
D. Przymiar kreskowy.
Suwmiarka uniwersalna to wszechstronne narzędzie pomiarowe, które odgrywa kluczową rolę w przemysłowej kontroli jakości oraz w warsztatowych pomiarach. Dzięki niej możemy z dużą precyzją, bo aż do 0,1 mm, mierzyć różne wielkości, takie jak średnice zewnętrzne, wewnętrzne, a także głębokości. W przypadku otworów o średnicy φ10, suwmiarka jest idealnym wyborem, ponieważ jej szczęki pomiarowe są zaprojektowane tak, aby dokładnie wpasować się w otwory, co pozwala na precyzyjne odczyty bez ryzyka błędu wynikającego z niedopasowania przyrządu. Przykładowo, w branży produkcji czujników indukcyjnych, gdzie precyzja montażu jest kluczowa, stosowanie suwmiarki uniwersalnej zapewnia, że czujniki będą prawidłowo umieszczone. Ponadto stosowanie suwmiarki jest zgodne z dobrymi praktykami metrologicznymi i zaleceniami norm ISO dotyczących pomiarów warsztatowych. Z mojego doświadczenia wynika, że choć nowoczesne technologie oferują bardziej zaawansowane narzędzia, to suwmiarka pozostaje niezastąpiona w codziennych zadaniach, łącząc prostotę z dokładnością, co czyni ją nieodzownym narzędziem w rękach każdego technika.

Pytanie 23

Przedstawiony na rysunku przewód sterowniczy, wymieniony w dokumentacji projektowej, może być zastosowany podczas łączenia elementów systemu sterowania, jeżeli napięcie pracy nie przekracza wartości

Ilustracja do pytania
A. 200 V/400 V
B. 300 V/400 V
C. 100 V/500 V
D. 300 V/500 V
Przewód widoczny na zdjęciu ma oznaczenie 300/500 V, co oznacza, że jego napięcie znamionowe wynosi 300 V dla układania w izolacji i 500 V dla napięcia roboczego. To jest zgodne z normami europejskimi jak np. VDE, które definiują standardy dla przewodów stosowanych w automatyce przemysłowej. Kiedy mówimy o przewodach sterowniczych, ważne jest, aby napięcie robocze nie przekraczało wskazanych wartości, ponieważ mogłoby to prowadzić do uszkodzenia izolacji i awarii systemu. Przewody o takich parametrach są często stosowane w środowiskach przemysłowych, gdzie wymagana jest wysoka odporność na zakłócenia elektromagnetyczne oraz trwałość mechaniczna. Moim zdaniem, znajomość parametrów przewodów jest kluczowa dla bezpieczeństwa i niezawodności instalacji. W praktyce, takie przewody można spotkać w szafach sterowniczych, gdzie łączą różne elementy systemu automatyki. Dobre praktyki zalecają także regularną kontrolę stanu przewodów, aby zapobiec potencjalnym awariom.

Pytanie 24

W sterowniku PLC wejścia cyfrowe oznaczane są symbolem literowym

A. AQ
B. Q
C. AI
D. I
W sterownikach PLC wejścia cyfrowe oznaczane są symbolem literowym 'I'. To skrót od angielskiego słowa 'Input', co dosłownie oznacza wejście. Wejścia te są integralną częścią systemu PLC, ponieważ umożliwiają odbieranie sygnałów z różnych czujników i urządzeń zewnętrznych. Przykładami takich czujników mogą być przyciski, czujniki fotoelektryczne czy wyłączniki krańcowe. Dzięki temu sterownik PLC może reagować na zmienne warunki pracy i odpowiednio sterować wyjściami, takimi jak siłowniki czy lampy. Standardy przemysłowe, takie jak IEC 61131-3, od lat utrzymują jednolitość w oznaczaniu elementów systemów automatyki, co ułatwia inżynierom zrozumienie i konserwację systemów bez względu na producenta sterownika. Wejścia cyfrowe są kluczowe w systemach, gdzie potrzebna jest szybka reakcja na zmiany w otoczeniu, a ich właściwe oznaczenie umożliwia precyzyjne projektowanie i programowanie aplikacji przemysłowych. Dobre zrozumienie oznaczeń w PLC jest podstawą efektywnego projektowania systemów automatyki, co w praktyce przekłada się na zwiększenie wydajności i niezawodności procesów produkcyjnych.

Pytanie 25

Urządzenie, którego schemat przedstawiono na rysunku, pracuje w sposób oscylacyjny. Który zawór należy zamontować w miejscu oznaczonym X, aby prędkość wysuwania tłoczyska siłownika była większa od prędkości wsuwania?

Ilustracja do pytania
A. Dławiąco-zwrotny.
B. Podwójnego sygnału.
C. Przełącznik obiegu.
D. Progowy.
Odpowiedź dławiąco-zwrotny jest prawidłowa, ponieważ ten zawór pozwala na regulację przepływu cieczy lub powietrza w jednym kierunku, jednocześnie umożliwiając swobodny przepływ w przeciwnym. W kontekście siłowników dwustronnego działania, taki zawór umożliwia precyzyjne dostosowanie prędkości wysuwania tłoczyska, co jest kluczowe w wielu aplikacjach przemysłowych oraz automatyce. Dzięki temu można zwiększyć efektywność i precyzję działania maszyn. Instalacja zaworu dławiąco-zwrotnego to standardowa praktyka w systemach pneumatycznych i hydraulicznych, gdzie kontrola prędkości ruchu jest istotna. Praktyczne zastosowanie takiego rozwiązania można znaleźć w liniach produkcyjnych, gdzie różne fazy operacji muszą być zsynchronizowane. Ten zawór jest również często wykorzystywany w maszynach CNC, gdzie precyzyjne sterowanie elementami roboczymi jest niezbędne. Dzięki zastosowaniu zaworów dławiąco-zwrotnych można również zmniejszyć zużycie energii poprzez optymalizację przepływu, co jest ważne z punktu widzenia ekonomii produkcji i ochrony środowiska.

Pytanie 26

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. 5 oraz L
B. 2 oraz L
C. H oraz L
D. O oraz L
Odpowiedzi, które nie są poprawne, mogą wynikać z niepełnego zrozumienia schematu podłączenia lub zasad działania falowników. Zaciski H i L, O i L, a także 2 i L często pojawiają się w różnych kontekstach, ale w tym przypadku nie są one przeznaczone do podłączenia termistora. Błąd może wynikać z założenia, że każde wejście programowalne będzie odpowiednie dla czujnika temperatury, co nie jest prawdą. Wejście musi być specjalnie skonfigurowane do współpracy z termistorem, co w tym falowniku jest możliwe tylko na zacisku 5. Niepoprawne podłączenie czujnika może prowadzić do braku reakcji na zmianę temperatury silnika, co w efekcie może skutkować poważnymi uszkodzeniami sprzętu. Warto pamiętać, że w przypadku programowania i podłączania urządzeń do falowników kluczowe jest dokładne przestrzeganie instrukcji producenta. Typowym błędem jest także ignorowanie roli zacisku wspólnego, jakim jest L, który pełni istotną funkcję w kontekście działania całego układu. Wiedza o tym, jak różne elementy układu współpracują ze sobą, jest fundamentem bezpiecznego i efektywnego korzystania z falowników.

Pytanie 27

Do pomiaru luzów pomiędzy współpracującymi powierzchniami służy

A. mikrometr.
B. przymiar kreskowy.
C. liniał sinusowy.
D. szczelinomierz.
Szczelinomierz to narzędzie powszechnie stosowane w przemyśle, gdy chcemy zmierzyć niewielkie luki między powierzchniami. Złożony jest z zestawu cienkich blaszek o różnej grubości, które pozwalają na dokładne określenie wielkości szczeliny. Wyobraź sobie sytuację, w której montujesz dwie metalowe części i musisz upewnić się, że pasują do siebie idealnie. W takim przypadku szczelinomierz jest nieoceniony. Często używają go mechanicy samochodowi do ustawiania luzów zaworowych w silnikach spalinowych. Z mojego doświadczenia wynika, że umiejętne posługiwanie się szczelinomierzem potrafi zaoszczędzić wiele problemów związanych z nadmiernym zużyciem części lub hałasem. W standardach przemysłowych często wymaga się precyzyjnego dopasowania elementów, a szczelinomierz jest narzędziem, które umożliwia sprostanie tym wymaganiom. Pamiętaj, że właściwy dobór narzędzi pomiarowych w dużym stopniu wpływa na jakość gotowego produktu, co jest kluczowe, szczególnie w produkcji masowej. Dodatkowo, użycie szczelinomierza jest stosunkowo proste i szybkie, nie wymaga skomplikowanych procedur kalibracyjnych, co czyni go idealnym wyborem w wielu sytuacjach przemysłowych.

Pytanie 28

Element przedstawione na rysunku to

Ilustracja do pytania
A. czujnik pojemnościowy.
B. termometr rtęciowy.
C. pirometr.
D. czujnik rezystancyjny.
To świetnie, że rozpoznajesz czujnik rezystancyjny. Te czujniki, zwane także RTD (Resistance Temperature Detector), są szeroko stosowane w przemyśle do precyzyjnych pomiarów temperatury. Ich działanie opiera się na zależności rezystancji metalu od temperatury. Najczęściej spotykane są czujniki wykonane z platyny, takie jak Pt100, Pt500 czy Pt1000, gdzie liczby oznaczają wartość rezystancji w omach przy 0°C. Czujniki te są cenione za swoją dokładność i stabilność pomiarową. Są stosowane tam, gdzie wymagana jest wysoka precyzja, jak w przemyśle chemicznym, farmaceutycznym czy w laboratoriach badawczych. Ich kalibracja i zgodność z międzynarodowymi standardami, np. IEC 60751, zapewniają spójność i wiarygodność pomiarów. Dodatkowo, dzięki zastosowaniu różnych materiałów na osłonę, mogą być stosowane w trudnych warunkach środowiskowych. Takie czujniki mogą pracować w szerokim zakresie temperatur, co czyni je niezwykle uniwersalnymi narzędziami pomiarowymi.

Pytanie 29

Element zabezpieczający silnik, zaznaczony na schemacie linią przerywaną, jest wyzwalany

Ilustracja do pytania
A. nadnapięciowo.
B. ciśnieniowo.
C. podprądowo.
D. cieplnie.
Zabezpieczenia silników mogą być wyzwalane na różne sposoby, ale nie każde z nich jest odpowiednie dla wszystkich sytuacji. Wyzwalanie ciśnieniowe polega na wykorzystaniu zmiany ciśnienia w układzie, co nie ma bezpośredniego związku z działaniem elektrycznym silnika. Tego typu rozwiązania można spotkać w systemach hydraulicznych lub pneumatycznych, ale nie w typowych instalacjach elektrycznych. Podprądowe zabezpieczenie działa na zasadzie detekcji spadku prądu poniżej wartości nominalnej. Jest to stosowane w sytuacjach, gdzie brak prądu oznacza problem, jak na przykład w systemach awaryjnych. W kontekście silników elektrycznych, kluczowe jest zabezpieczenie przed nadprądem, a nie podprądem. Nadnapięciowe zabezpieczenia z kolei reagują na przekroczenie dopuszczalnego napięcia w obwodzie. Chociaż są ważne w ochronie przed przepięciami, to jednak nie chronią przed przegrzaniem silnika, co jest najczęstszą przyczyną awarii. Często błędne założenie, że wszystkie problemy z silnikiem można rozwiązać jednym typem zabezpieczenia, prowadzi do stosowania niewłaściwych rozwiązań. Dlatego tak ważna jest znajomość specyfiki danej aplikacji oraz właściwy dobór zabezpieczeń zgodnie z normami i najlepszymi praktykami inżynierskimi.

Pytanie 30

Który z elementów należy zastosować do wykonania rozgałęzienia sygnału/przewodu pneumatycznego w celu podłączenia w układzie manometru?

A. Element 3.
Ilustracja do odpowiedzi A
B. Element 1.
Ilustracja do odpowiedzi B
C. Element 2.
Ilustracja do odpowiedzi C
D. Element 4.
Ilustracja do odpowiedzi D
Do wykonania rozgałęzienia przewodu pneumatycznego stosuje się element typu „trójnik”, czyli ten przedstawiony na zdjęciu numer 2. Trójnik umożliwia podłączenie trzech przewodów – jednego doprowadzającego sygnał i dwóch odprowadzających, co pozwala np. na równoczesne zasilenie siłownika i podłączenie manometru kontrolnego. W układach pneumatycznych takie złącze typu „T” jest podstawowym sposobem tworzenia odgałęzień sygnału ciśnienia lub przepływu powietrza. Moim zdaniem to jedno z najczęściej używanych złączy w praktyce – proste, szczelne i bardzo wygodne w montażu, szczególnie w systemach z przewodami poliuretanowymi. Wystarczy wsunąć przewód aż do oporu, a uszczelnienie zapewnia pierścień zaciskowy. Trójniki występują w wielu wersjach: proste, z gwintem, obrotowe, a nawet z zaworem odcinającym, ale zasada działania zawsze ta sama – jedno wejście, dwa wyjścia. Dzięki temu można łatwo podłączyć manometr do istniejącego przewodu bez przerywania pracy całego układu. W automatyce przemysłowej stosuje się je przy rozdziale powietrza do kilku zaworów lub przy pomiarze ciśnienia w różnych punktach instalacji.

Pytanie 31

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 0 Ω
B. 500 Ω
C. 100 Ω
D. 1 000 Ω
Czujnik Pt500 to popularny typ czujnika rezystancyjnego wykonanego z platyny, który ma rezystancję nominalną 500 Ω przy temperaturze 0 °C. Platyna jest stosowana ze względu na jej stabilność chemiczną i liniowy przyrost rezystancji wraz ze wzrostem temperatury, co czyni ją idealnym materiałem do precyzyjnych pomiarów temperatury. W praktyce oznacza to, że czujnik Pt500 będzie miał wartość 500 Ω w temperaturze zera stopni Celsjusza. Dlaczego to takie ważne? W inżynierii i automatyzacji, precyzyjne pomiary temperatury są kluczowe dla utrzymania procesów produkcyjnych w odpowiednich warunkach. Czujniki Pt500 są stosowane w wielu aplikacjach, od kontroli klimatyzacji po zaawansowane procesy przemysłowe, ponieważ oferują wysoką dokładność i stabilność pomiarów. Ich zastosowanie jest szeroko zgodne ze standardami przemysłowymi, gdzie stabilność i niezawodność są priorytetami. Warto pamiętać, że rezystancja czujnika zmienia się zgodnie z wzrostem temperatury, co pozwala na precyzyjne określenie aktualnych warunków termicznych. To sprawia, że są one wyjątkowo przydatne w środowiskach wymagających dokładnego monitorowania temperatury.

Pytanie 32

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. redukujący.
B. zwrotny.
C. bezpieczeństwa.
D. dławiący.
Zawór redukujący to kluczowy element w systemach pneumatycznych, gdzie niezbędne jest utrzymanie stałego ciśnienia, niezależnie od wahań w ciśnieniu zasilania. Tego rodzaju zawory działają na zasadzie redukcji ciśnienia wlotowego do określonego poziomu, co jest niezbędne dla bezpieczeństwa i efektywności pracy układu. W praktyce, zawór redukujący można spotkać w różnych aplikacjach przemysłowych, takich jak systemy sterowania maszyn czy linie produkcyjne, gdzie wymagana jest precyzyjna kontrola ciśnienia. Dobre praktyki branżowe sugerują instalowanie zaworów redukujących w miejscach, gdzie ciśnienie zasilania może ulegać znacznym wahaniom, co mogłoby prowadzić do niekontrolowanych zmian w działaniu siłowników lub innych komponentów pneumatycznych. Warto również zauważyć, że zawory te często są wyposażone w manometry do monitorowania ciśnienia po redukcji, co pozwala na precyzyjną kontrolę i ewentualne dostosowanie ustawień. Wybór odpowiedniego zaworu redukującego, spełniającego normy takie jak ISO 4414, jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności całego systemu. Takie rozwiązania są szeroko stosowane w przemyśle motoryzacyjnym, lotniczym i wielu innych sektorach, gdzie precyzyjna kontrola ciśnienia jest krytyczna dla działania urządzeń.

Pytanie 33

Określ, który blok funkcjonalny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Multiplekser analogowy.
B. Regulator PID
C. Timer TON
D. Licznik jednokierunkowy.
Wybór licznika jednokierunkowego do sterowania urządzeniem pakującym zabawki jest trafny, ponieważ liczniki świetnie nadają się do zliczania określonej liczby zdarzeń, takich jak pakowanie zabawek do kartonu. Licznik jednokierunkowy, często określany jako licznik up, zwiększa swoją wartość za każdym razem, gdy otrzymuje impuls. W kontekście urządzenia pakującego może to być impuls z czujnika, który rejestruje każdą wrzuconą zabawkę. Po osiągnięciu zaprogramowanej liczby zabawek licznik może wysłać sygnał, który inicjuje kolejne działania, takie jak zamknięcie i przeniesienie kartonu. To podejście jest zgodne z praktycznym zastosowaniem w automatyce przemysłowej, gdzie liczniki są często wykorzystywane do zadań związanych z kontrolą ilościową. W branży automatyki standardem jest stosowanie liczników w przypadku, gdy wymagane jest precyzyjne śledzenie liczby operacji. Takie rozwiązanie zapewnia zarówno dokładność, jak i prostotę implementacji, co jest kluczowe w środowiskach produkcyjnych, gdzie niezawodność i łatwość obsługi są na wagę złota. Warto zauważyć, że w przypadku bardziej złożonych operacji, licznik jednokierunkowy może być częścią systemu zawierającego również inne typy liczników lub komponenty logiczne.

Pytanie 34

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. SFC
B. LD
C. IL
D. FBD
Język LD, czyli Ladder Diagram, jest jednym z najpopularniejszych sposobów programowania sterowników PLC. Jego struktura przypomina schemat drabinkowy, co ułatwia zrozumienie logiki działania programu. Na przedstawionym rysunku widać poziome linie z elementami przypominającymi styki oraz cewki – to charakterystyczne dla LD. Ten język bazuje na zasadach działania tradycyjnych układów przekaźnikowych, co sprawia, że jest intuicyjny dla elektryków i automatyków. W praktyce LD jest używany do sterowania procesami przemysłowymi, gdzie kluczowa jest logika sekwencyjna. Standardy takie jak IEC 61131-3 zalecają stosowanie LD, co podkreśla jego znaczenie w branży. LD pozwala na łatwe implementowanie funkcji takich jak blokady czy logika czasowa, co jest nieocenione w złożonych systemach sterowania. Dzięki prostocie i czytelności LD ułatwia diagnostykę i konserwację systemów w terenie, co z mojego doświadczenia jest dużym plusem w codziennej pracy inżyniera.

Pytanie 35

Na ilustracji przedstawiono

Ilustracja do pytania
A. zadajnik cyfrowo-analogowy.
B. elektroniczny czujnik ciśnienia.
C. separator sygnałów USB.
D. przetwornik PWM.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 36

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. cięcia przewodów pneumatycznych.
B. zaciskania tulejek.
C. oznaczania przewodów.
D. ściągania izolacji.
Narzędzie, które widzisz, jest specjalistycznym przyrządem do cięcia przewodów pneumatycznych. Tego typu narzędzia są zaprojektowane tak, aby zapewnić czyste i precyzyjne cięcie, co jest kluczowe w systemach pneumatycznych. Niedokładnie przycięty wąż może prowadzić do nieszczelności lub trudności z montażem w złączkach. W praktyce, zastosowanie narzędzia do cięcia przewodów pneumatycznych jest nie tylko wygodne, ale również zapewnia, że cięcie nie uszkadza struktury przewodu. Moim zdaniem, to narzędzie jest niezastąpione w warsztatach, gdzie często pracuje się z instalacjami pneumatycznymi. Warto również zwrócić uwagę, że tego typu narzędzia są zgodne z branżowymi standardami, które zalecają używanie narzędzi dostosowanych do specyficznego typu przewodów. Standardowe nożyce mogą nie zapewniać takiej samej precyzji, a co za tym idzie, mogą prowadzić do problemów eksploatacyjnych. Dobre praktyki mówią, że użycie właściwego narzędzia zwiększa bezpieczeństwo i wydajność pracy.

Pytanie 37

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. V2
B. N4
C. N2
D. V3
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.

Pytanie 38

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 4
Ilustracja do odpowiedzi A
B. Wynik 1
Ilustracja do odpowiedzi B
C. Wynik 2
Ilustracja do odpowiedzi C
D. Wynik 3
Ilustracja do odpowiedzi D
Poprawna odpowiedź to wynik 3. Dla przewodu YLY 3x10 mm² o długości około 8 metrów rezystancja pojedynczej żyły powinna być bardzo mała – w granicach kilku miliomów, maksymalnie kilkudziesięciu miliomów (czyli poniżej 0,1 Ω). Wartość 1,01 Ω, widoczna na zdjęciu nr 3, jest wystarczająco niska, by potwierdzić ciągłość przewodu, uwzględniając niedoskonały styk sond pomiarowych i opór przewodów pomiarowych miernika. W praktyce elektrycznej uznaje się, że wynik poniżej 1–2 Ω wskazuje na zachowaną ciągłość żyły, a wartości znacznie wyższe oznaczają przerwę lub uszkodzenie przewodu. Moim zdaniem ten pomiar wygląda wiarygodnie – w instalacjach zasilających przewody o przekroju 10 mm² mają bardzo niską rezystancję, a więc przepływ prądu nie jest ograniczany. W praktyce pomiary ciągłości wykonuje się często funkcją „brzęczyka” (test diody), ale przy większych przekrojach stosuje się pomiar rezystancji rzeczywistej, jak tu. Dobrą praktyką jest przed pomiarem zwarcie przewodów pomiarowych i zanotowanie oporu własnego, by odjąć go od wyniku. 1 Ω to zatem w tym kontekście wartość potwierdzająca, że przewód jest sprawny, a żyła ma ciągłość.

Pytanie 39

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. manometr.
B. filtr.
C. zawór.
D. smarownicę.
Manometr to urządzenie, które służy do pomiaru ciśnienia gazów lub cieczy. Na schemacie zespołu przygotowania powietrza ten symbol wskazuje na obecność manometru. W praktyce manometry są niezwykle istotne w systemach pneumatycznych, ponieważ pomagają monitorować i utrzymywać odpowiednie ciśnienie robocze. Bez prawidłowego ciśnienia, systemy mogą działać nieefektywnie lub, co gorsza, uszkodzić się. W standardach inżynieryjnych, manometry są zazwyczaj montowane w miejscach łatwo dostępnych, aby umożliwić szybki odczyt i ocenę sytuacji. Ich zastosowanie jest szerokie - od przemysłowych kompresorów, przez systemy grzewcze, aż po instalacje wodociągowe. Dzięki manometrom można szybko zdiagnozować problemy z ciśnieniem, co jest kluczowe w utrzymaniu bezpieczeństwa i efektywności systemów. Moim zdaniem, umiejętność prawidłowego odczytywania i interpretowania wskazań manometrów jest jednym z podstawowych elementów wiedzy każdego technika zajmującego się systemami pneumatycznymi czy hydraulicznymi. To nie tylko teoria, ale praktyka, którą warto znać.

Pytanie 40

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. kolejność podłączeń elementów wyjściowych do sterownika.
B. kolejność podłączeń elementów wejściowych do sterownika.
C. prawidłowość podłączeń przewodów ochronnych w układzie.
D. położenie przełącznika trybu pracy sterownika PLC.
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest kluczowe dla zapewnienia bezpieczeństwa każdego systemu elektrycznego, w tym układów z sterownikami PLC. Przewody ochronne są częścią systemu zabezpieczającego przed porażeniem prądem elektrycznym. Ich głównym zadaniem jest odprowadzenie potencjalnie niebezpiecznego prądu do ziemi, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce oznacza to, że w przypadku wystąpienia awarii, np. przebicia izolacji przewodu fazowego, wszelkie niebezpieczne napięcia są natychmiastowo sprowadzone do ziemi. Z tego powodu, przed uruchomieniem układu regulacji opartego na PLC, ważne jest, aby upewnić się, że przewody ochronne są prawidłowo podłączone. Standardy branżowe, takie jak normy IEC czy EN, podkreślają wagę prawidłowego uziemienia i ochrony przed porażeniem. Moim zdaniem, ignorowanie tego kroku to jak chodzenie po linie bez siatki bezpieczeństwa. Pamiętajmy, że w dziedzinie elektryki bezpieczeństwo zawsze powinno być na pierwszym miejscu.