Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 grudnia 2025 22:22
  • Data zakończenia: 8 grudnia 2025 22:25

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja planująca rozpoczęcie transmisji sprawdza, czy w sieci ma miejsce ruch, a następnie

A. czeka na żeton pozwalający na rozpoczęcie nadawania
B. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
C. oczekuje na przydzielenie priorytetu transmisji przez koncentrator
D. wysyła prośbę o rozpoczęcie transmisji
W metodzie CSMA/CD, kiedy stacja zamierza rozpocząć nadawanie, kluczowym etapem jest nasłuch na obecność sygnału w sieci. Gdy stacja wykryje ruch, musi czekać, aż nośnik będzie wolny. To podejście zapobiega kolizjom, które mogą wystąpić, gdy więcej niż jedna stacja podejmuje próbę nadawania jednocześnie. Czekanie na wolny nośnik jest istotne, ponieważ w przeciwnym razie dane mogą zostać usunięte lub zniekształcone, co wymagałoby ponownego nadawania, prowadząc do obniżenia efektywności sieci. Przykładem zastosowania tej zasady jest tradycyjna sieć Ethernet, gdzie kolizje są sygnalizowane przez specjalny sygnał zwrotny, a stacje muszą ponownie spróbować nadawania po losowym czasie. W praktyce, stosowanie CSMA/CD w sieciach lokalnych jest zgodne z normą IEEE 802.3, która definiuje ramy dla Ethernetu. Przestrzeganie tego wzorca działania jest kluczowe dla utrzymania płynności transmisji danych i minimalizacji opóźnień w komunikacji.

Pytanie 2

Protokół trasowania wewnętrznego, który wykorzystuje metrykę wektora odległości, to

A. OSPF
B. RIP
C. EGP
D. IS-IS
EGP (Exterior Gateway Protocol) jest protokołem trasowania używanym do wymiany informacji o routingu pomiędzy różnymi systemami autonomicznymi w Internecie, a nie wewnętrznie w sieci. Protokół ten opiera się na innej koncepcji, która nie korzysta z metryki wektora odległości, co czyni go nieodpowiednim w kontekście postawionego pytania. Z kolei IS-IS (Intermediate System to Intermediate System) to protokół trasowania oparty na stanie łącza, który jest stosowany głównie w dużych sieciach. Działa na zasadzie zbierania informacji o stanie łączy w sieci, co różni go od protokołów opartych na wektorze odległości, takich jak RIP. OSPF (Open Shortest Path First) również bazuje na stanie łącza i jest bardzo wydajnym protokołem stosowanym w dużych i kompleksowych infrastrukturach. Obie odpowiedzi, IS-IS i OSPF, są bardziej skomplikowane i zaawansowane technologicznie niż RIP, ale nie są oparte na metryce wektora odległości, co wyklucza je z poprawności. Kluczowym błędem myślowym jest mylenie różnych typów protokołów oraz ich metryk, co często prowadzi do wyboru niewłaściwego rozwiązania dla danej architektury sieciowej.

Pytanie 3

W adresacji IPv6 standardowy podział długości dla adresu sieci oraz identyfikatora hosta wynosi odpowiednio

A. 16 bitów / 112 bitów
B. 96 bitów / 32 bity
C. 32 bity / 96 bitów
D. 64 bity / 64 bity
Odpowiedź 64 bity / 64 bity jest poprawna, ponieważ w standardzie adresacji IPv6, adresy są podzielone na dwie zasadnicze części: część sieciową oraz część identyfikującą hosta. W przypadku IPv6, standardowy podział wynosi 64 bity dla identyfikacji sieci oraz 64 bity dla identyfikacji hosta. Taki podział sprzyja efektywnemu zarządzaniu adresami w dużych sieciach, umożliwiając przypisanie ogromnej liczby adresów do urządzeń w ramach jednej sieci. Przykładem może być organizacja, która musi przypisać adresy do tysięcy urządzeń w sieci lokalnej. Dzięki temu podziałowi, przedsiębiorstwa mogą korzystać z unikalnych adresów dla każdego urządzenia, co jest zgodne z zasadami projektowania sieci według standardu RFC 4291 dotyczącym IPv6. Ponadto, użycie 64-bitowego prefiksu sieciowego jest zgodne z dobrymi praktykami, które zalecają stosowanie zasięgów adresowych sprzyjających efektywności routingu i uproszczonemu zarządzaniu.

Pytanie 4

Administrator powinien podzielić sieć o adresie 193.115.95.0 z maską 255.255.255.0 na 8 równych podsieci. Jaką maskę sieci powinien wybrać administrator?

A. 255.255.255.192
B. 255.255.255.240
C. 255.255.255.248
D. 255.255.255.224
Wybór nieodpowiedniej maski sieci często wynika z błędnych założeń dotyczących podziału sieci. W przypadku maski 255.255.255.192, która odpowiada 11111111.11111111.11111111.11000000, uzyskujemy 4 podsieci, co jest niewystarczające do spełnienia wymagań podziału na 8 podsieci. Z kolei maska 255.255.255.240, odpowiadająca 11111111.11111111.11111111.11110000, daje jedynie 16 adresów w każdej podsieci, z czego 14 jest dostępnych dla hostów, co również nie pasuje do wymagania o 8 równych podsieciach, ponieważ w tym przypadku wykorzystamy tylko 4 podsieci. Maska 255.255.255.248 (11111111.11111111.11111111.11111000) umożliwia podział na 32 podsieci, co w tym kontekście również nie jest praktyczne, a ilość dostępnych adresów w każdej z tych podsieci wynosi zaledwie 6. Takie błędy w ocenie możliwości podziału sieci mogą prowadzić do poważnych problemów w przyszłości, takich jak niewystarczająca liczba adresów dla urządzeń w sieci. Kluczowe jest, aby rozumieć logikę działania maski podsieci oraz zasady przydzielania adresów IP, żeby unikać nieefektywnego zarządzania zasobami sieciowymi.

Pytanie 5

Administrator sieci komputerowej pragnie zweryfikować na urządzeniu z systemem Windows, które połączenia są aktualnie ustanawiane oraz na jakich portach komputer prowadzi nasłuch. W tym celu powinien użyć polecenia

A. netstat
B. tracert
C. arp
D. ping
Polecenie 'netstat' jest narzędziem diagnostycznym w systemie Windows, które umożliwia administratorom sieci komputerowych monitorowanie aktualnych połączeń sieciowych, otwartych portów oraz statystyk protokołów TCP/IP. Użycie tego polecenia pozwala na uzyskanie informacji o tym, które aplikacje nasłuchują na określonych portach oraz jakie połączenia są aktywne, co jest kluczowe w kontekście zarządzania bezpieczeństwem sieci. Na przykład, aby zobaczyć wszystkie aktywne połączenia TCP oraz porty, na których komputer nasłuchuje, można wykorzystać polecenie 'netstat -a'. W praktyce, administratorzy używają tego narzędzia do szybkiego identyfikowania nieautoryzowanych połączeń, co pozwala na wczesne wykrywanie potencjalnych zagrożeń. Ponadto, 'netstat' jest zgodne z najlepszymi praktykami w zakresie monitorowania sieci, co czyni je niezbędnym elementem zestawu narzędzi każdego specjalisty IT.

Pytanie 6

ACPI to interfejs, który pozwala na

A. przeprowadzenie testu weryfikującego działanie podstawowych komponentów komputera, takich jak procesor
B. zarządzanie konfiguracją oraz energią dostarczaną do różnych urządzeń komputera
C. przesył danych między dyskiem twardym a napędem optycznym
D. konwersję sygnału analogowego na cyfrowy
Zrozumienie roli ACPI w kontekście zarządzania energią i konfiguracją sprzętową jest kluczowe dla prawidłowego pojmowania jego funkcji. Odpowiedzi wskazujące na konwersję sygnału analogowego na cyfrowy dotyczą innych technologii, takich jak przetworniki A/C, które są wykorzystywane w elektroakustyce i systemach pomiarowych, a nie w zarządzaniu zasilaniem. Kolejna koncepcja, związana z transferem danych między dyskiem twardym a napędem optycznym, odnosi się do interfejsów komunikacyjnych, takich jak SATA czy SCSI, które odpowiadają za przesył danych, a nie zarządzenie energią czy konfiguracją urządzeń. Ponadto przeprowadzenie testu poprawności działania podzespołów komputera, jak procesor, kojarzy się bardziej z procedurami bootowania oraz diagnostyką sprzętową, w tym standardami POST, a nie z funkcjami ACPI. Typowym błędem myślowym w takich przypadkach jest utożsamianie złożonych funkcji zarządzania komputerem z podstawowymi operacjami na sygnałach lub transferze danych. W rzeczywistości ACPI jest bardziej skomplikowanym i wyspecjalizowanym mechanizmem odpowiedzialnym za efektywne i dynamiczne zarządzanie energią, co jest kluczowe w kontekście nowoczesnych, złożonych systemów komputerowych.

Pytanie 7

Który symbol wskazuje na zastrzeżenie praw autorskich?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Rozpoznanie symbolu zastrzeżenia praw autorskich jest kluczowe w zakresie ochrony własności intelektualnej. Błędne interpretacje tych symboli mogą prowadzić do naruszeń praw co ma istotne konsekwencje prawne i finansowe. Symbol R w kółku oznacza znak towarowy który jest zarejestrowany co chroni nazwę lub logo firmy przed nieuprawnionym użyciem przez innych. Jest ono istotne w kontekście budowania marki i ochrony tożsamości biznesowej. Symbol T w kółku nie ma powszechnie uznanego znaczenia w kontekście praw własności intelektualnej i jego użycie jest zazwyczaj nieformalnym oznaczeniem. G w kółku również nie jest standardowo używany w ochronie prawnej chociaż mógłby być utożsamiany z różnymi nieoficjalnymi znaczeniami w zależności od kontekstu. Niezrozumienie różnic między tymi symbolami i ich znaczeniem może prowadzić do błędów w ochronie praw co jest kluczowe w rozwijającym się globalnym rynku. Dlatego edukacja na temat praw własności intelektualnej i związanych z nimi symboli jest niezbędna dla profesjonalistów w każdej branży aby zapewnić prawidłowe zastosowanie i unikanie konfliktów prawnych. Prawidłowe rozpoznanie symbolu praw autorskich pozwala na świadome korzystanie z utworów i przestrzeganie praw twórców co jest fundamentem etycznym i prawnym w wielu dziedzinach działalności zawodowej. Poprawna interpretacja tych symboli jest zatem kluczowa w zarządzaniu własnością intelektualną i ochronie interesów twórców oraz firm.

Pytanie 8

Kiedy podczas startu systemu z BIOSu firmy AWARD komputer wyemitował długi dźwięk oraz dwa krótkie, to oznacza, że wystąpił błąd?

A. płyty głównej
B. karty graficznej
C. pamięci FLASH - BIOS
D. kontrolera klawiatury
Odpowiedzi związane z błędami płyty głównej, pamięci FLASH - BIOS oraz kontrolera klawiatury są niepoprawne. Problemy związane z płytą główną mogą objawiać się różnorodnymi sygnałami, ale długi sygnał i dwa krótkie sygnały najczęściej nie są z nimi związane. Odpowiedzi te odzwierciedlają typowe błędy myślowe, takie jak mylenie symptomów. Płyta główna, chociaż kluczowym komponentem, nie sygnalizuje problemów w taki sposób. Co więcej, błędy pamięci FLASH - BIOS nie są sygnalizowane przez długie i krótkie sygnały; te są bardziej związane z uszkodzeniem BIOS-u, które zazwyczaj objawia się innymi sygnałami, takimi jak ciągłe piszczenie. Również kontroler klawiatury, który ma swoje własne sygnały diagnostyczne, nie jest powiązany z długim sygnałem i dwoma krótkimi. Zrozumienie, jak BIOS interpretuje i sygnalizuje problemy, jest kluczowe w diagnostyce komputerowej, co pozwala na skuteczniejsze rozwiązywanie problemów sprzętowych. Warto zatem dokładnie zaznajomić się z dokumentacją dotyczącą sygnalizacji POST oraz standardami diagnostycznymi, aby uniknąć pomyłek w przyszłości.

Pytanie 9

Który z zapisów adresu IPv4 z maską jest niepoprawny?

A. 100.0.0.0/8
B. 18.4.0.0, maska 255.0.0.0
C. 16.1.1.1/5
D. 192.168.0.1, maska 255.250.255.0
Adresy IPv4, takie jak 16.1.1.1/5, 100.0.0.0/8 oraz 18.4.0.0 z maską 255.0.0.0, są przykładem sprawnie skonfigurowanych adresów, jednak nie oznacza to, że są one pozbawione błędów konceptualnych. Zapis 16.1.1.1/5 sugeruje, że pierwsze 5 bitów adresu odnosi się do części sieci, co w praktyce przekłada się na bardzo dużą sieć z maksymalnie 2^27 (134217728) możliwymi adresami hostów, co jest niepraktyczne w większości zastosowań. Adres 100.0.0.0/8 jest stosowany jako adres klasy A, jednak jego wykorzystanie w małych sieciach lokalnych może prowadzić do zbędnego marnotrawienia przestrzeni adresowej. Z kolei adres 18.4.0.0 z maską 255.0.0.0 również nie jest adekwatny do typowych scenariuszy, ponieważ umożliwia tworzenie zbyt dużych podsieci. Błędy te często wynikają z nieporozumienia dotyczącego zasad podziału i przypisywania adresów IP. Właściwe podejście do adresowania wymaga zrozumienia hierarchicznych struktur sieci oraz umiejętności właściwego doboru maski podsieci do specyficznych potrzeb lokalnych sieci. Użytkownicy często mylą zakresy adresów z maskami, co prowadzi do błędnych konfiguracji sieciowych, a w konsekwencji do problemów z komunikacją w sieci.

Pytanie 10

Jaki rodzaj licencji pozwala na swobodne modyfikacje, kopiowanie oraz rozpowszechnianie po dokonaniu dowolnej płatności na rzecz twórcy?

A. donationware
B. adware
C. shareware
D. postcardware
Donationware to typ licencji, który umożliwia użytkownikom modyfikowanie, kopiowanie i rozpowszechnianie oprogramowania po uiszczeniu dobrowolnej opłaty na rzecz autora. Tego typu licencja łączy elementy freeware z możliwością wsparcia finansowego twórcy, co jest korzystne dla rozwoju oprogramowania. Przykładem może być oprogramowanie, które oferuje pełny dostęp do wszystkich funkcji bezpłatnie, ale z zachętą do przekazania dobrowolnej darowizny. Dzięki temu, użytkownicy mają możliwość wspierania autorów, a jednocześnie korzystania z ich pracy bez ograniczeń. W praktyce, takie podejście sprzyja budowaniu społeczności wokół projektu, gdzie użytkownicy czują się zmotywowani do wspierania dalszego rozwoju. Warto zauważyć, że donationware jest zgodne z zasadami otwartego oprogramowania, które zachęca do dzielenia się wiedzą i zasobami. Licencja ta jest szczególnie popularna wśród twórców oprogramowania niezależnego i projektów non-profit, gdzie wsparcie finansowe może znacząco wpłynąć na kontynuację pracy twórczej.

Pytanie 11

Sprzęt, na którym można skonfigurować sieć VLAN, to

A. regenerator (repeater)
B. most przezroczysty (transparent bridge)
C. firewall
D. switch
Regenerator, czyli repeater, jest urządzeniem, które ma na celu wzmacnianie sygnału sieciowego, aby przedłużyć zasięg połączenia. Jego funkcjonalność kończy się na warstwie fizycznej modelu OSI, co oznacza, że nie jest w stanie zarządzać ruchem ani segregować danych w sposób, w jaki pozwala to na to switch. Zastosowanie repeatara w kontekście VLAN-ów jest błędne, ponieważ nie ma on zdolności do rozdzielania ruchu na różne sieci logiczne. Firewall, z drugiej strony, pełni rolę zabezpieczającą, monitorując i kontrolując ruch sieciowy na podstawie określonych zasad, ale również nie jest urządzeniem, które konfiguruje VLAN-y. Most przezroczysty, chociaż może przełączać ruch między sieciami, nie ma takiej samej funkcjonalności jak switch w zakresie zarządzania VLAN-ami. W praktyce, niepoprawne zrozumienie funkcji tych urządzeń może prowadzić do problemów w projektowaniu sieci, takich jak brak odpowiedniej segmentacji, co obniża bezpieczeństwo i wydajność komunikacji. Aby uniknąć tych pułapek, warto dokładnie zapoznać się z rolą każdego z tych urządzeń w sieci oraz ich możliwościami zgodnie z obowiązującymi standardami branżowymi.

Pytanie 12

Przedstawiony moduł pamięci należy zamontować na płycie głównej w gnieździe

Ilustracja do pytania
A. SO-RIMM
B. SO-DIMM DDR4
C. DDR2
D. DDR
Analizując pozostałe możliwości, łatwo zauważyć, że każda z nich wiąże się z innym standardem fizycznym oraz elektrycznym, które nie pasują do przedstawionego modułu. Klasyczny DDR oraz DDR2 to pamięci, które stosuje się głównie w komputerach stacjonarnych i mają one zupełnie inny rodzaj złącza – pełnowymiarowy DIMM, nie SO-DIMM. Ich długość jest wyraźnie większa, a także liczba pinów i napięcie zasilania są inne. Z kolei SO-RIMM to format stosowany w specyficznych zastosowaniach z dawnych lat – głównie w komputerach opartych o pamięci Rambus, które praktycznie nie występują już na rynku i wyglądają zupełnie inaczej niż popularne DDR czy DDR4. Jest to typowy błąd poznawczy, że każda niewielka kość RAM do laptopa będzie pasować do dowolnego gniazda – w rzeczywistości standardy różnią się nie tylko rozmieszczeniem wycięć (tzw. notchów), ale także parametrami pracy, takimi jak napięcie, częstotliwość czy nawet układ pinów. Współczesne laptopy niemal zawsze korzystają z SO-DIMM DDR3 lub DDR4, przy czym nie są one zamienne – płyta główna obsługuje tylko jeden standard. W przypadku pomyłki podczas wyboru pamięci, montaż nie będzie możliwy bez wymiany płyty lub całej platformy. Z mojego doświadczenia wynika, że to zagadnienie często sprawia trudność początkującym, ale dobra praktyka zawsze polega na dokładnym zapoznaniu się z dokumentacją techniczną urządzenia. W ten sposób unikniemy typowych kosztownych pomyłek przy rozbudowie pamięci RAM.

Pytanie 13

Jaki protokół aplikacyjny w modelu TCP/IP pozwala klientowi na nawiązanie bezpiecznego połączenia z firmowym serwerem przez Internet, aby zyskać dostęp do zasobów przedsiębiorstwa?

A. VLAN
B. FYP
C. NAT
D. VPN
VPN, czyli Virtual Private Network, to protokół warstwy aplikacji, który umożliwia bezpieczne połączenie zdalnych klientów z zasobami firmowymi przez Internet. Działa poprzez stworzenie prywatnego tunelu, który szyfruje wszystkie dane przesyłane między klientem a serwerem, co jest kluczowe w kontekście ochrony informacji przed nieautoryzowanym dostępem. VPN często wykorzystuje protokoły takie jak IPsec oraz SSL/TLS, co zwiększa bezpieczeństwo połączenia. Przykład zastosowania to sytuacja, gdy pracownicy firmy łączą się z siecią biurową zdalnie, np. z domu lub podczas podróży. Dzięki VPN mogą bezpiecznie uzyskiwać dostęp do zasobów firmowych, takich jak pliki, aplikacje czy systemy. Stosowanie VPN jest zgodne z dobrą praktyką w zakresie bezpieczeństwa IT i ochrony danych, ponieważ nie tylko zabezpiecza komunikację, ale również pozwala na ukrycie adresu IP użytkownika, co dodatkowo zwiększa prywatność.

Pytanie 14

W przypadku planowania wykorzystania przestrzeni dyskowej komputera do przechowywania oraz udostępniania danych, takich jak pliki oraz aplikacje dostępne w internecie, a także ich zarządzania, komputer powinien być skonfigurowany jako

A. serwer aplikacji
B. serwer terminali
C. serwer DHCP
D. serwer plików
Kiedy rozważamy inne typy serwerów, warto zrozumieć, na czym polegają ich funkcje oraz dlaczego nie są one odpowiednie do przechowywania i udostępniania plików. Serwer DHCP (Dynamic Host Configuration Protocol) jest odpowiedzialny za przydzielanie adresów IP urządzeniom w sieci. Jego głównym celem jest automatyzacja procesu konfiguracji sieci, co nie ma związku z przechowywaniem plików. Niewłaściwym podejściem jest myślenie, że serwer DHCP mógłby pełnić rolę serwera plików, ponieważ jego funkcjonalność jest zupełnie inna. Serwer aplikacji to platforma, która umożliwia uruchamianie aplikacji na zdalnych serwerach i nie zajmuje się przechowywaniem plików jako takich. Przyjęcie, że serwer aplikacji może zaspokoić potrzeby dotyczące plików, jest błędne, ponieważ jego głównym celem jest zarządzanie aplikacjami i ich zasobami. Serwer terminali, z kolei, to system, który umożliwia wielu użytkownikom dostęp do zdalnych desktopów i aplikacji, ale nie jest przeznaczony do udostępniania plików. Rozumienie tych różnic jest kluczowe, aby właściwie skonfigurować infrastrukturę IT w zależności od potrzeb organizacji. Właściwy wybór serwera jest fundamentalny dla efektywności operacyjnej i bezpieczeństwa danych.

Pytanie 15

Montaż przedstawionej karty graficznej będzie możliwy na płycie głównej wyposażonej w złącze

Ilustracja do pytania
A. AGP x2
B. AGP x8
C. PCI-E x4
D. PCI-E x16
Temat złączy kart graficznych potrafi trochę namieszać, szczególnie jeśli ktoś pamięta czasy AGP albo kojarzy różne wersje PCI Express. AGP, w wersjach x2 czy x8, to już mocno przestarzała technologia, która wyszła z użycia na początku lat 2000. AGP nie zapewnia takiej przepustowości ani wsparcia dla nowych standardów, więc współczesne karty graficzne zupełnie nie będą działały na tych slotach, nawet jeśli fizycznie by pasowały – a i to jest bardzo mało prawdopodobne, bo same złącza maja inny kształt i rozmieszczenie pinów. PCI-E x4 natomiast, mimo że jest częścią tej samej rodziny co PCI-E x16, ma znacznie mniejszą przepustowość i nie jest przeznaczone do kart graficznych, tylko raczej do mniej wymagających kart rozszerzeń, np. kontrolerów dysków czy kart sieciowych. Wiele osób myli się, sądząc, że każda karta PCI-E „zadziała” w każdym slocie PCI-E, ale w przypadku kart graficznych PCI-E x16 to absolutny wymóg, bo tylko to złącze dostarcza odpowiednią ilość linii sygnałowych i mocy. Typowym błędem jest też przekonanie, że starsze technologie jak AGP jeszcze mają zastosowanie – niestety, większość nowych płyt głównych już dawno z nich zrezygnowała, bo nie dają one możliwości wykorzystania współczesnych układów graficznych. Jeśli szukasz kompatybilności i wydajności, warto zawsze sprawdzić dokładnie, jaki standard obsługuje zarówno karta, jak i płyta główna – bo w przypadku kart graficznych margines na pomyłki praktycznie nie istnieje. Z mojej perspektywy, inwestycja w płytę i kartę na PCI-E x16 to najlepsza opcja, jeśli zależy Ci na wydajnej i długoterminowej pracy komputera.

Pytanie 16

Aby prawidłowo uzupełnić składnię przedstawionego polecenia, które dzieli folder Dane pod nazwą test, w miejscu kropek należy wpisać słowo ```net ... test=C:\Dane```

A. link
B. display
C. apply
D. share
Słowo 'share' jest poprawną odpowiedzią w kontekście polecenia udostępniania folderów w systemie Windows. W systemach operacyjnych, aby udostępnić folder innym użytkownikom w sieci, należy użyć odpowiednich poleceń, które umożliwiają dzielenie się zasobami. Polecenie 'net share' jest standardowym sposobem na udostępnianie folderów, a jego składnia wymaga podania nazwy udostępnianego folderu oraz ścieżki do niego. Przykładowo, komenda 'net share test=C:\Dane' udostępnia folder 'Dane' pod nazwą 'test'. Użytkownicy w sieci mogą następnie uzyskać dostęp do tego folderu, co jest przydatne w wielu scenariuszach, takich jak współpraca w biurze czy dzielenie się plikami w grupie projektowej. Korzystanie z polecenia 'net share' jest zgodne z najlepszymi praktykami zarządzania zasobami w sieciach komputerowych, a jego znajomość jest niezbędna dla administratorów systemów operacyjnych.

Pytanie 17

Które stwierdzenie odnoszące się do ruterów jest prawdziwe?

A. Działają w warstwie transportowej
B. Podejmują decyzje o przesyłaniu danych na podstawie adresów MAC
C. Podejmują decyzje o przesyłaniu danych na podstawie adresów IP
D. Działają w warstwie łącza danych
Odpowiedź dotycząca podejmowania decyzji przesyłania danych na podstawie adresów IP jest prawidłowa, ponieważ rutery operują na warstwie trzeciej modelu OSI, która jest odpowiedzialna za routing i przesyłanie pakietów w oparciu o adresy IP. Rutery analizują nagłówki pakietów, aby określić najlepszą trasę do docelowego adresu IP, co jest kluczowe dla efektywnego przesyłania danych w Internecie. W praktyce, na przykład, gdy użytkownik wysyła zapytanie HTTP do serwera, ruter decyduje, w którą stronę kierować pakiety, aby dotarły one do właściwego miejsca. Dobrą praktyką w zarządzaniu ruchem sieciowym jest stosowanie protokołów takich jak BGP (Border Gateway Protocol), które umożliwiają rutery wymianę informacji o trasach i optymalizację ścieżek transmisji. Dodatkowo, znając adresy IP, rutery mogą implementować polityki bezpieczeństwa oraz kontrolować dostęp, co jest istotne w kontekście zarządzania sieciami oraz zapewnienia ich integralności. W związku z tym, zrozumienie roli adresów IP w kontekście działania ruterów jest kluczowe dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 18

Protokół SNMP (Simple Network Management Protocol) jest wykorzystywany do

A. odbierania wiadomości e-mail
B. szyfrowania połączeń terminalowych z odległymi komputerami
C. konfiguracji sprzętu sieciowego i zbierania danych na jego temat
D. przydzielania adresów IP oraz ustawień bramy i DNS
Protokół SNMP (Simple Network Management Protocol) jest kluczowym narzędziem w zarządzaniu sieciami komputerowymi. Umożliwia administratorom monitorowanie i zarządzanie różnorodnymi urządzeniami, takimi jak routery, przełączniki, serwery czy punkty dostępu. Dzięki SNMP możliwe jest zbieranie danych o stanie tych urządzeń, ich wydajności oraz konfiguracji. Protokół ten operuje na zasadzie modeli klient-serwer, gdzie urządzenia zarządzane (agent) komunikują się z systemem zarządzającym (menedżer). Przykładem zastosowania jest monitorowanie obciążenia procesora na serwerze – SNMP może dostarczać informacje o bieżącej wydajności CPU, co pozwala na podejmowanie decyzji o optymalizacji zasobów. Standardy te są szeroko stosowane w branży i zgodne z najlepszymi praktykami, co sprawia, że SNMP jest fundamentem nowoczesnych rozwiązań w zakresie zarządzania infrastrukturą IT. Warto również zauważyć, że SNMP wspiera wiele wersji, z których każda wnosi dodatkowe funkcjonalności związane z bezpieczeństwem oraz wydajnością.

Pytanie 19

Który adres IP posiada maskę w postaci pełnej, zgodną z klasą adresu?

A. 180.12.56.1, 255.255.0.0
B. 169.12.19.6, 255.255.255.0
C. 118.202.15.6, 255.255.0.0
D. 140.16.5.18, 255.255.255.0
Analizując pozostałe odpowiedzi, można zauważyć pewne nieprawidłowości w przypisanych maskach do adresów IP. Adres 118.202.15.6 należy do klasy B, jednak zastosowanie maski 255.255.0.0 dla adresu klasy C nie jest poprawne. Adres klasy C, który obejmuje zakres od 192.0.0.0 do 223.255.255.255, wymaga zastosowania maski 255.255.255.0, co pozwala na utworzenie 256 podsieci, w których każda z nich może mieć 254 hosty. Nieprawidłowe przypisanie maski do adresu prowadzi do nieefektywnego zarządzania przestrzenią adresową i potencjalnych problemów z routingiem. Z kolei adres 140.16.5.18 również należy do klasy B, a zastosowanie maski 255.255.255.0 jest niewłaściwe. Zgodnie z konwencją, dla klasy B właściwa maska to 255.255.0.0, co pozwala na szersze możliwości podziału na podsieci. W przypadku adresu 169.12.19.6, który jest adresem klasy B, również nie powinno się używać maski 255.255.255.0, co mogłoby skutkować problemami w identyfikacji właściwej sieci oraz hostów. Te pomyłki mogą wynikać z braku zrozumienia podstawowej klasyfikacji adresów IP oraz ich masek, co jest kluczowe w projektowaniu sieci. Właściwe przypisanie adresów IP i ich masek jest fundamentalne dla zapewnienia stabilności i wydajności sieci, a także dla efektywnego zarządzania jej zasobami.

Pytanie 20

Jakie jest zadanie programu Wireshark?

A. obserwacja działań użytkowników sieci
B. analiza wydajności komponentów komputera
C. uniemożliwienie dostępu do komputera przez sieć
D. ochrona komputera przed wirusami
Wybór odpowiedzi sugerującej, iż Wireshark odpowiada za zabezpieczenie komputera przed wirusami, prowadzi do nieporozumienia dotyczącego funkcji tego narzędzia. Wireshark nie jest aplikacją zabezpieczającą, lecz narzędziem do analizy ruchu w sieci. Zabezpieczenia przed wirusami wymagają użycia programów antywirusowych, które są zaprojektowane do identyfikacji, blokowania i usuwania złośliwego oprogramowania. Wireshark dostarcza szczegółowych informacji na temat komunikacji w sieci, co może pomóc w wykrywaniu złośliwych działań, ale nie przeciwdziała im bezpośrednio. W kontekście monitorowania użytkowników, Wireshark oferuje jedynie pasywny wgląd w sieć, a nie aktywne nadzorowanie działań użytkowników, co jest innym rodzajem funkcji, często zarezerwowanym dla systemów zarządzania tożsamością lub usług zabezpieczeń sieciowych. Jeśli chodzi o sprawdzanie wydajności elementów komputera, Wireshark koncentruje się na analizie protokołów komunikacyjnych, a nie na wydajności sprzętu. Ostatnia sugestia, że Wireshark może zapobiegać dostępowi do komputera przez sieć, jest także błędna. Narzędzie to nie ma funkcji przerywania połączeń ani blokowania dostępu, a jedynie monitoruje i rejestruje ruch, co może być użyteczne w celu późniejszej analizy. W rezultacie, zrozumienie rzeczywistych funkcji Wiresharka jest kluczowe dla jego efektywnego wykorzystania w praktyce IT.

Pytanie 21

W serwerach warto korzystać z dysków, które obsługują tryb Hot plugging, ponieważ

A. prędkość zapisu rośnie do 250 MB/s
B. czas odczytu zwiększa się trzykrotnie w porównaniu do trybu Cable select
C. można podłączyć i odłączyć dysk przy włączonym zasilaniu serwera
D. pojemność dysku wzrasta dzięki automatycznej kompresji danych
Nieprawidłowe odpowiedzi, które sugerują inne powody stosowania dysków z funkcjonalnością Hot plugging, nie odzwierciedlają rzeczywistej istoty tej technologii. Twierdzenie, że zwiększa się pojemność dysku poprzez automatyczną kompresję danych, jest mylne, ponieważ kompresja nie jest funkcją, która jest związana z Hot plugging. Kompresja to proces, który odbywa się na poziomie oprogramowania i nie wpływa na fizyczne połączenie dysków w systemie. Kolejna fałszywa koncepcja dotyczy czasu odczytu, który rzekomo miałby wzrastać trzykrotnie w porównaniu z trybem Cable select. W rzeczywistości, Cable select jest techniką identyfikacji dysków w systemach SATA, a nie technologii, która miałaby wpływ na prędkość odczytu. Prędkości zapisu również nie są związane z Hot plugging; nie ma standardowej prędkości zapisu wynoszącej 250 MB/s, ponieważ wydajność dysków zależy od wielu czynników, takich jak ich typ, protokoły komunikacyjne czy konfiguracja RAID. Typowe błędy myślowe w takich odpowiedziach obejmują mylenie funkcji i specyfikacji dysków z technologią ich podłączenia oraz niepełne zrozumienie, jak działają systemy dyskowe w kontekście Hot plugging. Ważne jest, aby skupić się na rzeczywistych zastosowaniach i korzyściach wynikających z tej technologii, a nie na błędnych założeniach dotyczących jej funkcji.

Pytanie 22

Aby przekształcić zeskanowany obraz w tekst, należy użyć oprogramowania, które wykorzystuje metody

A. DPI
B. OCR
C. OMR
D. DTP
Wybór innych opcji, takich jak DPI, DTP czy OMR, nie jest właściwy w kontekście przekształcania zeskanowanego obrazu na tekst. DPI, czyli dots per inch, odnosi się do rozdzielczości obrazu i nie ma bezpośredniego związku z samym procesem rozpoznawania znaków. Wysoka wartość DPI może poprawić jakość zeskanowanego obrazu, ale nie zmienia samej natury informacji, która jest przetwarzana przez OCR. DTP (Desktop Publishing) to proces tworzenia publikacji przy użyciu oprogramowania graficznego, skupiający się na układzie i estetyce, a nie na rozpoznawaniu tekstu. OMR (Optical Mark Recognition) to technologia wykorzystywana do wykrywania zaznaczeń na formularzach, na przykład w testach wielokrotnego wyboru, nie zaś do odczytu tekstu. Typowym błędem myślowym jest mylenie tych technologii jako zamienników OCR, co prowadzi do nieporozumień w zakresie ich zastosowania. Każda z tych technologii ma swoje specyficzne przeznaczenie i zastosowanie. Równocześnie, dobrze jest pamiętać o standardach branżowych dotyczących digitalizacji dokumentów, które podkreślają znaczenie używania odpowiednich narzędzi w zależności od postawionych celów.

Pytanie 23

Na ilustracji ukazano narzędzie systemowe w Windows 7, które jest używane do

Ilustracja do pytania
A. naprawiania problemów z systemem
B. przeprowadzania migracji systemu
C. konfiguracji preferencji użytkownika
D. tworzenia kopii zapasowych systemu
Ten rysunek, który widzisz, to część panelu sterowania Windows 7, a dokładniej sekcja Wygląd i personalizacja. Zajmuje się ona ustawieniami, które mają wpływ na to, jak wygląda nasz system. Możesz dzięki temu zmieniać różne rzeczy, jak kolory okien czy dźwięki. Gdy zmieniasz tło pulpitu, to naprawdę nadajesz swojemu miejscu pracy osobisty charakter – każdy lubi mieć coś, co mu się podoba. Poza tym, ta sekcja pozwala też dostosować rozdzielczość ekranu, co jest ważne, żeby dobrze widzieć, a przy okazji chronić wzrok. Takie opcje są super przydatne, zwłaszcza w pracy, bo kiedy system jest zgodny z naszymi oczekiwaniami, to praca idzie lepiej. Windows, przez te różne funkcje, daje nam sporą kontrolę nad tym, jak wygląda interfejs, co w dzisiejszych czasach jest naprawdę ważne.

Pytanie 24

Aby przygotować do pracy skaner, którego opis zawarto w tabeli, należy w pierwszej kolejności

Skaner przenośny IRIScanBook 3
Bezprzewodowy, zasilany baterią i bardzo lekki. Można go przenosić w dowolne miejsce!
Idealny do skanowania książek, czasopism i gazet
Rozdzielczość skanowania 300/600/900 dpi
Prędkość skanowania: 2 sek. dla tekstów biało-czarnych / 3 sek. dla tekstów kolorowych
Bezpośrednie skanowanie do formatu PDF i JPEG
Zapis skanu na kartę microSD ™ (w zestawie)
Kolorowy ekran (do podglądu zeskanowanych obrazów)
3 baterie alkaliczne AAA (w zestawie)
A. włożyć baterię i kartę pamięci do odpowiedniego gniazda skanera.
B. włączyć urządzenie i rozpocząć bezpośrednie skanowanie do formatu PDF.
C. podłączyć skaner do komputera za pomocą kabla Ethernet.
D. podłączyć ładowarkę i całkowicie naładować akumulator.
W przygotowaniu skanera przenośnego pojawiają się pewne pułapki, które wynikają najczęściej z automatycznego przenoszenia nawyków z innych typów urządzeń. Jednym z typowych błędów jest założenie, że urządzenie trzeba najpierw podłączyć do ładowarki i naładować akumulator – rzeczywiście, sporo sprzętu wymaga ładowania przed pierwszym użyciem, ale IRIScanBook 3 jest zasilany klasycznymi bateriami AAA, które umieszczamy w urządzeniu. Tu nie ma akumulatora, więc nie musimy nic ładować, co jest dość wygodne, zwłaszcza w terenie. Często też pojawia się przekonanie, że skanery, jak drukarki czy niektóre skanery biurkowe, muszą być połączone z komputerem kablem (na przykład przez Ethernet czy USB). W tym przypadku urządzenie jest w pełni bezprzewodowe i nie wymaga żadnego połączenia z komputerem do działania – wszystko zapisywane jest na kartę microSD, więc niepotrzebne są żadne przewody podczas pracy. Jeszcze innym błędem jest założenie, że wystarczy tylko włączyć urządzenie i zacznie ono działać. Jednak bez zainstalowanych baterii oraz karty pamięci, skaner albo w ogóle nie zareaguje, albo nie będzie miał gdzie zapisywać zeskanowanych plików. W mojej opinii to wynika z tego, że użytkownicy przyzwyczajeni są do sprzętu stacjonarnego lub smartfonów, gdzie pamięć jest wbudowana. W przypadku urządzeń mobilnych standardem jest, by użytkownik sam zadbał o źródło zasilania i nośnik danych – to podstawa, bez której nie ruszymy dalej z żadną operacją, nawet najprostszą. Warto więc pamiętać, by zawsze przed włączeniem takiego sprzętu sprawdzić, czy bateria i karta microSD są na miejscu – to nie tylko oszczędność czasu, ale i uniknięcie zbędnych problemów w przyszłości.

Pytanie 25

W protokole IPv4 adres broadcastowy, zapisany w formacie binarnym, bez podziału na podsieci, w sekcji przeznaczonej dla hosta zawiera

A. wyłącznie jedynki
B. sekwencję zer z jedynką na końcu
C. naprzemiennie jedynki oraz zera
D. tylko zera
Adres broadcast w IPv4 służy do wysyłania informacji do wszystkich urządzeń w danej podsieci. Wiesz, jak to działa? W części adresu przeznaczonej dla hosta zawsze mamy same jedynki, co pokazuje, że wszystkie bity są na '1'. Na przykład, gdy mamy adres 192.168.1.255, to zapiszemy go w binarnie jako 11000000.10101000.00000001.11111111. Zauważ, że ostatni oktet to właśnie 255, czyli same jedynki. W praktyce wykorzystujemy adresy broadcast, gdy chcemy, żeby wszystkie urządzenia w lokalnej sieci dostały jakieś dane. Dobrym przykładem jest protokół ARP, który używa adresu broadcast, żeby znaleźć adresy MAC wszystkich urządzeń w sieci. Adresy broadcast są mega ważne dla tego, żeby sieci lokalne działały sprawnie.

Pytanie 26

Jakie narzędzie w systemie Windows Server umożliwia zarządzanie zasadami grupy?

A. Ustawienia systemowe
B. Konsola GPMC
C. Menedżer procesów
D. Serwer DNS
Wybór panelu sterowania jako narzędzia do zarządzania zasadami grupy jest nieprawidłowy, ponieważ panel sterowania skupia się głównie na lokalnych ustawieniach systemowych i konfiguracji komputera, a nie na zarządzaniu politykami w środowisku sieciowym. Jego funkcjonalność jest ograniczona do zarządzania lokalnymi konfiguracjami systemu operacyjnego, co nie odpowiada potrzebom zarządzania w skali całej domeny. Z kolei menedżer zadań jest narzędziem do monitorowania procesów i zarządzania wydajnością systemu, co również nie ma związku z politykami grupowymi. Narzędzie to służy do analizy i zarządzania bieżącymi procesami w systemie, a nie do wdrażania i egzekwowania zasad bezpieczeństwa czy konfiguracji na wielu maszynach jednocześnie. Serwer DNS, mimo że jest kluczowym elementem infrastruktury sieciowej, nie ma nic wspólnego z zarządzaniem zasadami grupy. DNS koncentruje się na rozwiązywaniu nazw i zarządzaniu adresowaniem w sieci, co jest zupełnie inną funkcjonalnością. Wybór nieodpowiednich narzędzi do zarządzania politykami grupowymi może prowadzić do nieefektywności w administracji IT, co podkreśla znaczenie świadomego podejścia do wyboru narzędzi administracyjnych oraz ich odpowiedniego zastosowania w kontekście zarządzania infrastrukturą sieciową.

Pytanie 27

Liczba BACA zapisana w systemie szesnastkowym odpowiada liczbie

A. 4782<sub>(10)</sub>
B. 1100101010111010<sub>(2)</sub>
C. 135316<sub>(8)</sub>
D. 1011101011001010<sub>(2)</sub>
Problemy z konwersją liczb między systemami liczbowymi zwykle biorą się z mylenia podstaw oraz nieumiejętnego rozbijania liczb na poszczególne cyfry. Często przy takich zadaniach ktoś odruchowo próbuje przeliczyć liczbę szesnastkową bezpośrednio na dziesiętną albo na ósemkową, nie analizując dokładnie struktury tej liczby w kontekście systemu, w którym została podana. W przypadku liczby BACA zapisanej heksadecymalnie, niektórzy mogą sądzić, że odczytanie jej jako liczby dziesiętnej albo ósemkowej (czyli traktowanie jej jakby była zapisana w innym systemie) da sensowny wynik, co niestety jest błędem. Przykład z odpowiedzią dziesiętną czy ósemkową pokazuje właśnie taki błąd myślowy: liczby te nie mają bezpośredniego związku z wartością heksadecymalną BACA. Równie łatwo pomylić się w przypadku zapisu binarnego – niektórzy próbują przeliczać szesnastkowe cyfry manualnie albo na skróty, co często prowadzi do błędów w kolejności bitów lub pominięciu któregoś fragmentu. Dla każdej cyfry szesnastkowej należy przypisać dokładnie 4 bity, bo taki jest właśnie standardowy przelicznik: 1 znak heksadecymalny przekłada się na 4 znaki binarne. Jeśli ktoś pomyli ten przelicznik albo spróbuje podzielić liczby nie na cztery, ale na trzy bity (jak w zapisie ósemkowym), wynik zupełnie nie będzie odpowiadał rzeczywistości. Bywa też, że osoby uczące się nie zwracają uwagi na kolejność cyfr i odczytują liczbę binarną od końca, co skutkuje błędną reprezentacją liczby. Z mojego doświadczenia wynika, że najlepiej jest rozpisywać na kartce każdą cyfrę szesnastkową osobno i przyporządkowywać jej dokładną reprezentację binarną – wtedy trudno się pomylić, a metoda jest zgodna z tym, jak robią to programiści i inżynierowie na co dzień. Pamiętaj też, że w profesjonalnych narzędziach do debugowania czy analizy plików zawsze spotkasz zapis szesnastkowy właśnie ze względu na łatwość jego konwersji na binarny. Podsumowując: klucz do sukcesu to konsekwencja w stosowaniu standardowych przeliczników i świadomość, w jakim systemie liczbowym operujemy w danej chwili.

Pytanie 28

Podaj polecenie w systemie Windows Server, które umożliwia usunięcie jednostki organizacyjnej z katalogu.

A. dsrm
B. dsadd
C. adprep
D. redircmp
Polecenie 'dsrm' (Directory Service Remove) to narzędzie w systemie Windows Server służące do usuwania obiektów z katalogu Active Directory, w tym jednostek organizacyjnych (OU). Użycie tego polecenia jest zgodne z najlepszymi praktykami zarządzania Active Directory, ponieważ pozwala na efektywne i bezpieczne eliminowanie niepotrzebnych obiektów. Aby usunąć jednostkę organizacyjną, administrator może użyć polecenia w konsoli PowerShell, na przykład: 'dsrm "OU=exampleOU,DC=domain,DC=com"'. Warto również zauważyć, że przed wykonaniem operacji usunięcia zaleca się przeprowadzenie analizy obiektów zależnych, aby uniknąć usunięcia istotnych zasobów, co może negatywnie wpłynąć na struktury zarządzające. W praktyce, 'dsrm' jest często stosowane w skryptach automatyzujących zarządzanie Active Directory, co podkreśla jego znaczenie w codziennych operacjach administracyjnych.

Pytanie 29

Przedstawione narzędzie podczas naprawy zestawu komputerowego przeznaczone jest do

Ilustracja do pytania
A. podstawowych testów elementów elektronicznych, takich jak diody, tranzystory lub rezystory.
B. zaciskania wtyków, obcinania i ściągania izolacji z przewodów elektrycznych.
C. czyszczenia elementów elektronicznych z resztek pasty i topników.
D. wyginania oraz zaciskania metalowych płaszczyzn.
Gdy spojrzymy na narzędzia wykorzystywane podczas naprawy zestawu komputerowego, łatwo jest popełnić błąd w ich identyfikacji, zwłaszcza gdy wyglądają dość uniwersalnie. Trzeba jednak zwrócić uwagę na specyficzne cechy oraz oznaczenia na obudowie. Zacznijmy od wyginania czy zaciskania metalowych płaszczyzn – to domena specjalistycznych szczypiec lub narzędzi typu zaciskarka, które są masywniejsze, mają zupełnie inną końcówkę roboczą i absolutnie nie nadają się do precyzyjnej diagnostyki elektrycznej. Czyszczenie elementów elektronicznych z resztek pasty czy topników wymaga zastosowania pędzelków antystatycznych, izopropanolu, ewentualnie specjalnych gumek serwisowych. Tego typu tester nie ma nawet fizycznych właściwości pozwalających na takie zastosowanie – nie posiada włosia, silnych materiałów ściernych ani zbiorniczka na płyn. Typowym błędem, który zdarza się początkującym technikom, jest również utożsamianie tego narzędzia z narzędziami do pracy z przewodami. Zaciskanie wtyków, obcinanie i ściąganie izolacji to zadania dla narzędzi elektrotechnicznych, jak kombinerki, ściągacze izolacji czy praski do końcówek – one mają ostrza, ruchome szczęki i wyraźnie mechaniczny charakter pracy. Prezentowany tester niczego nie zaciska, nie obcina, nie ingeruje mechanicznie w przewód. Podstawowym błędem myślowym jest tu ocenianie narzędzia wyłącznie przez pryzmat jego rozmiaru bądź koloru, bez analizy funkcji opisanych na obudowie i przyciskach. W dobrych praktykach technicznych zawsze należy sprawdzić do czego dokładnie służy urządzenie – często mają one na sobie oznaczenia typu „volt”, „test” czy „continuity”, co wskazuje na ich przeznaczenie diagnostyczne. Stosowanie narzędzi niezgodnie z ich funkcją może prowadzić do błędnych pomiarów, nieefektywnej pracy, a nawet uszkodzenia sprzętu lub narzędzia. Z mojego doświadczenia wynika, że świadomość techniczna w tym zakresie mocno podnosi bezpieczeństwo i jakość napraw.

Pytanie 30

Symbol przedstawiony na ilustracji wskazuje na produkt

Ilustracja do pytania
A. biodegradowalny
B. niebezpieczny
C. przeznaczony do ponownego użycia
D. nadający się do powtórnego przetworzenia
Niektóre osoby mogą mylić ten symbol z innymi oznaczeniami, które sugerują różne ekologiczne praktyki. Na przykład 'przeznaczony do powtórnego użycia' ma inny sens niż recykling. Powtórne użycie oznacza, że można dany produkt wykorzystać jeszcze raz w takiej samej formie, jak szklane butelki czy pojemniki wielorazowego użytku. Choć to też jest korzystne dla środowiska, to jednak symbol recyklingu nie odnosi się do tego bezpośrednio. A termin 'biodegradowalny' mówi o tym, że materiał może się naturalnie rozłożyć przez mikroorganizmy w środowisku, a to nie wymaga przetwarzania przemysłowego jak w przypadku recyklingu. Produkty biodegradowalne są często alternatywą dla tradycyjnych materiałów, ale mogą potrzebować określonych warunków do rozkładu. Z kolei 'niebezpieczny' oznacza produkty, które mogą zagrażać zdrowiu ludzi lub środowisku, i są zazwyczaj oznaczane innymi, bardziej wyraźnymi symbolami. Mylenie tych różnych koncepcji może bardzo utrudnić właściwe zarządzanie odpadami, co ostatecznie tylko pogarsza stan naszej planety. Wydaje mi się, że zrozumienie tych różnic jest kluczowe dla lepszego gospodarowania odpadami i ochrony naszych zasobów naturalnych. Każde z tych oznaczeń ma swój cel w ekosystemie zarządzania odpadami i razem wpływają na zrównoważony rozwój.

Pytanie 31

Adres IP komputera wyrażony sekwencją 172.16.0.1 jest zapisany w systemie

A. dziesiętnym.
B. ósemkowym.
C. szesnastkowym.
D. dwójkowym.
Adres IP zapisany jako 172.16.0.1 nie jest ani zapisem binarnym, ani ósemkowym, ani szesnastkowym. Mimo że adres IP w rzeczywistości jest przechowywany i przetwarzany przez komputer jako liczba binarna (ciąg zer i jedynek), to jednak z punktu widzenia człowieka – administratora czy użytkownika – stosuje się wygodniejszą formę dziesiętną. Spotyka się czasem błąd polegający na utożsamianiu postaci takiego adresu z systemem ósemkowym czy szesnastkowym, może dlatego, że w informatyce te systemy liczbowania są często używane, np. przy adresowaniu pamięci czy kodowaniu kolorów. Jednak notacja ósemkowa polegałaby na użyciu tylko cyfr od 0 do 7, natomiast tu pojawiają się liczby przekraczające tę wartość (np. 16, 172), więc już to powinno zapalić lampkę ostrzegawczą. Podobnie w systemie szesnastkowym występowałyby dodatkowe znaki (A-F), a w zapisie 172.16.0.1 tego nie ma. Warto pamiętać, że binarna postać adresu IP wyglądałaby zupełnie inaczej: składałaby się z czterech grup po 8 bitów każda (np. 10101100.00010000.00000000.00000001), co na pierwszy rzut oka dla wielu osób jest nieczytelne. Branżowe standardy, jak RFC 791, jasno definiują notację dziesiętną z kropkami jako domyślną prezentację adresów IPv4 dla ludzi. Oczywiście, istnieją narzędzia i sytuacje, gdzie trzeba przeliczać IP na binarne lub nawet szesnastkowe, ale w praktyce codziennej, np. przy konfigurowaniu sieci, zawsze operujemy na zapisie dziesiętnym. Częsty błąd myślowy wynika z mylenia formy prezentacji adresu z tym, w jakiej postaci komputer go przechowuje – to dwie zupełnie różne sprawy i warto to sobie dobrze przyswoić, żeby uniknąć nieporozumień przy pracy z sieciami.

Pytanie 32

Ramka danych przesyłanych z komputera PC1 do serwera www znajduje się pomiędzy ruterem R1 a ruterem R2 (punkt A). Jakie adresy są w niej zawarte?

Ilustracja do pytania
A. Źródłowy adres IP komputera PC1, docelowy adres rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
B. Źródłowy adres IP rutera R1, docelowy adres IP rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
C. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
D. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC rutera R1, adres docelowy MAC rutera R2
Niektóre niepoprawne odpowiedzi sugerują, że adresy MAC urządzeń końcowych, takich jak komputer PC1 lub serwer, są używane bezpośrednio w komunikacji między ruterami. To nieporozumienie wynika z braku zrozumienia, jak protokoły sieciowe działają na różnych poziomach modelu OSI. Adresy MAC są używane do komunikacji w obrębie tej samej sieci lokalnej i zmieniają się przy każdym przejściu przez ruter. Dlatego gdy ramka danych przemieszcza się od jednego rutera do drugiego, to adresy MAC tych ruterów służą do prawidłowego dostarczenia danych w obrębie tego segmentu sieci. Inne błędne odpowiedzi mogą wskazywać na niepoprawne przypisanie adresów IP, na przykład do routingu urządzeń pośrednich jak rutery, co jest mylące ponieważ adresy IP pozostają stałe dla urządzeń końcowych w trakcie całej sesji komunikacyjnej w sieci rozległej. Zrozumienie, że IP i MAC pełnią różne role, jest kluczowe: IP umożliwia identyfikację celowego urządzenia w sieci globalnej, a MAC zapewnia dostarczenie danych w obrębie segmentu sieciowego. Taki podział ról jest podstawą efektywnego działania protokołów routingu i przesyłania danych w nowoczesnych sieciach komputerowych. Typowym błędem jest także zakładanie, że adres MAC komputera PC1 lub serwera jest wykorzystywany na całej długości trasy, co nie jest możliwe z technicznego punktu widzenia, ze względu na ograniczenia w zakresie działania protokołu Ethernet oraz wymagań dotyczących wydajności sieci. Praktyka sieciowa wymaga zrozumienia, że każdy segment sieci ma swoje własne warunki routingu, co jest niezwykle istotne dla optymalizacji działania sieci i unikania potencjalnych problemów z wydajnością lub bezpieczeństwem transmisji danych. Zrozumienie tego jest kluczowe dla każdego specjalisty zajmującego się zarządzaniem i konfiguracją sieci komputerowych.

Pytanie 33

Polecenie grep w systemie Linux pozwala na

A. kompresję danych
B. porównanie dwóch plików
C. archiwizację danych
D. wyszukanie danych w pliku
Wybór opcji związanych z kompresją, archiwizacją czy porównywaniem danych wskazuje na nieporozumienie dotyczące funkcji polecenia grep. Kompresja danych to proces redukcji rozmiaru plików, co nie ma nic wspólnego z wyszukiwaniem konkretnych informacji w ich treści. Narzędzia takie jak gzip czy tar są odpowiedzialne za kompresję i archiwizację, a nie grep. Archiwizacja danych zazwyczaj polega na łączeniu wielu plików w jeden archiwum, co również nie jest domeną grep. Z kolei porównywanie danych z dwóch plików można zrealizować za pomocą narzędzi takich jak diff, które zwracają różnice pomiędzy plikami, a nie przeszukują ich zawartości w poszukiwaniu wzorców. Często błędnie zakłada się, że wszystkie operacje na plikach związane z przetwarzaniem danych można zrealizować za pomocą jednego narzędzia. Ważne jest, aby zrozumieć, że różne narzędzia w systemie Linux mają swoje specyficzne przeznaczenie i użycie, co jest zgodne z zasadą 'jedno narzędzie do jednego zadania'. Z tego powodu, wybierając odpowiednie narzędzie do naszych potrzeb, musimy mieć jasny obraz ich funkcji i zastosowań.

Pytanie 34

Kluczowym mechanizmem zabezpieczającym dane przechowywane na serwerze jest

A. tworzenie kopii bezpieczeństwa
B. generowanie punktu przywracania systemu
C. uruchomienie ochrony systemu
D. automatyczne realizowanie kompresji danych
Wiele osób może mylnie sądzić, że automatyczne wykonywanie kompresji danych jest kluczowym mechanizmem ochrony. Kompresja, chociaż przydatna do oszczędzania miejsca na dysku, nie chroni danych przed ich utratą. W rzeczywistości, jeśli dane zostaną usunięte lub uszkodzone, skompresowane pliki także mogą ulec zniszczeniu. Włączenie ochrony systemu to kolejny aspekt, który nie zapewnia pełnej ochrony danych. Chociaż ochrona systemu może zabezpieczać przed nieautoryzowanym dostępem, nie chroni przed utratą danych w wyniku awarii sprzętu czy złośliwego oprogramowania. Tworzenie punktu przywracania systemu również nie stanowi efektywnej metody ochrony danych. Punkty przywracania pozwalają na cofnięcie zmian w systemie operacyjnym, ale nie są skuteczne w przypadku utraty danych spowodowanej usunięciem plików użytkownika. Z tego powodu, poleganie na tych metodach zamiast na kopiach bezpieczeństwa może prowadzić do katastrofalnych konsekwencji. W kontekście zarządzania danymi, kluczowe jest, aby stosować sprawdzone praktyki jak regularne tworzenie kopii zapasowych, które są w stanie w pełni zabezpieczyć dane przed ich utratą.

Pytanie 35

Jakie parametry mierzy watomierz?

A. napięcie elektryczne
B. natężenie prądu
C. moc czynna
D. opór
Pomiar napięcia prądu elektrycznego, rezystancji oraz natężenia prądu elektrycznego są zadaniami, które nie są realizowane przez watomierz. Napięcie, wyrażane w woltach (V), to różnica potencjałów między dwoma punktami w obwodzie. Aby je zmierzyć, stosuje się woltomierze, które są specjalnie zaprojektowane do tego celu, a ich pomiar jest kluczowy dla oceny wydajności urządzeń elektrycznych. Rezystancję, mierzoną w omach (Ω), określa się za pomocą omomierzy, które pozwalają na ocenę, jak dobrze przewodniki elektryczne przewodzą prąd. Z kolei natężenie prądu, wyrażane w amperach (A), mierzy się amperomierzami, które również pełnią funkcję w obwodach elektrycznych, ale nie są związane z pomiarem mocy. Wiele osób myli funkcje różnych instrumentów pomiarowych, co prowadzi do nieporozumień. Kluczowym błędem myślowym jest przyjęcie, że urządzenia o różnych funkcjach mogą być używane zamiennie. Zrozumienie specyficznych zastosowań poszczególnych narzędzi pomiarowych jest niezbędne dla efektywnej analizy i optymalizacji systemów elektrycznych, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 36

Z jakim protokołem związane są terminy "Sequence number" oraz "Acknowledgment number"?

 Sequence number: 117752 (relative sequence number)
Acknowledgment number: 33678 (relative ack number)
Header Length: 20 bytes
Flags: 0x010 (ACK)
Window size value: 258
A. UDP (User Datagram Protocol)
B. TCP (Transmission Control Protocol)
C. IP (Internet Protocol)
D. HTTP (Hypertext Transfer Protocol)
Protokół TCP czyli Transmission Control Protocol jest kluczowy dla niezawodnej transmisji danych w sieciach komputerowych Ponieważ TCP zapewnia kontrolę przepływu i potwierdzanie danych Sequence number i Acknowledgment number są fundamentalnymi koncepcjami w TCP Sequence number określa kolejność bajtów które są przesyłane co pozwala odbiorcy na zrekomponowanie danych w ich pierwotnej kolejności Jest to niezbędne dla aplikacji które wymagają porządku w danych Acknowledgment number z kolei jest używany do potwierdzania odbioru danych przez odbiorcę co pozwala na wykrywanie utraty pakietów i retransmisję TCP jest protokołem połączeniowym co oznacza że przed rozpoczęciem transmisji danych nawiązywane jest połączenie między nadawcą a odbiorcą Zabezpiecza to integralność danych i pozwala na kontrolę nad przepływem danych co jest niezwykle ważne w środowiskach sieciowych gdzie mogą wystąpić zakłócenia lub utrata pakietów W praktyce TCP jest szeroko stosowany w aplikacjach wymagających wysokiej niezawodności takich jak przeglądarki internetowe klienty poczty elektronicznej i komunikatory internetowe Protokół TCP stosuje różne techniki optymalizacji takie jak kontrola przeciążeń co przyczynia się do jego powszechnego zastosowania w branży

Pytanie 37

Co to jest serwer baz danych?

A. MSDN
B. MySQL
C. OTDR
D. VPN
MySQL to jeden z najpopularniejszych serwerów bazodanowych, który jest open-source i używany na całym świecie do przechowywania i zarządzania danymi. Jako relacyjny system zarządzania bazą danych (RDBMS), MySQL umożliwia użytkownikom organizowanie danych w tabelach, co pozwala na efektywne wyszukiwanie, aktualizację oraz usuwanie informacji. Przykładem zastosowania MySQL jest jego wykorzystanie w aplikacjach webowych, takich jak WordPress, gdzie jest używany do przechowywania danych użytkowników, postów oraz komentarzy. MySQL obsługuje standardowy język zapytań SQL, co czyni go kompatybilnym z wieloma innymi systemami. Dobre praktyki w korzystaniu z MySQL obejmują stosowanie indeksów w celu przyspieszenia zapytań, regularne wykonywanie kopii zapasowych oraz monitorowanie wydajności bazy danych. Dodatkowo, MySQL wspiera różne mechanizmy bezpieczeństwa, takie jak uwierzytelnianie użytkowników oraz szyfrowanie danych, co jest kluczowe w kontekście ochrony wrażliwych informacji.

Pytanie 38

W biurze rachunkowym znajduje się sześć komputerów w jednym pomieszczeniu, połączonych kablem UTP Cat 5e z koncentratorem. Pracownicy korzystający z tych komputerów muszą mieć możliwość drukowania bardzo dużej ilości dokumentów monochromatycznych (powyżej 5 tys. stron miesięcznie). Aby zminimalizować koszty zakupu i eksploatacji sprzętu, najlepszym wyborem będzie:

A. laserowe drukarki lokalne podłączone do każdego z komputerów
B. laserowa drukarka sieciowa z portem RJ45
C. atramentowe urządzenie wielofunkcyjne ze skanerem i faksem
D. drukarka atramentowa podłączona do jednego z komputerów i udostępniana w sieci
Patrząc na inne odpowiedzi, trzeba przyznać, że wybór drukarki atramentowej podłączonej do jednego komputera i udostępnianej w sieci to dość kiepski pomysł, zwłaszcza w biurze rachunkowym. Koszt eksploatacji takich drukarek jest wyższy, a jakość druku czarno-białego na dłuższą metę może być słabsza, co nie sprawdzi się przy dużych nakładach. Gdy drukujemy ponad 5000 stron miesięcznie, ciągłe wymiany tuszy mogą mocno skomplikować życie. Nawet urządzenie wielofunkcyjne atramentowe z funkcjami skanera i faksu nie jest najlepszym wyjściem, bo są one bardziej do codziennych zadań niż do wydajnego druku czarno-białego. Takie drukarki zazwyczaj mają też mniejsze możliwości, co może wprowadzić chaos i spowolnić pracę. Z kolei wybór lokalnych drukarek laserowych dla każdego komputera to dodatkowe koszty nie tylko na sprzęt, ale i na serwisowanie kilku urządzeń oraz zarządzanie różnymi tonerami. To zazwyczaj prowadzi do niepotrzebnych opóźnień i marnotrawstwa, co na pewno nie jest korzystne, gdy mamy do zrealizowania sporo wydruków. Warto podejmować decyzje, mając na uwadze koszty i wydajność, dlatego centralna drukarka sieciowa to według mnie najlepszy wybór.

Pytanie 39

Adres IP 192.168.2.0/24 został podzielony na cztery mniejsze podsieci. Jaką maskę mają te nowe podsieci?

A. 255.255.255.128
B. 255.255.255.192
C. 225.225.225.240
D. 255.255.255.224
Odpowiedź 255.255.255.192 jest poprawna, ponieważ przy podziale sieci o adresie IP 192.168.2.0/24 na cztery podsieci, konieczne jest zwiększenie liczby bitów w masce podsieci. Maska /24 oznacza, że pierwsze 24 bity są używane do identyfikacji sieci, co pozostawia 8 bitów na identyfikację hostów. Podzielając tę sieć na cztery podsieci, potrzebujemy dodatkowych 2 bitów, aby uzyskać 4 (2^2 = 4) możliwe podsieci. Zmiana maski na /26 (255.255.255.192) daje nam 64 adresy w każdej podsieci, z czego 62 mogą być używane przez hosty (jeden adres zarezerwowany dla identyfikacji sieci, a jeden dla rozgłoszenia). Taki podział pozwala na efektywne zarządzanie zasobami sieciowymi, co jest zgodne z najlepszymi praktykami w projektowaniu sieci, szczególnie w środowiskach, gdzie istnieje potrzeba segmentacji ruchu w celu zwiększenia bezpieczeństwa i wydajności. Przykładem zastosowania może być sytuacja, w której firma dzieli swoją sieć na różne działy, co pozwala na niezależne zarządzanie i ograniczanie dostępu.

Pytanie 40

Aby otworzyć konsolę przedstawioną na ilustracji, należy wpisać w oknie poleceń

Ilustracja do pytania
A. gpedit
B. mmc
C. gpupdate
D. eventvwr
Polecenie gpedit jest używane do otwierania Edytora Zasad Grup (Group Policy Editor), który pozwala na modyfikowanie zasad bezpieczeństwa i ustawień komputerów w sieci. Nie jest ono odpowiednie do uruchamiania konsoli pokazanej na rysunku, gdyż gpedit dotyczy tylko zarządzania politykami grupowymi. Z kolei gpupdate służy do odświeżania ustawień zasad grupowych na komputerze lokalnym lub w domenie, a nie do uruchamiania konsol zarządzania. To polecenie jest użyteczne w przypadku, gdy wprowadzone zmiany w zasadach grupowych muszą być szybko zastosowane bez konieczności restartu systemu. Polecenie eventvwr otwiera Podgląd Zdarzeń, który pozwala na monitorowanie i analizowanie zdarzeń systemowych, aplikacyjnych czy związanych z bezpieczeństwem, ale nie jest ono związane z uruchamianiem konsoli zarządzania przedstawionej na rysunku. Częstym błędem jest zakładanie, że wszystkie narzędzia zarządzania systemem Windows mogą być dostępne za pomocą jednego polecenia. Różne funkcje zarządzania są rozdzielone na różne narzędzia i polecenia, każde z określonym zakresem działania i przeznaczeniem. Rozumienie specyfiki i zastosowań każdego z tych poleceń jest kluczowe w efektywnym zarządzaniu systemami operacyjnymi, co pozwala na lepsze wykorzystanie dostępnych zasobów i narzędzi.