Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:37
  • Data zakończenia: 7 grudnia 2025 11:17

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Generuje moment magnetyczny o stałym kierunku
B. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
C. Redukuje hałas podczas eksploatacji
D. Tworzy nieruchome, stałe pole magnetyczne
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 2

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 3

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Wyłącznik.
B. Rozłącznik.
C. Odłącznik.
D. Bezpiecznik.
Wybór odpowiedzi innej niż 'Wyłącznik' wskazuje na pewne nieporozumienia dotyczące funkcji i symboliki poszczególnych urządzeń elektrycznych. Bezpiecznik, będący urządzeniem zabezpieczającym, działa na zasadzie przerywania obwodu w momencie przekroczenia określonego prądu, a jego symbol różni się znacząco od symbolu wyłącznika. Odłącznik z kolei, choć również używany do rozłączania obwodów, jest zazwyczaj stosowany w sytuacjach, gdzie brak konieczności automatycznego działania jest kluczowy; jego symbol na schemacie jest inny, co może prowadzić do błędnej interpretacji. Rozłącznik, natomiast, służy do przerywania obwodu w sposób bardziej złożony, często w kontekście instalacji przemysłowych i zasilania w obiektach wysokiego napięcia, co również odzwierciedla inny symbol. Typowe błędy myślowe związane z tym pytaniem mogą wynikać z nieznajomości różnic pomiędzy tymi urządzeniami. W praktyce, znajomość symboli oraz funkcji wyłączników jest niezbędna dla zapewnienia bezpieczeństwa w pracy z instalacjami elektrycznymi oraz ich prawidłowego funkcjonowania zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 4

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Wiertarka z zestawem wierteł, młotek, piła
B. Osadzak gazowy, wkrętak, obcinaczki
C. Wiertarka z zestawem wierteł, szczypce płaskie, piła
D. Osadzak gazowy, młotek, obcinaczki
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 5

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. ustawienia zabezpieczeń i stanu osłon części wirujących
B. poziomu drgań i skuteczności układu chłodzenia
C. stanu pierścieni ślizgowych oraz komutatorów
D. stanu przewodów ochronnych oraz ich połączeń
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 6

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-C
B. TN-S
C. TT
D. IT
Wybory układów TN-S, TN-C oraz TT wskazują na niepełne zrozumienie zasad działania systemów elektroenergetycznych. W układzie TN-S, punkt neutralny jest uziemiony, co oznacza, że w razie uszkodzenia izolacji, prąd zwarciowy przepływa bezpośrednio do ziemi, co zwiększa ryzyko porażenia prądem. Nie ma w nim miejsca na dodatkowy bezpiecznik iskiernikowy, ponieważ jest on niekompatybilny z zasadą bezpośredniego uziemienia. Podobnie w przypadku TN-C, gdzie neutralny i ochronny przewód są połączone, ryzyko uszkodzenia izolacji jest wysokie, a wprowadzenie iskiernika w tym układzie byłoby zbędne i niewłaściwe. Układ TT również zakłada, że punkt neutralny jest uziemiony, a zatem straciłby sens użycie bezpiecznika iskiernikowego, ponieważ nie zapewnia on właściwej izolacji i bezpieczeństwa. Zrozumienie różnic między tymi systemami jest kluczowe dla prawidłowego projektowania instalacji elektrycznych, gdzie odpowiedni dobór układu ma wpływ na bezpieczeństwo i niezawodność dostaw energii elektrycznej. W praktyce, błędne podejście do klasyfikacji układów może prowadzić do poważnych konsekwencji, zarówno finansowych, jak i zdrowotnych.

Pytanie 7

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Jednożyłowy uzbrojony.
B. Wielożyłowy uzbrojony.
C. Jednodrutowy nieuzbrojony.
D. Wielodrutowy nieuzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 8

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przez zastosowanie bardzo niskiego napięcia.
B. Ochrony uzupełniającej.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony podstawowej.
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 9

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Instrukcja obsługi urządzenia
B. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
C. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
D. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
Szczegółowe rysunki techniczne poszczególnych elementów urządzenia nie są częścią dokumentacji technicznej zgodnej z normami branżowymi, które definiują zakres wymaganej dokumentacji. Właściwa dokumentacja techniczna urządzeń elektrycznych powinna obejmować rysunki ogólne oraz schematy obwodów zasilania, które ilustrują ogólną architekturę i funkcjonalność urządzenia. Dodatkowo, instrukcja obsługi jest kluczowym elementem, który zapewnia użytkownikom informacje na temat prawidłowego użytkowania i konserwacji urządzenia. Opis metod eliminacji zagrożeń jest również istotny, ponieważ odnosi się do bezpieczeństwa użytkowania urządzenia oraz spełnienia norm bezpieczeństwa, takich jak dyrektywy CE czy normy IEC. W praktyce, posiadanie kompleksowej dokumentacji technicznej jest niezbędne dla zapewnienia efektywnego zarządzania cyklem życia urządzenia, od projektowania po serwisowanie, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 10

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Zielony
B. Czerwony
C. Niebieski
D. Żółty
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 11

Który z przedstawionych wyłączników należy zastosować do wykrywania prądów różnicowych przemiennych o zwiększonej częstotliwości, zawierających wyższe harmoniczne w układach energoelektronicznych?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór niewłaściwego wyłącznika różnicowoprądowego w aplikacjach z prądami o zwiększonej częstotliwości prowadzi do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Wyłączniki oznaczone literami A i B nie są przystosowane do detekcji prądów różnicowych w systemach, gdzie występują znaczne harmoniczne, co może prowadzić do fałszywych alarmów lub, co gorsza, do braku reakcji na rzeczywisty prąd różnicowy. Wyłączniki te zazwyczaj są zaprojektowane do standardowych warunków pracy, a ich parametry techniczne nie uwzględniają szczególnych wymagań układów energoelektronicznych. Użycie wyłączników bez odpowiednich specyfikacji może prowadzić do poważnych zagrożeń, takich jak porażenie prądem elektrycznym lub pożary spowodowane niewłaściwym działaniem systemów zabezpieczeń. Ponadto, w kontekście norm i standardów, wyłączniki te mogą nie spełniać wymogów określonych w normach EN 61008 i EN 61009, co dodatkowo podkreśla ich nieadekwatność w stosunku do potrzeb nowoczesnych instalacji elektrycznych. Dlatego kluczowe jest, aby w takich aplikacjach stosować wyłączniki, które są zaprojektowane z myślą o pracy z harmonicznymi i zwiększonymi częstotliwościami, jak w przypadku wyłącznika C.

Pytanie 12

W obwodzie odbiorczym zastosowano wyłącznik typu CLS6 o prądzie znamionowym 13 A i charakterystyce B. Jaki najmniejszy prąd znamionowy powinna mieć wkładka bezpiecznikowa typu gL/gG w zabezpieczeniu poprzedzającym wyłącznik, jeżeli prąd zwarcia jest nie większy niż 1 kA?

Ilustracja do pytania
A. 20 A
B. 25 A
C. 16 A
D. 35 A
Odpowiedzi 20 A, 25 A i 16 A nie są odpowiednie, ponieważ nie spełniają kryteriów selektywności w kontekście podanego wyłącznika CLS6. Wybierając niższy prąd znamionowy, taki jak 20 A czy 16 A, ryzykuje się, że w przypadku zwarcia zadziała wkładka bezpiecznikowa zamiast wyłącznika, co może prowadzić do wyłączenia całego obwodu zamiast jedynie usunięcia awarii. Taka sytuacja jest niepożądana, zwłaszcza w instalacjach, w których ciągłość zasilania jest kluczowa. Z kolei wybór 25 A również jest niewłaściwy, ponieważ jest to wartość zbyt bliska prądu znamionowego wyłącznika, co skutkowałoby problemami z selektywnością. W praktyce, warto stosować wkładki bezpiecznikowe o znacznie wyższym prądzie znamionowym niż prąd znamionowy wyłącznika, aby zapewnić, że w przypadku zwarcia najpierw reaguje wyłącznik, co jest zgodne z zasadą selektywności przyjętą w standardach branżowych. Wybór niewłaściwego prądu znamionowego może również prowadzić do zwiększonego ryzyka uszkodzenia urządzeń, co w dłuższej perspektywie pociąga za sobą straty finansowe związane z naprawami oraz przestojami produkcyjnymi.

Pytanie 13

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, wkrętak, próbnik
B. Ściągacz izolacji, lutownica, tester
C. Szczypce, wkrętak, lutownica
D. Tester, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 14

Przewód zastosowany na odcinku obwodu elektrycznego wskazanym strzałką powinien mieć żyły o izolacjach w kolorze

Ilustracja do pytania
A. niebieskim i czarnym lub brązowym.
B. żółtozielonym, niebieskim i czarnym lub brązowym.
C. żółtozielonym i czarnym lub brązowym.
D. tylko czarnym lub brązowym.
Wybór niewłaściwych kolorów izolacji przewodów, takich jak niebieski lub żółtozielony, jest błędem, który wynika często z nieporozumienia dotyczącego klasyfikacji przewodów w instalacjach elektrycznych. Przewód niebieski jest zgodnie z normami przeznaczony jako przewód neutralny, a przewód o izolacji żółtozielonej oznacza przewód ochronny (uziemiający). Użycie tych kolorów w kontekście przewodów fazowych może prowadzić do poważnych pomyłek, szczególnie podczas prac serwisowych lub instalacyjnych. W sytuacji, gdy elektryk zidentyfikuje przewód niezgodnie z jego rzeczywistą funkcją, ryzykuje nie tylko uszkodzenie sprzętu, ale również swoje zdrowie. Kolejnym błędnym podejściem jest sugerowanie, że przewody mogą mieć różne kombinacje kolorów, co jest sprzeczne z ustalonymi normami. Odpowiednia kolorystyka przewodów ma kluczowe znaczenie dla bezpieczeństwa, a każdy odstępstwo od tych zasad może prowadzić do niebezpiecznych sytuacji. Dlatego ważne jest, aby wszyscy użytkownicy instalacji elektrycznych byli świadomi obowiązujących norm i praktyk, aby uniknąć niebezpieczeństw związanych z nieprawidłowym oznaczeniem przewodów.

Pytanie 15

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
B. Wymienić uszkodzony przewód na nowy o takim samym przekroju
C. Wymienić wszystkie przewody na nowe o większym przekroju
D. Polakierować uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 16

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YDY 5x2,5 mm2
B. YADY 5x4 mm2
C. YDY 5x1,5 mm2
D. YADY 5x6 mm2
Wybór przewodu YDY 5x2,5 mm2 do trójfazowej instalacji wtynkowej z wyłącznikiem B20 to dobry ruch. Ten przewód ma obciążalność prądową 26A, co spokojnie wystarcza na te 20A, które wymaga zabezpieczenie B20. W praktyce oznacza to, że nie ma ryzyka, że przewód się przegrzeje, a to jest kluczowe dla bezpieczeństwa. Kiedy dobierasz przewody, pamiętaj, żeby zawsze myśleć o maksymalnym obciążeniu, bo to ważne. W trójfazowych instalacjach dobór przewodów musi być starannie przemyślany, żeby zrównoważyć obciążenia na poszczególnych fazach. Fajnie, że bierzesz pod uwagę normy, jak PN-IEC 60364 – to pokazuje, że robisz to odpowiedzialnie. Zwróć też uwagę na czynniki zewnętrzne, takie jak temperatura czy położenie przewodów – mogą one wpłynąć na ich obciążalność.

Pytanie 17

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 2,3 Ω
C. 4,0 Ω
D. 6,6 Ω
Wybór innych wartości impedancji pętli zwarcia, takich jak 3,8 Ω, 4,0 Ω czy 6,6 Ω, jest nieodpowiedni w kontekście ochrony przeciwporażeniowej w systemach elektrycznych. Wartości te są wyższe niż dopuszczalne limity określone w normach, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. W przypadku impedancji powyżej 2,3 Ω, czas reakcji wyłącznika nadprądowego może być wydłużony. Na przykład, wyłączniki o wyższych wartościach impedancji pętli zwarcia mogą zadziałać z opóźnieniem, co w sytuacji kontaktu z uszkodzoną instalacją stwarza ryzyko porażenia prądem. Powszechnym błędem myślowym jest założenie, że im wyższa impedancja, tym lepsza ochrona. W rzeczywistości, skuteczność ochrony przed porażeniem prądem elektrycznym jest ściśle związana z szybkością reakcji systemów zabezpieczających. W obwodach o napięciu 230/400 V zastosowanie wyłączników B20 bez odpowiedniego nadzoru nad wartością impedancji pętli zwarcia może prowadzić do sytuacji, w której użytkownik doświadczy porażenia prądem, zanim zasilanie zostanie odcięte. Dlatego ważne jest, aby regularnie przeprowadzać pomiary i poddawać instalacje elektryczne ocenie, co zgodne jest z wymaganiami normatywnymi, takimi jak PN-EN 61140, które jasno określają maksymalne wartości impedancji dla skutecznej ochrony przeciwporażeniowej.

Pytanie 18

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 25 mm2
B. 10 mm2
C. 16 mm2
D. 4,0 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 19

Podaj skuteczność świetlną źródła światła o etykiecie przedstawionej na rysunku.

Ilustracja do pytania
A. 14,5 lm/W
B. 81,4 lm/W
C. 206,9 lm/W
D. 1 180,0 lm/W
Skuteczność świetlna, określana jako stosunek strumienia świetlnego (lm) do mocy elektrycznej (W), jest kluczowym parametrem oceny efektywności źródeł światła. W opisanym przypadku źródło światła wykazuje strumień świetlny wynoszący 1180 lumenów oraz moc równą 14,5 W. Obliczając skuteczność świetlną, dzielimy strumień świetlny przez moc: 1180 lm / 14,5 W, co daje 81,4 lm/W. W praktyce, wysoka skuteczność świetlna oznacza, że źródło światła dostarcza więcej światła przy mniejszym zużyciu energii, co przekłada się na niższe rachunki za energię oraz mniejszy wpływ na środowisko. Tego typu obliczenia są istotne przy projektowaniu systemów oświetleniowych, gdzie należy brać pod uwagę zarówno efektywność energetyczną jak i komfort użytkowania. Przykładem zastosowania jest wybór oświetlenia LED, które zazwyczaj charakteryzuje się wyższą skutecznością świetlną w porównaniu do tradycyjnych żarówek, co jest zgodne z normami efektywności energetycznej obowiązującymi w wielu krajach.

Pytanie 20

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 1000 V
B. 500 V
C. 2500 V
D. 250 V
Stosowanie napięcia 500 V, 250 V czy 2500 V do pomiaru rezystancji izolacji przewodu YDY 5x6 450/700 V jest nieprawidłowe z kilku powodów. Napięcie 500 V jest zbyt niskie, aby skutecznie ocenić stan izolacji, szczególnie w przypadku przewodów o niższej klasie napięcia, które mogą wykazywać defekty poddawane jedynie wyższym napięciom. Zastosowanie zbyt niskiego napięcia może prowadzić do fałszywie pozytywnych wyników, co skutkuje błędną oceną stanu izolacji i potencjalnym zagrożeniem bezpieczeństwa. Z kolei 250 V jest jeszcze niższe i również nie dostarcza wystarczającej energii do wykrycia ewentualnych uszkodzeń izolacji. Przeciwnie, napięcie 2500 V jest zbyt wysokie dla tego typu przewodów i może doprowadzić do uszkodzenia izolacji, co w konsekwencji może spowodować poważne awarie systemu elektrycznego. Z tego powodu kluczowe jest stosowanie napięć, które są zgodne z normami i zaleceniami branżowymi, aby zapewnić zarówno dokładność pomiarów, jak i bezpieczeństwo instalacji. Warto w tym kontekście przypomnieć, że zgodnie z normą PN-EN 60364-4-6, pomiar rezystancji izolacji powinien być przeprowadzany przy napięciu 1000 V dla instalacji o napięciu do 1000 V, co podkreśla znaczenie stosowania odpowiednich wartości napięcia w praktyce inżynieryjnej.

Pytanie 21

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,4 sekundy
B. 1 sekundę
C. 5 sekund
D. 0,2 sekundy
Podawana maksymalna wartość czasu samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie do 32 A w sieci TN wynosząca 5 sekund, 1 sekundę czy 0,2 sekundy jest niezgodna z obowiązującymi standardami ochrony elektrycznej, co może prowadzić do niebezpiecznych sytuacji. Różne wartości czasowe dla samoczynnego wyłączenia mają swoje uzasadnienie w kontekście skuteczności ochrony przed dotykiem pośrednim, a czas 0,4 sekundy został ustalony jako maksymalny, po to aby zapewnić minimalizację ryzyka porażenia prądem w przypadku awarii. Czas 5 sekund jest zdecydowanie zbyt długi i nie zapewnia odpowiedniego poziomu ochrony, zwłaszcza w sytuacjach, gdy człowiek ma kontakt z uszkodzonym urządzeniem lub przewodem. Z kolei 1 sekunda, choć jest znacznie krótsza, również nie spełnia wymaganych norm w kontekście niektórych zastosowań, gdzie szybka reakcja jest kluczowa. Odpowiedzi 0,2 sekundy mogą wydawać się bardziej bezpieczne, jednak nie są zgodne z określoną normą, a ich zastosowanie w realnych warunkach użytkowania mogłoby prowadzić do fałszywych alarmów i niepotrzebnych wyłączeń, co w praktyce zakłócałoby funkcjonowanie urządzeń. Niezrozumienie zasad bezpieczeństwa elektrycznego, jak również wymagań normatywnych, prowadzi do nieprawidłowych decyzji i zagrożeń w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 22

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP54 4x4 mm2
B. IP43 5x4 mm2
C. IP56 5x4 mm2
D. IP45 5x6 mm2
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 23

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Odpowiedź B jest poprawna, ponieważ łącznik przedstawiony na zdjęciu to łącznik pojedynczy, jednobiegunowy, co jest zgodne z symboliką stosowaną w branży elektrycznej. W praktyce, łączniki te są powszechnie używane do włączania i wyłączania obwodów oświetleniowych w domach i biurach. Zgodnie z normami IEC (Międzynarodowa Komisja Elektrotechniczna), poprawne oznaczenie graficzne elementów instalacji elektrycznych ma kluczowe znaczenie dla ich właściwej identyfikacji i funkcjonowania. Użycie symbolu z opcji B ułatwia instalatorom i technikom szybkie rozpoznanie typu łącznika, co przyspiesza proces montażu oraz ewentualnych prac serwisowych. Przykładem praktycznym może być zastosowanie łącznika jednobiegunowego w domach jednorodzinnych, gdzie jedna para przycisków kontroluje jedno źródło światła, co jest zgodne z powszechnymi standardami instalacyjnymi. Dobrą praktyką jest również stosowanie jednolitych symboli graficznych na schematach elektrycznych, co minimalizuje ryzyko pomyłek podczas realizacji projektów elektrycznych.

Pytanie 24

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,G4,MR11,G9
B. E27,G4,G9,MR11
C. E27,G9,MR11,G4
D. E27,MR11,G4,G9
Zrozumienie różnorodności trzonków źródeł światła jest kluczowe dla efektywnego i praktycznego ich wykorzystania. Wybór niewłaściwej kombinacji trzonków, jak w przypadku niepoprawnych odpowiedzi, może prowadzić do nieefektywnego oświetlenia, a także do problemów z kompatybilnością urządzeń. Na przykład, pomylenie trzonka E27 z G4 w praktycznym zastosowaniu jest poważnym błędem, ponieważ E27 to standardowy gwint dla większych żarówek, podczas gdy G4 jest przeznaczony dla niskonapięciowych źródeł światła, takich jak miniaturowe halogeny. W przypadku odpowiedzi, które sugerują inne porządki, kluczowe jest zrozumienie, że różne typy trzonków mają specyficzne wymiary i przeznaczenia, co sprawia, że ich zamiana lub niewłaściwa identyfikacja prowadzi do nieprawidłowego działania systemu oświetleniowego. Niepoprawne odpowiedzi mogą także wynikać z błędnego przekonania, że różne trzonki mogą być stosowane zamiennie, co nie jest prawdą w kontekście technicznych wymagań. Wiedza o tym, jakie trzonki są używane w określonych zastosowaniach, pozwala na lepsze planowanie i realizację projektów oświetleniowych, jak również na unikanie kosztownych pomyłek przy zakupie źródeł światła.

Pytanie 25

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,8 s i 0,4 s
B. 0,2 s i 0,4 s
C. 0,4 s i 0,2 s
D. 0,4 s i 0,8 s
Wybór odpowiedzi, która nie odpowiada rzeczywistym wymaganiom czasów wyłączenia w układach sieci typu IT, może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Czas wyłączenia w obwodach z przewodem neutralnym rzeczywiście powinien wynosić 0,4 s, jednak czas dla obwodu bez przewodu neutralnego nie powinien być skracany poniżej 0,8 s. Odpowiedzi sugerujące 0,2 s oraz 0,4 s dla obwodu bez przewodu neutralnego błędnie interpretują zasady ochrony w układach elektrycznych, co może skutkować wydłużonym czasem reakcji urządzenia ochronnego w razie wystąpienia zagrożenia. Podobne błędy myślowe wynikają z niepełnego zrozumienia zjawisk zachodzących w obwodach elektrycznych. W przypadku awarii, krótszy czas wyłączenia niż wymagany może nie zapewnić skutecznej ochrony, co stwarza ryzyko porażenia prądem dla użytkowników. Ponadto, nieodpowiednie wartości czasów wyłączenia mogą prowadzić do niewłaściwego doboru urządzeń zabezpieczających oraz niezgodności z obowiązującymi normami, takimi jak IEC 60364. W kontekście projektowania instalacji elektrycznych, kluczowe jest stosowanie się do sprawdzonych standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 26

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. A.
B. C.
C. B.
D. D.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do kluczowego parametru wyłącznika silnikowego, jakim jest maksymalna moc silnika, która wynosi 1,5 kW. Wyłączniki silnikowe są stosowane w celu ochrony silników przed przeciążeniem oraz zwarciem, a dokładna znajomość ich parametrów jest niezbędna do zapewnienia bezpieczeństwa i efektywności pracy urządzeń elektrycznych. Wyłączniki te są projektowane zgodnie z normami, takimi jak IEC 60947-4-1, które definiują wymagania dotyczące budowy oraz testowania tych urządzeń. W praktyce, wybór odpowiedniego wyłącznika silnikowego jest kluczowy dla zapewnienia optymalnej ochrony silnika, co pozwala uniknąć kosztownych awarii oraz przestojów w produkcji. W przypadku silników o mocy przekraczającej 1,5 kW, konieczne jest zastosowanie innego wyłącznika, który dostosowany jest do wyższych wartości, co podkreśla znaczenie znajomości specyfikacji technicznych w pracy z instalacjami elektrycznymi.

Pytanie 27

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Wkładkę topikową bezpiecznika mocy.
C. Izolator wsporczy.
D. Bezpiecznik aparatowy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 28

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Poprawna odpowiedź to C, ponieważ symbol "I∆" wewnątrz kwadratu jest standardowym oznaczeniem wyłącznika różnicowoprądowego (RCD) na schematach montażowych instalacji elektrycznych. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach ochrony przed porażeniem elektrycznym, a ich główną funkcją jest wykrywanie różnicy w prądzie płynącym do i z urządzenia. W przypadku wykrycia takiej różnicy, która może wskazywać na nieprawidłowe działanie instalacji (np. w wyniku uszkodzenia izolacji), wyłącznik automatycznie odłącza zasilanie, co chroni użytkowników przed niebezpieczeństwem. W praktyce, wyłączniki RCD są szeroko stosowane w budynkach mieszkalnych, komercyjnych oraz przemysłowych, zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61008-1. Zrozumienie znaczenia symboli na schematach jest istotne dla prawidłowego montażu i eksploatacji instalacji elektrycznych, co zapobiega awariom oraz zwiększa bezpieczeństwo użytkowników.

Pytanie 29

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony uzupełniającej.
C. Ochrony przez zastosowanie bardzo niskiego napięcia.
D. Ochrony podstawowej.
No, musisz przyznać, że rozróżnienie różnych rodzajów ochrony przeciwporażeniowej to ważna sprawa, jeśli chcesz mieć pewność, że wszystko działa jak należy. Kiedy mówisz o ochronie podstawowej, ochronie przy uszkodzeniu czy bardzo niskim napięciu, to czasami można się pogubić, bo myślisz, że wystarczy tylko jedna z tych metod. Ochrona podstawowa to jakby pierwsza linia obrony, ale nie zawsze wystarczy. Gdy jest zagrożenie, trzeba pomyśleć o dodatkowej ochronie. Ochrona przy uszkodzeniu, jak bezpieczniki i wyłączniki nadprądowe, też nie zawsze da sobie radę w trudnych sytuacjach. Z tego, co widziałem, ludzie czasem mylą różne typy zabezpieczeń i to może prowadzić do poważnych problemów, bo nie rozumieją, że te dodatkowe środki są naprawdę konieczne. Zrozumienie tego łączenia podstawowej i uzupełniającej ochrony jest kluczowe dla budowy bezpiecznych instalacji. Dobrze też sięgnąć do norm, żeby wiedzieć, jak to wszystko ma działać.

Pytanie 30

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Miedź
B. Stal
C. Brąz
D. Aluminium
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 31

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. łącznik.
B. przewody zasilające.
C. przewód ochronny.
D. żyrandol.
Wybór żyrandola, przewodów zasilających lub przewodu ochronnego jako błędnie podłączonych elementów w instalacji elektrycznej nie jest uzasadniony z technicznego punktu widzenia. Żyrandol, będący źródłem światła, powinien być podłączony zgodnie z instrukcjami producenta i normami bezpieczeństwa, które zalecają podłączenie go do obwodu elektrycznego poprzez odpowiednie złącza. Niepoprawne jest postrzeganie żyrandola jako elementu, który może być źródłem poważnych problemów w instalacji, jeżeli zostanie właściwie zamontowany i użytkowany. Przewody zasilające, jako kluczowy element każdej instalacji, nie powinny być uznawane za źródło błędów, o ile są zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące ich instalacji oraz ochrony. Przewód ochronny natomiast ma na celu zabezpieczenie przed porażeniem prądem i jego poprawne podłączenie jest kluczowe dla bezpieczeństwa instalacji. Typowe błędy myślowe, które mogą prowadzić do nieprawidłowych wniosków, obejmują nieznajomość podstawowych zasad instalacji elektrycznych oraz nieuwzględnianie zasadności ich działania w codziennym użytkowaniu. Zrozumienie funkcji i zastosowania każdego z tych elementów instalacji elektrycznej jest niezbędne dla zapewnienia ich prawidłowego działania oraz bezpieczeństwa użytkowników.

Pytanie 32

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 100/100 V
C. 300/500 V
D. 450/750 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 33

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 1.
C. Na ilustracji 3.
D. Na ilustracji 4.
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.

Pytanie 34

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA
A. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
B. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
C. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
D. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
Analizując dostępne odpowiedzi, można zauważyć szereg błędnych wniosków dotyczących stanu wyłączników różnicowoprądowych. Pierwsza z błędnych koncepcji mówi o tym, że żaden z wyłączników nie nadaje się do dalszej eksploatacji. Takie sformułowanie wprowadza w błąd, ponieważ na podstawie przedstawionych danych można zauważyć, że nie wszystkie wyłączniki miały problemy z zadziałaniem. Kolejnym błędnym podejściem jest stwierdzenie, że wyłącznik nr II nie nadaje się do dalszej eksploatacji. Bez analizy konkretnej wartości prądu różnicowego dla tego wyłącznika, nie można wnioskować o jego stanie. Koncentracja na jednym wyłączniku, bez uwzględnienia reszty, prowadzi do mylnych konkluzji. W przypadku wyłącznika nr III, kluczowe jest zrozumienie, że nie zadziałał on przy prądzie 12 mA, co jest poniżej wymaganych 15 mA. W praktyce, przy ocenie stanu technicznego wyłączników różnicowoprądowych, niezbędne jest uwzględnienie norm oraz wartości nominalnych zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Błędem jest również zakładanie, że wystarczy jedynie pomiar prądu różnicowego, aby ocenić stan wyłącznika. Każdy z wyłączników powinien być analizowany indywidualnie, w kontekście jego specyfikacji i wymagań bezpieczeństwa, zgodnie z obowiązującymi normami branżowymi.

Pytanie 35

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. przeważnie bezpośredniego.
B. pośredniego.
C. przeważnie pośredniego.
D. bezpośredniego.
Oprawa oświetleniowa oznaczona tym symbolem graficznym należy do kategorii przeważnie pośredniego oświetlenia, co oznacza, że głównym celem jej konstrukcji jest kierowanie światła w dół, jednocześnie rozpraszając je w innych kierunkach. Tego typu oświetlenie jest powszechnie stosowane w przestrzeniach, gdzie kluczowe jest stworzenie komfortowej atmosfery przy jednoczesnym zapewnieniu odpowiedniego doświetlenia. Przykładem może być oświetlenie w biurach, gdzie oprawy te mogą być używane do oświetlenia stanowisk pracy, oferując wygodę dla oczu poprzez unikanie olśnień. Zgodnie z normami oświetleniowymi, takimi jak PN-EN 12464-1, odpowiednia klasa oświetlenia powinna być dostosowana do określonych warunków pracy oraz zalecanego poziomu natężenia światła. Oprócz tego, przeważnie pośrednie oświetlenie jest często stosowane w przestrzeniach publicznych, takich jak galerie handlowe czy hotele, gdzie istotne jest stworzenie przyjemnego i zachęcającego otoczenia.

Pytanie 36

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 1, N z 3, 2 z 4
B. L z 3, N z 2, 1 z 4
C. L z 4, N z 1, 2 z 3
D. L z 1, N z 4, 2 z 3
Poprawna odpowiedź, czyli połączenie L z 1, N z 4 oraz 2 z 3, jest zgodna z zasadami sztuki monterskiej i zapewnia prawidłowe funkcjonowanie obwodu oświetleniowego. W tej konfiguracji przewód fazowy (L) łączy się z przełącznikiem (1), co pozwala na załączanie i wyłączanie oświetlenia w sposób kontrolowany. Przewód neutralny (N), który jest kluczowy dla pełnego obiegu prądu, łączy się z oświetleniem (4), co zapewnia jego poprawne działanie. Połączenie przewodów w puszce rozgałęźnej (2 z 3) jest również istotne, gdyż umożliwia efektywne zarządzanie obwodem oraz minimalizuje straty energii. Warto zauważyć, że zgodność z normami, takimi jak PN-IEC 60364, które dotyczą instalacji elektrycznych, zapewnia bezpieczeństwo i efektywność energetyczną. Takie połączenie jest również stosowane w praktyce podczas montażu instalacji oświetleniowych w budynkach mieszkalnych i komercyjnych, co potwierdza jego praktyczną użyteczność.

Pytanie 37

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 6 szt.
B. 10 szt.
C. 3 szt.
D. 13 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 38

Którym symbolem graficznym oznacza się prowadzenie przewodów elektrycznych na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 2.
C. Symbolem 4.
D. Symbolem 3.
Symbol graficzny, który dobrze oznacza prowadzenie przewodów na drabinkach kablowych, to symbol 2. Przedstawia on drabinkę z poprzeczkami. Drabinki kablowe są naprawdę ważne w instalacjach elektrycznych, bo pomagają w utrzymaniu porządku i ułatwiają konserwację. W praktyce używanie odpowiednich symboli jest kluczowe dla zrozumienia schematów elektrycznych. Dzięki temu możemy uniknąć wielu problemów i zapewnić sobie bezpieczeństwo podczas pracy z instalacjami. W normach jak PN-EN 60617 mówi się o tym, jak ważne są jednoznaczne oznaczenia, by uniknąć błędów. Dlatego symbol 2 jest powszechnie akceptowany w branży, co czyni go bardzo przydatnym.

Pytanie 39

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
B. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
C. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
D. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
No, wybrałeś dobrą odpowiedź! Do montażu oprawy oświetleniowej potrzebujesz paru specjalnych narzędzi. Wiertarka jest mega ważna, bo to ona pozwala nawiercić otwory w ścianie, żeby wsadzić dyble. Klucz nasadowy przyda się do wkręcania śrub, a to ważne, żeby oprawa była stabilna. Wkrętak płaski może być użyty do drobnych poprawek, żeby wszystko ładnie pasowało. Nóż monterski z kolei dobrze posłuży do przygotowania przewodów, a ściągacz izolacji to konieczność, by pozbyć się izolacji z końców, bo musimy je dobrze podłączyć. Jak znasz te narzędzia i wiesz, do czego służą, to już jesteś na dobrej drodze w elektrotechnice, a to zwiększa bezpieczeństwo i jakość naszej pracy.

Pytanie 40

Które z przedstawionych na rysunkach narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź B jest prawidłowa, ponieważ laser krzyżowy jest narzędziem wykorzystywanym w budownictwie i instalacjach elektrycznych do precyzyjnego wyznaczania linii. Jego działanie opiera się na emisji dwóch linii - pionowej i poziomej - które są widoczne na powierzchni roboczej, co ułatwia planowanie i montaż instalacji. Dzięki zastosowaniu lasera krzyżowego, technik może z łatwością wyznaczyć trasy dla przewodów elektrycznych na dużych powierzchniach, co jest kluczowe przy instalacjach w przestronnych pomieszczeniach. W praktyce, użycie lasera krzyżowego minimalizuje ryzyko błędów, które mogą wyniknąć z ręcznego mierzenia i rysowania linii. Zgodnie z normami branżowymi, precyzyjność w wyznaczaniu tras jest niezwykle istotna dla bezpieczeństwa i efektywności instalacji elektrycznych, co czyni laser krzyżowy niezastąpionym narzędziem w tej dziedzinie. Dodatkowo, wiele modeli laserów krzyżowych oferuje funkcje automatycznego poziomowania, co jeszcze bardziej zwiększa ich użyteczność.