Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 15:26
  • Data zakończenia: 18 grudnia 2025 15:42

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik małej mocy.
B. Rozłącznik izolacyjny z widoczną przerwą.
C. Odłącznik instalacyjny.
D. Łącznik silnikowy bez zabezpieczeń termicznych.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 2

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Długość przewodu
B. Typ materiału żyły
C. Typ materiału izolacji
D. Przekrój żył
Rodzaj materiału izolacji nie wpływa na wartość spadku napięcia w instalacji elektrycznej, ponieważ spadek napięcia jest determinowany przez właściwości przewodnika, a nie jego otoczenie. Kluczowymi czynnikami wpływającymi na spadek napięcia są długość przewodu, jego przekrój oraz materiał, z którego wykonana jest żyła. Spadek napięcia można obliczyć przy pomocy wzorów, które uwzględniają opór przewodnika, a ten z kolei zależy od jego długości, przekroju oraz rodzaju materiału (miedź lub aluminium). W praktyce, dla zminimalizowania spadków napięcia w instalacjach elektrycznych, stosuje się przewody o większym przekroju oraz starannie planuje długości odcinków przewodów. Na przykład, w instalacjach o dużym obciążeniu, takich jak sieci zasilające przemysłowe, zastosowanie przewodów miedzianych o dużym przekroju pozwala na skuteczne ograniczenie strat napięcia, co jest zgodne z wymogami norm PN-IEC 60364-5-52.

Pytanie 3

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Luzy w łożyskach
C. Przerwa w uzwojeniu twornika
D. Brak obciążenia
Luzy w łożyskach same w sobie nie sprawią, że silnik bocznikowy prądu stałego zacznie się rozbiegać. Owszem, luzy mogą zmniejszyć wydajność i stabilność silnika. Mogą powodować większe tarcie, co prowadzi do przegrzewania, ale to nie kluczowy powód rozbiegania. Brak obciążenia też nie jest głównym problemem, bo nawet bez obciążenia te silniki mogą pracować, tylko kręcą się szybciej, co może prowadzić do uszkodzeń. Przerwa w uzwojeniu twornika nie sprawi, że silnik się rozbiegnie, bo bez prądu w tym uzwojeniu, to ten silnik w ogóle nie wystartuje. Kluczowe w tym wszystkim jest zrozumienie, że rozbieganie się silnika wynika z braku pola magnetycznego i braku stabilizacji prędkości obrotowej. Myślenie, że to przez problemy mechaniczne, to typowy błąd, bo powinno się skupić bardziej na zasadach działania silnika i jego systemie wzbudzenia.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Świadectwo kwalifikacyjne w zakresie E + pomiary
B. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
C. Wyłącznie świadectwo kwalifikacyjne w zakresie D
D. Jedynie świadectwo kwalifikacyjne w zakresie E
Osoba wykonująca pomiary odbiorcze instalacji elektrycznej w budynku mieszkalnym powinna posiadać świadectwo kwalifikacyjne w zakresie E, które uprawnia do eksploatacji urządzeń, instalacji i sieci elektrycznych. Dodatkowo, ważnym elementem jest posiadanie wiedzy oraz umiejętności praktycznych w zakresie przeprowadzania pomiarów. Wiedza ta obejmuje znajomość metod pomiarowych, zasad ich wykonywania oraz interpretacji wyników. Pomiary odbiorcze są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej. Na przykład, pomiar rezystancji izolacji pozwala na ocenę stanu zabezpieczeń przed porażeniem elektrycznym, co jest szczególnie istotne w domowych instalacjach. Standardy branżowe, takie jak PN-EN 60204-1, podkreślają znaczenie takich pomiarów dla zapewnienia zgodności z normami bezpieczeństwa. Z tego powodu posiadanie świadectwa kwalifikacyjnego w zakresie E wraz z umiejętnością wykonywania pomiarów jest niezbędne do efektywnego i bezpiecznego wykonywania prac w tej dziedzinie.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie powinno być znamionowe natężenie prądu dla instalacyjnego wyłącznika nadprądowego używanego w systemie z napięciem 230 V, 50 Hz, jako zabezpieczenie obwodu wykonanego z przewodu 3x2,5 mm2, który zasila 1-fazowy piec elektryczny o mocy 3 kW?

A. 6 A
B. 16 A
C. 25 A
D. 10 A
Wybór znamionowego prądu instalacyjnego wyłącznika nadprądowego na poziomie 16 A w przypadku obwodu zasilającego piec elektryczny o mocy 3 kW jest zgodny z zasadami zabezpieczeń elektrycznych. Przy napięciu 230 V, prąd pobierany przez piec można obliczyć, korzystając ze wzoru P = U * I, co daje I = P / U, a w naszym przypadku I = 3000 W / 230 V = 13,04 A. Z tego wynika, że wyłącznik nadprądowy o znamionowym prądzie 16 A będzie odpowiedni, zapewniając odpowiedni margines bezpieczeństwa oraz uwzględniając warunki pracy, takie jak prądy rozruchowe. Zgodnie z normą PN-IEC 60364-4-41, zabezpieczenia instalacyjne powinny być dobrane z odpowiednim zapasem, aby zminimalizować ryzyko wyzwolenia wyłącznika w normalnych warunkach eksploatacyjnych. Dodatkowo, zastosowanie przewodu 3x2,5 mm², który ma odpowiednią zdolność prądową, sprzyja bezpieczeństwu i niezawodności instalacji. W praktyce, 16 A jest powszechnie stosowane dla podobnych obwodów, co czyni tę odpowiedź właściwą.

Pytanie 10

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Obwody PELV
C. Separacja elektryczna
D. Obwody SELV
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 11

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. intensywności pola magnetycznego
B. okresu jego działania
C. oporu uzwojeń stojana
D. oporu rdzenia stojana
Pomiar natężenia pola magnetycznego w silniku indukcyjnym, choć istotny w kontekście analizy działania silników elektrycznych, nie jest uważany za kluczowy element badań eksploatacyjnych. Zamiast tego, takie pomiary są często stosowane w bardziej zaawansowanych analizach, jak ocena efektywności energetycznej lub badania wydajności, a nie w rutynowej diagnostyce. Rezystancja rdzenia stojana, z drugiej strony, odnosi się do strat materiałowych, które są istotne, ale ich pomiar nie jest bezpośrednio związany z codziennym utrzymaniem silników. Czas pracy silnika może być używany jako wskaźnik eksploatacji, ale nie dostarcza bezpośrednich informacji o stanie technicznym silnika. W praktyce, pomiar rezystancji uzwojeń stojana jest bardziej miarodajny, gdyż wskazuje na kondycję uzwojeń i ich zdolność do przewodzenia prądu. Niezrozumienie znaczenia pomiarów rezystancji lub pomylenie ich z innymi parametrami może prowadzić do nieprawidłowych wniosków dotyczących stanu technicznego silnika, a tym samym do nieefektywnej konserwacji i zwiększenia ryzyka wystąpienia awarii.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 2 lata
B. 3 lata
C. 5 lat
D. 4 lata
Przeglądy instalacji elektrycznej w budynkach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co 5 lat, co jest zgodne z przepisami oraz normami zawartymi w Polskich Normach (PN). Regularne przeglądy mają na celu zapewnienie bezpieczeństwa użytkowników obiektów oraz zachowanie sprawności technicznej instalacji. W trakcie przeglądów dokonuje się oceny stanu technicznego instalacji, co pozwala na wczesne wykrycie ewentualnych usterek czy nieprawidłowości, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak pożar czy porażenie prądem. Przykładowo, w obiektach takich jak szkoły czy szpitale, gdzie bezpieczeństwo jest kluczowe, regularne przeglądy są niezbędne, aby spełniać wymogi prawa oraz zapewnić komfort i bezpieczeństwo ich użytkowników. Pamiętajmy, że odpowiedzialność za przeprowadzanie tych przeglądów spoczywa na właścicielu obiektu, który powinien współpracować z wyspecjalizowanymi firmami elektrycznymi, aby mieć pewność, że prace są prowadzone zgodnie z aktualnymi normami i najlepszymi praktykami.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Wyłącznik nadprądowy typu Z
C. Bezpiecznik typu aR
D. Wyłącznik nadprądowy typu B
Zastosowanie wyłącznika nadprądowego typu Z, bezpiecznika typu aR czy wyłącznika nadprądowego typu B nie jest odpowiednie do zabezpieczenia silnika trójfazowego o podanych parametrach. Wyłącznik nadprądowy typu Z, mimo że jest skuteczny w ochronie przed przeciążeniem, nie oferuje optymalnej ochrony dla silników, ponieważ jego charakterystyka czasowo-prądowa jest dostosowana głównie do obwodów oświetleniowych i urządzeń elektronicznych. W przypadku silników, istotna jest możliwość tolerowania krótkotrwałych prądów startowych, a wyłącznik typu Z może wyzwolić zbyt szybko. Bezpiecznik typu aR również nie nadaje się do tego celu, gdyż jest przeznaczony do ochrony obwodów oporowych, a nie silników. Jego reakcja na przeciążenie jest zbyt szybka, co może prowadzić do niepotrzebnych wyłączeń podczas normalnej pracy silnika. Z kolei wyłącznik nadprądowy typu B, podobnie jak wyżej wymienione rozwiązania, ma ograniczoną zdolność do radzenia sobie z prądami rozruchowymi, co sprawia, że nie jest najlepszym rozwiązaniem w przypadku silników z dużymi prądami rozruchowymi. W praktyce, wybór niewłaściwego zabezpieczenia może prowadzić do uszkodzenia silnika, a także zwiększenia kosztów eksploatacji i przestojów. Dlatego ważne jest, aby przy wyborze zabezpieczeń kierować się standardami branżowymi i analizować specyfikę aplikacji, aby zapewnić odpowiednią ochronę urządzeń elektrycznych.

Pytanie 18

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Wytrzymałość elektryczna izolacji wzrośnie
B. Rezystancja przewodów ulegnie zmniejszeniu
C. Obciążalność długotrwała instalacji zostanie zmniejszona
D. Przewodność elektryczna przewodów ulegnie zwiększeniu
Wybór przewodu YADY 3x1,5 mm2 zamiast YDY 3x1,5 mm2 to nie byle co. Wiesz, te przewody mają różne właściwości, zwłaszcza jeśli chodzi o to, jak długo mogą wytrzymać przy dużym obciążeniu. Przewód YADY ma inną izolację, która po prostu nie znosi wysokich temperatur i uszkodzeń mechanicznych tak dobrze, jak YDY. Jak przewód YADY się nagrzeje, to może mieć problem z przenoszeniem prądu bezpiecznie. Takie sprawy reguluje norma PN-IEC 60364 i dobrze mieć to na uwadze przy projektowaniu. Inżynierowie i wykonawcy muszą więc dobrze przemyśleć, co wybierają, bo niewłaściwy przewód to ryzyko przegrzania i awarii, a to przecież może być niebezpieczne. Warto zainwestować w dobry wybór, żeby uniknąć kłopotów.

Pytanie 19

Wirnik silnika pracującego w układzie pokazanym na schemacie po załączeniu napięcia zasilającego nie obraca się, a z sieci pobierany jest prąd stanowiący kilka procent prądu znamionowego silnika. Przyczyną zaistniałej sytuacji może być

Ilustracja do pytania
A. przerwa w uzwojeniu twornika.
B. przerwa w rezystorze Rb
C. zwarcie w uzwojeniu komutacyjnym.
D. zwarcie w rezystorze Rr
Zwarcie w uzwojeniu komutacyjnym nie jest przyczyną obniżonego poboru prądu. W rzeczywistości, takie zwarcie zazwyczaj prowadziłoby do wzrostu poboru prądu, ponieważ stworzenie niekontrolowanej ścieżki dla przepływu energii zwiększa całkowity prąd zasilający. W przypadku przerwy w rezystorze Rb, nie byłoby to także przyczyną tak specyficznego objawu, jak brak obrotów wirnika; raczej skutkowałoby to zmianą parametrów pracy układu, ale niekoniecznie jego całkowitym zatrzymaniem. Natomiast zwarcie w rezystorze Rr, który zazwyczaj jest używany do kontrolowania prądu wirnika, mogłoby prowadzić do nieprawidłowego działania silnika, jednak również w tym przypadku nie byłoby to powiązane z opisanym objawem. Istotnym błędem w myśleniu jest niezrozumienie funkcji poszczególnych elementów układu elektrycznego. Należy pamiętać, że aby uzyskać pełen obraz awarii, konieczne jest dokładne zrozumienie, jak każdy z elementów wpływa na działanie całego silnika. Przyczyny niewłaściwego działania silników elektrycznych są często złożone, dlatego warto posługiwać się odpowiednimi narzędziami diagnostycznymi oraz konsultować się z dokumentacją techniczną, aby unikać nieporozumień prowadzących do błędnych wniosków.

Pytanie 20

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Watomierz
B. Waromierz
C. Fazomierz
D. Częstościomierz
Fazomierz jest narzędziem pomiarowym, które umożliwia bezpośredni pomiar współczynnika mocy silników indukcyjnych, co jest kluczowe w analizie efektywności energetycznej. Współczynnik mocy jest miarą, która informuje o proporcji mocy czynnej, która wykonuje pracę, do mocy pozornej, która jest dostarczana do obwodu. Użycie fazomierza pozwala na dokładne określenie, jak energia jest wykorzystywana przez silnik, co jest szczególnie istotne w kontekście optymalizacji pracy urządzeń oraz redukcji kosztów energii. W praktyce, podczas rutynowych kontroli silników w zakładach przemysłowych, fazomierz może być używany do oceny pracy silników, co pozwala na identyfikację problemów z ich wydajnością. Utrzymywanie współczynnika mocy na odpowiednim poziomie jest również zgodne z wymaganiami wielu dostawców energii, którzy mogą stosować kary finansowe dla użytkowników z niskim współczynnikiem mocy. Poznanie i zrozumienie zasad pomiaru współczynnika mocy jest zatem istotne dla inżynierów i techników zajmujących się zarządzaniem energią.

Pytanie 21

Silnik, którego zaciski pokazano na zdjęciu, ma pracować w układzie sieciowym TT. Który z wymienionych przewodów powinien być podłączony do zacisku wskazanego strzałką, aby ochrona przeciwporażeniowa była skuteczna?

Ilustracja do pytania
A. Przewód uziemiający.
B. Przewód z punktu neutralnego sieci.
C. Przewód ochronny.
D. Przewód ochronno-neutralny sieci.
Przewód ochronny (PE) w sieci TT to naprawdę ważna sprawa, bo dba o nasze bezpieczeństwo. Jeśli go dobrze podłączysz do odpowiedniego zacisku, to w razie awarii zasilanie się od razu wyłącza. Fajnie, prawda? Jeśli urządzenie się uszkodzi, prąd może płynąć tam, gdzie nie powinien, co stwarza ryzyko porażenia. Dlatego właśnie ten przewód ma za zadanie odprowadzać prąd do ziemi, co pozwala na zadziałanie zabezpieczeń jak wyłączniki różnicowoprądowe. Jak wszystko jest dobrze podłączone, to bezpieczeństwo jest na pierwszym miejscu. Z normą PN-EN 61140 nikt nie żartuje – każda instalacja powinna być dobrze uziemiona, zwłaszcza w zakładach, gdzie maszyny mają metalowe obudowy. To kluczowe dla zdrowia i życia pracowników.

Pytanie 22

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Izolacja wzmocniona
B. Izolowanie stanowiska
C. Bardzo niskie napięcie PELV
D. Bardzo niskie napięcie SELV
Bardzo niskie napięcie PELV, izolacja wzmocniona oraz bardzo niskie napięcie SELV to metody ochrony, które, choć mają swoje zastosowanie, nie są właściwe w kontekście pracy pod nadzorem osób wykwalifikowanych przy uszkodzeniu instalacji elektrycznej. PELV (Protective Extra Low Voltage) to system, który zapewnia bezpieczeństwo dzięki zastosowaniu niskiego napięcia, jednak jego stosowanie nie wyklucza konieczności nadzoru. Izolacja wzmocniona odnosi się do zastosowania materiałów o podwyższonej odporności dielektrycznej, ale nie eliminuje możliwości wystąpienia niebezpiecznych napięć, zwłaszcza w przypadku uszkodzeń. Z kolei SELV (Separated Extra Low Voltage) to system, który zapewnia separację od wysokich napięć, ale jego efektywność polega na odpowiedniej konstrukcji instalacji i nie zastępuje bezpiecznych praktyk, takich jak stały nadzór wykwalifikowanych osób. W kontekście uszkodzenia instalacji, te metody ochrony mogą być niedostateczne, gdyż mogą nie zapewnić wystarczającego bezpieczeństwa w sytuacjach awaryjnych. Typowym błędem myślowym jest założenie, że niskie napięcia eliminują ryzyko, co jest niezgodne z rzeczywistością, szczególnie gdy instalacja wykazuje oznaki uszkodzenia. W takim przypadku kluczowe jest zapewnienie dodatkowych środków ochrony, takich jak izolowanie stanowiska, które pozwala na bezpieczne i profesjonalne podejście do naprawy oraz konserwacji instalacji elektrycznych.

Pytanie 23

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
B. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
C. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
D. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 24

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. zamknąć łączniki instalacyjne i wkręcić żarówki
B. zamknąć łączniki instalacyjne i wykręcić żarówki
C. otworzyć łączniki instalacyjne i wykręcić żarówki
D. otworzyć łączniki instalacyjne i wkręcić żarówki
Otwieranie łączników i wkręcanie żarówek nie jest mądrym pomysłem, bo może to prowadzić do sporych niebezpieczeństw podczas pomiarów rezystancji izolacji. Jak otworzysz łączniki, to instalacja może się niechcący włączyć, co stwarza ryzyko porażenia prądem lub uszkodzenia sprzętu. Wkręcanie żarówek w tym przypadku to zły ruch, bo może to prowadzić do nieplanowanych połączeń elektrycznych, które mogą być niebezpieczne i generować nieoczekiwane napięcia. Pamiętaj, że przy pomiarach izolacji istotne jest, by cała instalacja była odłączona od zasilania. Zgodnie z normą PN-IEC 60079, podstawową zasadą bezpieczeństwa jest unikanie pracy na sprzęcie pod napięciem. Z tego powodu odpowiedzi sugerujące otwieranie łączników są po prostu niezgodne z najlepszymi praktykami. Zawsze, gdy robisz pomiary elektryczne, kluczowe jest, aby podjąć wszelkie środki ostrożności i odpowiednio przygotować instalację, żeby zminimalizować ryzyko niebezpieczeństw.

Pytanie 25

Który z podanych materiałów przewodzących jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje właściwości?

A. Miedź
B. Nikiel
C. Stal
D. Aluminium
Miedź to materiał przewodzący, który jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje wyjątkowe właściwości. Przede wszystkim charakteryzuje się bardzo dobrą przewodnością elektryczną, co oznacza, że opór stawiany przepływającemu prądowi jest minimalny. Dzięki temu straty energii są zredukowane, co jest kluczowe w efektywnym przesyle energii. Ponadto, miedź jest materiałem relatywnie łatwym do formowania, co ułatwia produkcję przewodów o różnych kształtach i rozmiarach. Jest również odporny na korozję, co przedłuża żywotność instalacji. Zastosowanie miedzi w kablach i przewodach elektrycznych jest standardem w branży, a jej właściwości mechaniczne pozwalają na utrzymanie wysokiej wytrzymałości oraz elastyczności przewodów. Warto również zauważyć, że miedź jest stosowana w różnych gałęziach przemysłu elektrotechnicznego, w tym w transformatorach, silnikach elektrycznych i generatorach, co świadczy o jej wszechstronności i niezawodności. Standardy branżowe i normy międzynarodowe, takie jak IEC i ANSI, często rekomendują użycie miedzi w instalacjach ze względu na jej doskonałe właściwości przewodzące i mechaniczne.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. rezystancji uzwojeń stojana
B. rezystancji przewodu ochronnego
C. prądu upływu
D. symetrii uzwojeń
Prąd upływu jest kluczowym wskaźnikiem stanu izolacji uzwojeń silnika indukcyjnego trójfazowego. W momencie wystąpienia przebicia izolacji, prąd upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym uszkodzenia silnika oraz zagrożeń dla użytkowników. Pomiar prądu upływu pozwala na wykrycie niewłaściwych warunków izolacyjnych oraz wczesną identyfikację problemów, zanim dojdzie do poważniejszych awarii. W praktyce, stosuje się urządzenia pomiarowe, takie jak mierniki izolacji czy detektory prądu upływu, które mogą zarówno diagnozować stan izolacji, jak i monitorować jej zmiany w czasie. W myśl dobrych praktyk, regularne kontrole stanu izolacji silników są zalecane przez standardy branżowe, takie jak IEC 60034, co podkreśla znaczenie zapobiegania awariom oraz zapewnienia bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 28

Przedstawiony amperomierz jest przygotowany do pomiaru prądu

Ilustracja do pytania
A. wyjściowego prądnicy synchronicznej.
B. sterującego tyrystorem mocy.
C. rozruchu silnika szeregowego prądu stałego.
D. pobieranego z sieci przez spawarkę transformatorową.
Amperomierz cęgowy, przedstawiony w pytaniu, nie jest przeznaczony do pomiarów prądu pobieranego z sieci przez spawarkę transformatorową. W takich zastosowaniach, gdzie prąd często osiąga wyższe wartości niż nominalne, zaleca się stosowanie bardziej zaawansowanych mierników, które umożliwiają pomiar prądu o wysokiej częstotliwości i dużych wartościach. Spawarki transformatorowe wymagają użycia sprzętu, który potrafi obsłużyć skoki prądu, a amperomierze cęgowe często nie są dostosowane do takich warunków. Również pomiar prądu wyjściowego prądnicy synchronicznej wymaga specjalistycznych narzędzi, które mogą mierzyć zarówno prąd stały, jak i zmienny. Prądnice synchroniczne operują na różnych poziomach obciążenia, co może powodować fluktuacje w prądzie, które są trudne do uchwycenia za pomocą standardowego amperomierza. Z drugiej strony, pomiar prądu sterującego tyrystorem mocy jest niezwykle ważny, ale wymaga użycia bardziej skomplikowanych urządzeń, które mogą analizować sygnały w czasie rzeczywistym. W przypadku silnika szeregowego prądu stałego, jego rozruch generuje duży prąd, co sprawia, że pomiar z wykorzystaniem amperomierza cęgowego jest bardziej odpowiedni, jednak niektóre z wcześniej wymienionych metod są mniej precyzyjne i mogą prowadzić do błędnych interpretacji wyników. Takie nieporozumienia są często wynikiem braku zrozumienia specyfiki pracy różnych urządzeń oraz ich wymogów pomiarowych.

Pytanie 29

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. fazowy L2
B. neutralny N
C. ochronny PE
D. fazowy LI
Wybór przewodu fazowego LI, L2 lub neutralnego N jako niewłaściwego do podłączenia do trójfazowego wyłącznika różnicowoprądowego może wynikać z nieporozumienia dotyczącego funkcjonowania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane do monitorowania prądów w obwodach elektrycznych i wykrywania różnicy między prądami wpływającymi a wypływającymi. Każdy przewód fazowy, czyli LI oraz L2, jest kluczowym elementem, który dostarcza energię do obciążenia. Nieprawidłowe byłoby podłączenie przewodu neutralnego N w miejsce ochronnego, ponieważ pełni on inną funkcję - nie odprowadza prądu w przypadku awarii, lecz zamyka obwód. W przypadku błędnego podłączenia przewodów fazowych do wyłącznika różnicowoprądowego, istnieje ryzyko nieodpowiedniego działania wyłącznika, co mogłoby prowadzić do braku zadziałania w sytuacji zagrożenia porażeniem prądem. Należy również pamiętać, że standardy instalacji elektrycznych, takie jak PN-IEC 60364, jasno określają zasady dotyczące podłączenia przewodów oraz funkcji poszczególnych elementów systemu. Właściwe zrozumienie roli przewodów fazowych, neutralnych oraz ochronnych jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności instalacji elektrycznej.

Pytanie 30

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. rok
B. pięć lat
C. cztery lata
D. dwa lata
Odpowiedź 'dwa lata' jest zgodna z ogólnymi zaleceniami dotyczącymi przeglądów urządzeń napędowych, które określają, że w przypadku braku specyficznych instrukcji, minimalny okres między przeglądami powinien wynosić dwa lata. Cykliczne przeglądy są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności operacyjnej urządzeń. W praktyce, regularne inspekcje pozwalają na wczesne wykrywanie potencjalnych usterek, co zapobiega kosztownym awariom oraz wydłuża żywotność sprzętu. Na przykład, w przemyśle energetycznym, zgodnie z normami ISO 9001 i ISO 55001, regularne przeglądy są niezbędne do utrzymania systemów w optymalnym stanie operacyjnym. Przeglądy powinny obejmować analizę stanu technicznego komponentów, ich efektywności oraz zgodności z obowiązującymi normami. Dodatkowo, dokumentacja przeglądów jest ważnym elementem zarządzania majątkiem, który pozwala na prowadzenie odpowiednich analiz oraz podejmowanie decyzji inwestycyjnych w przyszłości.

Pytanie 31

Jaką czynność kontrolną można przeprowadzić podczas obserwacji silnika elektrycznego w trakcie jego działania?

A. Weryfikacja stabilności połączeń elementów napędowych
B. Sprawdzenie stopnia nagrzewania obudowy
C. Kontrola stanu szczotek oraz szczotkotrzymaczy
D. Ocena stanu pierścieni ślizgowych i komutatora
Sprawdzenie stopnia nagrzewania się obudowy silnika elektrycznego jest kluczowym elementem monitorowania jego stanu podczas pracy. Nagrzewanie się silnika może wskazywać na różne problemy, takie jak przeciążenie, zatarcie łożysk, niewłaściwe smarowanie lub awarię izolacji. W praktyce, do pomiaru temperatury obudowy można wykorzystać pirometr lub czujniki temperatury, co pozwala na monitorowanie parametrów pracy silnika w czasie rzeczywistym. Wartości temperatury powinny być zgodne z normami producenta; ich przekroczenie może prowadzić do uszkodzenia silnika, co w konsekwencji wiąże się z kosztownymi naprawami i przestojami w produkcji. Zgodnie z zaleceniami branżowymi, regularne pomiary temperatury są częścią rutynowych przeglądów technicznych, co pozwala na wczesne wykrywanie problemów i zwiększa bezpieczeństwo operacyjne. Właściwe podejście do monitorowania temperatury silnika jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu oraz z normami ISO, które zalecają proaktywne podejście do zarządzania ryzykiem w infrastrukturze technicznej.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. sprawdzić rezystancję przewodu ochronnego
B. ocenić stan szczotek
C. zmierzyć temperaturę uzwojenia stojana
D. zmierzyć rezystancję izolacji kabla zasilającego
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 35

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 6 A
B. 10 A
C. 16 A
D. 20 A
Wyłącznik instalacyjny nadprądowy o charakterystyce typu B powinien mieć wartość prądu znamionowego dobraną odpowiednio do obciążenia, które ma zabezpieczać. W przypadku grzejnika jednofazowego o mocy P<sub>N</sub> = 2,4 kW oraz napięciu U<sub>N</sub> = 230 V, obliczamy prąd znamionowy, korzystając z wzoru: I<sub>N</sub> = P<sub>N</sub> / U<sub>N</sub>. Zatem I<sub>N</sub> = 2400 W / 230 V = 10,43 A. Ze względu na to, że wyłączniki nadprądowe są dobierane w standardowych wartościach, w tym przypadku zaleca się wybór wyłącznika o prądzie znamionowym 16 A, który jest wystarczający dla tego obciążenia, a jednocześnie zapewnia odpowiedni margines bezpieczeństwa. W praktyce, wybierając wyłącznik o wyższej wartości prądu, zmniejszamy ryzyko fałszywych wyłączeń, które mogą wystąpić w przypadku krótkotrwałych przeciążeń, a także zwiększamy żywotność urządzenia. Zgodnie z normą PN-EN 60898-1, dobór wyłączników nadprądowych powinien być zgodny z wymaganiami dla ochrony instalacji elektrycznych oraz jego przewodów.

Pytanie 36

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby obniżyć prędkość obrotową
B. Aby poprawić przeciążalność
C. Aby zwiększyć moment rozruchowy
D. Aby zredukować prąd rozruchowy
Twierdzenie, że przełącznik gwiazda-trójkąt zwiększa moment rozruchowy jest błędne, ponieważ w rzeczywistości jego głównym celem jest zmniejszenie prądu rozruchowego, jak wcześniej wspomniano. W przypadku silników indukcyjnych, moment obrotowy podczas rozruchu jest proporcjonalny do kwadratu napięcia zasilającego. Dlatego przy uruchamianiu w układzie gwiazdy, gdzie napięcie jest niższe, moment obrotowy również będzie mniejszy. Zmniejszenie prędkości obrotowej nie jest również celem tego przełącznika; prędkość obrotowa silnika jest determinowana przez częstotliwość zasilania i liczbę par biegunów, a układ gwiazda-trójkąt nie wpływa na te parametry. Ponadto, zwiększenie przeciążalności w kontekście przełącznika gwiazda-trójkąt jest pojęciem mylnym. Przeciążalność to zdolność silnika do pracy przy wyższych niż nominalne obciążeniach przez krótki czas, co nie jest celem działania tego układu. Kluczowe jest zrozumienie, że przełącznik gwiazda-trójkąt stanowi tylko tymczasowe połączenie, które ma na celu zminimalizowanie prądu podczas rozruchu, a nie zwiększenie momentu czy prędkości. Zatem, podstawowym błędem myślowym jest mylenie funkcji przełącznika z innymi właściwościami silnika oraz jego pracy w różnych warunkach obciążeniowych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Czterech
B. Trzech
C. Dwóch
D. Jednego
Wybór większej liczby pracowników, jak czterech, trzech czy dwóch, wskazuje na nieporozumienie dotyczące zasadności liczby osób wymaganych do wykonania prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV. Często przyjmuje się, że większa liczba osób zwiększa bezpieczeństwo, co jest mylnym wnioskiem. Z punktu widzenia norm bezpieczeństwa, takich jak PN-IEC 60364, kluczowe jest, aby osoba wykonująca prace była odpowiednio wykwalifikowana i przeszkolona, a nie koniecznie, aby do wykonania prostych zadań występowało wiele osób. Więcej pracowników może wprowadzać dodatkowe ryzyko, takie jak chaos operacyjny, czy trudności w komunikacji, co może prowadzić do nieefektywności i potencjalnie zwiększać ryzyko wypadków. W praktyce, w wielu sytuacjach, standardowe procedury operacyjne przewidują, że jedna osoba jest wystarczająca do wykonania prób i pomiarów, o ile posiada odpowiednie uprawnienia. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi to nadmierne skupienie na liczbie osób zamiast na ich kwalifikacjach oraz zrozumieniu specyfiki wykonywanych prac. Takie podejście może podważać efektywność działań i prowadzić do niepotrzebnych kosztów związanych z zatrudnieniem większej liczby pracowników.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.