Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 11:44
  • Data zakończenia: 9 grudnia 2025 12:15

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. O oraz L
B. 5 oraz L
C. 2 oraz L
D. H oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 2

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 16 barów i temperatura 50°C
B. Ciśnienie robocze 0,1 bara i temperatura 50°C
C. Ciśnienie robocze 16 barów i temperatura 90°C
D. Ciśnienie robocze 10 barów i temperatura 90°C
A więc, odpowiedź z ciśnieniem roboczym 16 barów i temperaturą medium 90°C jest prawidłowa. W dokumentacji technicznej zaworu elektromagnetycznego, ciśnienie robocze podane jest jako zakres od 0,1 do 16 barów. Oznacza to, że zawór jest zaprojektowany, aby pracować bezpiecznie w tym przedziale ciśnienia. Temperatura medium podana jako maksymalna wynosi 90°C, co informuje, że zawór może pracować przy takich temperaturach bez ryzyka uszkodzeń. W praktyce, takie zawory są często używane w systemach przemysłowych, gdzie wymagana jest precyzyjna kontrola przepływu cieczy lub gazów pod dużym ciśnieniem i w wysokich temperaturach. Standardy przemysłowe, takie jak ISO 8573 dotyczące jakości sprężonego powietrza, mogą mieć zastosowanie przy doborze odpowiednich komponentów, w tym zaworów, do systemów pneumatycznych. Ważne jest, aby zrozumieć, że przekroczenie maksymalnych wartości może prowadzić do awarii systemu, dlatego zawsze należy działać w ramach specyfikacji technicznych. Dbanie o odpowiednie parametry pracy zapewnia długowieczność i niezawodność systemu. To również minimalizuje ryzyko przestojów i zwiększa efektywność operacyjną, co jest kluczowe w wielu branżach produkcyjnych.

Pytanie 3

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Wkrętak krzyżakowy.
B. Klucz nasadowy.
C. Klucz oczkowy.
D. Wkrętak płaski.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 4

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. OR
B. AND
C. NAND
D. NOT
{"correct_feedback":"Poprawna odpowiedź to bramka AND. W przedstawionym układzie logicznym pierwsza bramka po lewej (OR, oznaczona symbolem ≥1) otrzymuje na wejście sygnały 1 i 0, więc zgodnie z zasadą OR na wyjściu powinna dać logiczne 1 – i faktycznie tak jest. Następnie sygnał ten trafia do bramki AND razem z drugim wejściem o wartości 0. Działanie poprawnej bramki AND polega na tym, że na wyjściu pojawia się logiczna 1 tylko wtedy, gdy oba wejścia mają wartość 1. W tym przypadku jedno wejście to 1, drugie 0 – więc wynik powinien być 0. Tymczasem na rysunku wyjście tej bramki AND wynosi 1, co jednoznacznie wskazuje, że to właśnie ona jest uszkodzona. W praktyce takie błędy są typowe dla układów TTL i CMOS po przepięciach lub przegrzaniu – bramka może „zawiesić się” w stanie wysokim. Moim zdaniem warto zapamiętać, że diagnostyka bramek logicznych zawsze zaczyna się od analizy tabel prawdy i porównania ich z rzeczywistymi stanami – to prosty, ale skuteczny sposób na wykrycie usterki w dowolnym układzie cyfrowym.

Pytanie 5

W przekaźniku elektromagnetycznym symbolami A1 i A2 oznaczone są zaciski

A. układów ochronnych.
B. cewki przekaźnika.
C. styków rozwiernych.
D. styków zwiernych.
W przekaźnikach elektromagnetycznych symbole A1 i A2 to oznaczenia zacisków cewki przekaźnika, która jest kluczowym elementem tego urządzenia. Cewka jest odpowiedzialna za generowanie pola magnetycznego, które w efekcie przyciąga kotwicę przekaźnika, zmieniając jego stan. Jest to mechanizm podstawowy, lecz niezmiernie istotny w automatyce i elektronice. Dzięki cewce, przekaźniki mogą sterować sygnałami w obwodach elektrycznych, umożliwiając kontrolę nad różnymi urządzeniami. W praktyce, cewki są stosowane w układach zabezpieczeń, automatyce budynkowej czy w przemyśle, gdzie wymagana jest precyzyjna kontrola przepływu prądu elektrycznego. Standardy, takie jak IEC 61810, określają szczegółowe wymagania dotyczące konstrukcji i działania przekaźników, w tym oznaczeń zacisków, co ułatwia identyfikację i podłączanie urządzeń. Znajomość tych zasad jest kluczowa dla każdego, kto chce efektywnie i bezpiecznie korzystać z przekaźników w praktycznych zastosowaniach. Moim zdaniem, zrozumienie roli cewki w przekaźniku to fundament, który otwiera drzwi do świata bardziej zaawansowanej elektroniki.

Pytanie 6

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Natężenia przepływu.
B. Temperatury.
C. Natlenienia.
D. Ciśnienia.
Ten przetwornik, jak można zauważyć na zdjęciu, jest używany do pomiaru ciśnienia. Urządzenia tego typu są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, naftowy czy wodociągowy. Działają one na zasadzie przetwarzania zmiany ciśnienia na sygnał elektryczny, często w standardzie 4-20 mA, co jest globalnie uznawanym standardem komunikacji w inżynierii procesowej. Przetworniki ciśnienia są kluczowe dla zapewnienia bezpieczeństwa i efektywności procesów technologicznych, ponieważ umożliwiają monitorowanie i kontrolę ciśnienia w rurociągach i zbiornikach. Dzięki temu można uniknąć sytuacji awaryjnych, takich jak wycieki czy eksplozje. Co ważne, przetworniki te muszą być regularnie kalibrowane, aby zapewnić dokładność pomiarów. Ciekawostką jest, że tak precyzyjne urządzenia są często wyposażone w technologie kompensacji temperatury, dzięki czemu działają niezawodnie w różnych warunkach środowiskowych. Warto też wspomnieć, że wybór odpowiedniego przetwornika ciśnienia powinien być oparty na analizie specyfikacji technicznej, takich jak zakres pomiarowy, materiał obudowy czy typ połączenia procesowego.

Pytanie 7

Przedstawiony fragment programu realizuje funkcję

Ilustracja do pytania
A. AND
B. NOR
C. OR
D. NAND
Odpowiedź OR jest poprawna, ponieważ program zrealizowany w języku drabinkowym (Ladder Diagram) wykorzystuje operację OR, która jest logicznym lub. Instrukcja LD (Load) ładuje wartość wejścia X1:I0.0, a następnie instrukcja OR dodaje do tego wartość wejścia X2:I0.1. Wynik operacji jest zapisywany w wyjściu Y1:Q0.0 za pomocą instrukcji ST (Store). Logika OR działa w ten sposób, że wynik jest prawdą, jeśli przynajmniej jedno z wejść jest prawdą. Praktyczne zastosowanie takiego schematu można znaleźć w automatyce przemysłowej, na przykład kiedy chcemy uruchomić maszynę, jeśli jeden z dwóch różnych czujników wykryje określony stan. Standardy programowania PLC, takie jak IEC 61131-3, wskazują na stosowanie drabinkowych schematów do tworzenia czytelnych logik dla techników. Logika OR jest jednym z podstawowych bloków budujących bardziej złożone systemy automatyki, gdzie często wymagana jest elastyczność w reagowaniu na wiele warunków wejściowych. Moim zdaniem w automatyce przemysłowej umiejętność czytania i interpretacji takich prostych programów jest kluczowa do szybkiego diagnozowania i naprawy systemów.

Pytanie 8

Które narzędzie należy zastosować do nacięcia gwintu w otworze?

A. Narzędzie 2.
Ilustracja do odpowiedzi A
B. Narzędzie 1.
Ilustracja do odpowiedzi B
C. Narzędzie 4.
Ilustracja do odpowiedzi C
D. Narzędzie 3.
Ilustracja do odpowiedzi D
Poprawna odpowiedź to narzędzie 1 – czyli gwintownik. Służy ono do nacinania gwintów wewnętrznych w otworach, dzięki czemu można wkręcać w nie śruby lub wkręty o odpowiednim profilu gwintu. Gwintownik ma charakterystyczne rowki wzdłużne, które odprowadzają wióry powstające podczas skrawania metalu. W praktyce stosuje się zwykle zestaw trzech gwintowników: zdzierak, pośredni i wykańczak – każdy pogłębia gwint coraz bardziej, aż do uzyskania pełnego profilu. Podczas pracy należy używać odpowiedniego środka smarującego, np. oleju do gwintowania, który poprawia jakość powierzchni i wydłuża żywotność narzędzia. Z mojego doświadczenia wynika, że kluczowe jest utrzymanie osi gwintownika idealnie w jednej linii z otworem – nawet niewielkie odchylenie powoduje, że śruba nie wchodzi płynnie lub zrywa gwint. W przemyśle mechaniczno-montażowym gwintowniki są podstawowym narzędziem w produkcji elementów z otworami gwintowanymi.

Pytanie 9

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 8,5 m
B. 2,2 m
C. 4,2 m
D. 6,4 m
Odpowiedź 4,2 m jest prawidłowa, ponieważ wykres charakterystyki pompy PS 200 pokazuje, jak zmienia się wysokość podnoszenia cieczy w zależności od wydajności i prędkości obrotowej pompy. Przy prędkości obrotowej n = 1850 obr/min i wydajności 550 m³/h, wykres wskazuje na wysokość podnoszenia około 4,2 m. W praktyce takie podejście do analizy wykresów charakterystyk pomp jest kluczowe podczas projektowania systemów pompowych. Dzięki temu można dobrać odpowiednią pompę do konkretnego zastosowania, zapewniając jej optymalną wydajność. Dobrze dobrana pompa nie tylko spełnia wymagania wydajnościowe, ale także działa efektywnie, co przekłada się na niższe koszty eksploatacyjne i dłuższą żywotność. W branży wodociągowej czy przemysłowej, dobór pompy na podstawie dokładnych danych z wykresów jest standardem, co zapewnia bezpieczeństwo i niezawodność systemu. Warto pamiętać, że błędny dobór pompy może prowadzić do problemów z przepływem, a nawet awarii całego systemu.

Pytanie 10

Który układ łagodnego rozruchu (softstart) należy zastosować do silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. ATS01N212
B. ATS01N109
C. ATS01N125
D. ATS01N103
Wybór układu ATS01N125 jest trafny ze względu na kilka kluczowych czynników. Po pierwsze, ten model softstartu posiada obudowę o stopniu ochrony IP67, co oznacza, że jest całkowicie odporny na kurz i może być zanurzony w wodzie do pewnej głębokości. W przypadku środowisk o wysokim zapyleniu, taki poziom ochrony jest absolutnie niezbędny, aby zapewnić długotrwałą i niezawodną pracę urządzenia. Ponadto, ATS01N125 jest przystosowany do pracy z silnikami o mocy 2,2 kW przy napięciu 1x230 V, co w pełni zaspokaja wymagania dla silnika 1-fazowego o mocy 0,3 kW. Moim zdaniem, dobór odpowiedniego stopnia ochrony IP to standardowa praktyka inżynierska, która zwiększa bezpieczeństwo i trwałość instalacji. Warto również pamiętać, że stosowanie softstartów pomaga w łagodnym uruchamianiu silników, zmniejszając obciążenie mechaniczne i przedłużając żywotność całego układu. Na rynku można znaleźć wiele rozwiązań, ale zawsze warto kierować się nie tylko mocą, ale i środowiskowymi wymaganiami, aby unikać problemów z eksploatacją.

Pytanie 11

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. białym.
B. niebieskim.
C. czerwonym.
D. brązowym.
Świetnie, że wybrałeś niebieski kolor izolacji dla przewodu łączącego zacisk L2 przemiennika częstotliwości ze źródłem zasilania. W instalacjach elektrycznych niebieski kolor jest standardowo używany dla przewodów neutralnych (N). To jest zgodne z międzynarodowymi normami, takimi jak IEC 60446, która określa kolory przewodów używanych w systemach elektrycznych. Prawidłowe oznaczenie przewodów jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji, ponieważ zapobiega popełnieniu błędów podczas konserwacji lub rozbudowy systemu. W praktyce, taki przewód neutralny jest niezbędny do prawidłowego funkcjonowania urządzeń elektrycznych, zapewniając powrót prądu do źródła zasilania i umożliwiając prawidłowe działanie obwodów elektrycznych. W instalacjach trójfazowych, przewody neutralne są szczególnie ważne, ponieważ umożliwiają zrównoważenie obciążeń. Z mojego doświadczenia, pracując z różnymi instalacjami, zawsze warto upewnić się, że przewody są prawidłowo oznaczone, co nie tylko poprawia efektywność pracy, ale też zwiększa bezpieczeństwo. Pamiętaj, że właściwe kolory przewodów mogą się różnić w zależności od przepisów krajowych, dlatego zawsze warto sprawdzić lokalne regulacje.

Pytanie 12

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 3.
Ilustracja do odpowiedzi A
B. Wynik 2.
Ilustracja do odpowiedzi B
C. Wynik 1.
Ilustracja do odpowiedzi C
D. Wynik 4.
Ilustracja do odpowiedzi D
Rezystancja przewodu miedzianego zależy od jego długości, przekroju poprzecznego oraz oporności właściwej materiału. Patrząc na przewód YLY 3x10 mm² o długości 8 m, można obliczyć teoretyczną rezystancję przy użyciu wzoru R = ρ * (L/A), gdzie ρ to oporność właściwa miedzi (około 0,0175 Ω·mm²/m), L to długość przewodu, a A to przekrój poprzeczny. Dla tego przewodu, wynik powinien być w granicach miliomów, co jest wskazywane przez odczyt wynoszący 13,999 mΩ (Wynik 4). Taki wynik wskazuje na prawidłową ciągłość przewodu i brak uszkodzeń, co jest kluczowe dla bezpieczeństwa i wydajności w instalacjach elektrycznych. Regularne sprawdzanie rezystancji jest dobrą praktyką, szczególnie w kontekście utrzymania efektywności energetycznej oraz zapobiegania przegrzewaniu się przewodów, co mogłoby prowadzić do awarii lub niebezpiecznych sytuacji. Wiedza o poprawnych wartościach rezystancji i umiejętność ich interpretacji są niezbędne dla każdego technika zajmującego się instalacjami elektrycznymi.

Pytanie 13

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 4
Ilustracja do odpowiedzi A
B. Przewód 3
Ilustracja do odpowiedzi B
C. Przewód 1
Ilustracja do odpowiedzi C
D. Przewód 2
Ilustracja do odpowiedzi D
Do połączenia silnika 3-fazowego z przemiennikiem częstotliwości należy użyć przewodu ekranowanego, takiego jak ten przedstawiony na zdjęciu. Jest to specjalny przewód silnikowy z oplotem miedzianym (ekranem), który tłumi zakłócenia elektromagnetyczne generowane przez falownik. Wewnątrz znajdują się trzy żyły fazowe oraz przewód ochronny PE, co w pełni odpowiada wymaganiom zasilania silnika 3-fazowego. Ekran musi być podłączony po obu stronach – do obudowy falownika oraz do korpusu silnika – aby skutecznie odprowadzać prądy zakłóceniowe. Z mojego doświadczenia, tego typu przewody (oznaczenia np. ÖLFLEX SERVO, Bitner BiTservo, Helukabel TOPFLEX) są odporne na drgania, oleje i podwyższoną temperaturę, co ma duże znaczenie w aplikacjach przemysłowych. Dzięki ekranowi sygnały sterujące i komunikacyjne w sąsiednich przewodach są chronione przed interferencją. W praktyce warto też zwrócić uwagę, by długość przewodu między falownikiem a silnikiem była możliwie krótka – to minimalizuje emisję zakłóceń EMC.

Pytanie 14

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. obcinania przewodów koncentrycznych.
B. zaciskania tulejek .
C. ściągania izolacji kabli koncentrycznych.
D. oznaczania przewodów.
To narzędzie, które widzisz, jest przeznaczone do obcinania przewodów koncentrycznych. Przewody koncentryczne są szeroko stosowane w telekomunikacji i przesyłaniu sygnałów wideo. Ich specyficzna budowa, czyli centralna żyła przewodząca otoczona izolacją, ekranem z przewodzącej plecionki i zewnętrzną osłoną, wymaga precyzyjnego cięcia. Użycie odpowiedniego narzędzia, takiego jak te, które widzisz, gwarantuje czyste i równe cięcie bez uszkodzenia ekranu lub centralnej żyły. Technicy cenią sobie te narzędzia za możliwość pracy w trudno dostępnych miejscach i szybkość działania. Dodatkowo takie obcinarki są zaprojektowane tak, by minimalizować ryzyko zmiażdżenia przewodu, co jest kluczowe dla utrzymania integralności sygnału. Moim zdaniem, każdy kto zajmuje się instalacjami RTV powinien mieć przy sobie takie narzędzie, bo ułatwia ono życie na co dzień. W branży to po prostu standardowa praktyka, by korzystać z dedykowanych narzędzi do określonych rodzajów kabli.

Pytanie 15

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 220 ÷ 240 V
B. 380 ÷ 420 V
C. 254 ÷ 277 V
D. 440 ÷ 480 V
Analizując niewłaściwe opcje dotyczące zakresu napięć zasilania, warto zwrócić uwagę na kilka kluczowych kwestii. Niewłaściwe dobranie napięcia zasilania może prowadzić do poważnych problemów technicznych, takich jak przegrzanie silnika, zwiększone zużycie energii, a nawet uszkodzenie uzwojeń. Głównym powodem wyboru niewłaściwego zakresu napięć jest często nieuwzględnienie specyfikacji częstotliwości sieci oraz konfiguracji uzwojeń. W przypadku tego silnika, gdy pracuje on przy częstotliwości 60 Hz i w konfiguracji gwiazdy, wyraźnie określony jest zakres 440 ÷ 480 V. Inne wartości, takie jak 220 ÷ 240 V czy 254 ÷ 277 V, mogą być mylące, jeśli nie zwróci się uwagi na inne parametry pracy, takie jak częstotliwość czy sposób połączenia uzwojeń. Zrozumienie, jak te parametry wpływają na wydajność i bezpieczeństwo pracy silnika, jest kluczowe dla unikania błędnych decyzji. Często spotykanym błędem jest stosowanie domyślnych wartości napięcia bez analizy specyficznych wymagań aplikacji, co może prowadzić do nieefektywnej pracy urządzenia i zwiększenia kosztów operacyjnych. Dlatego tak ważne jest gruntowne zapoznanie się z dokumentacją techniczną i stosowanie się do zawartych w niej wskazówek.

Pytanie 16

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 7,25 mm
B. 6,80 mm
C. 7,00 mm
D. 7,80 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 17

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. położenie przełącznika trybu pracy sterownika PLC.
B. kolejność podłączeń elementów wejściowych do sterownika.
C. prawidłowość podłączeń przewodów ochronnych w układzie.
D. kolejność podłączeń elementów wyjściowych do sterownika.
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest absolutnie kluczowe przy uruchamianiu systemów opartych na sterownikach PLC. Bezpieczeństwo to podstawa, a przewody ochronne zapewniają, że w razie awarii prąd nie będzie stanowił zagrożenia dla osób obsługujących urządzenie. Moim zdaniem to właśnie dlatego takie sprawdzenie powinno być zawsze na pierwszym miejscu. Przewody ochronne to nie tylko kwestia zgodności z normami, takimi jak PN-EN 60204, ale i dobra praktyka inżynierska. Wyobraź sobie sytuację, w której bez tego sprawdzenia system zostaje uruchomiony, a w przypadku zwarcia nie ma odpowiedniej drogi dla prądu upływowego. To prosta droga do porażenia prądem. Z mojego doświadczenia wynika, że niedocenianie tej prostej czynności może prowadzić do poważnych konsekwencji. W przemyśle zawsze mówimy, że lepiej dmuchać na zimne. Podczas szkoleń często powtarzam, że zabezpieczenia to twoi najlepsi przyjaciele. Zawsze warto poświęcić czas na solidne sprawdzenie, zanim przejdziemy do bardziej skomplikowanych czynności.

Pytanie 18

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. zdwojenia.
B. propagacji.
C. proporcjonalności.
D. wyprzedzenia.
Regulator PID to jedno z najczęściej stosowanych narzędzi w inżynierii procesowej i automatyce. Kiedy mówimy o współczynniki K_p, mamy na myśli współczynnik proporcjonalności. To właściwie kluczowy element, który odpowiada za natychmiastową reakcję systemu na błąd. W praktycznych zastosowaniach, K_p jest używany do zwiększenia reaktywności systemu na zmiany. Im wyższa wartość K_p, tym system jest bardziej czuły na różnice między wartością rzeczywistą a zadaną. Oczywiście, nie zawsze wyższe oznacza lepsze – zbyt duży K_p może powodować oscylacje, co jest zjawiskiem niekorzystnym. Praktyka pokazuje, że najlepiej jest znaleźć optymalną wartość, która zapewnia stabilność systemu. Dobre praktyki branżowe zalecają przeprowadzanie tuningu regulatora PID, aby uzyskać najlepsze wyniki w specyficznych warunkach pracy, co często odbywa się metodą Zieglera-Nicholsa. Warto pamiętać, że regulator PID jest centralnym elementem wielu systemów sterowania, od prostych kontrolerów temperatury po skomplikowane systemy sterowania w branży lotniczej czy chemicznej. Takie podejście pozwala na przewidywalne i stabilne zachowanie całego systemu sterowania, zwiększając jego efektywność i niezawodność.

Pytanie 19

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. żółto-zielony.
B. niebieski.
C. niebiesko-zielony.
D. czerwony.
Wybór nieprawidłowego koloru izolacji przewodu w połączeniach elektrycznych może prowadzić do poważnych konsekwencji, zarówno z punktu widzenia bezpieczeństwa, jak i zgodności z normami. Niebieski kolor izolacji jest zarezerwowany dla przewodów neutralnych, które w sieciach jednofazowych pełnią rolę powrotnego toru prądu i są podłączone do punktu neutralnego transformatora. Użycie tego koloru w miejscu przewodu ochronnego może skutkować nieprawidłowym działaniem systemu ochronnego i stwarzać ryzyko porażenia. Czerwony kolor, choć kiedyś używany dla przewodów fazowych, obecnie nie jest standardem w nowych instalacjach. Jego użycie w roli przewodu ochronnego może prowadzić do błędnej identyfikacji i w konsekwencji do potencjalnie niebezpiecznych sytuacji podczas konserwacji czy napraw. Niebiesko-zielony nie jest kolorem przewidzianym przez jakiekolwiek normy dla przewodów elektrycznych w kontekście ochrony. Przy projektowaniu i instalacji sieci elektrycznych kluczowe jest przestrzeganie obowiązujących standardów, takich jak PN-EN 60446, które wskazują, że przewód ochronny powinien być żółto-zielony. Niezachowanie tej zasady może prowadzić do niebezpieczeństwa dla użytkowników oraz problemów prawnych dla instalatora.

Pytanie 20

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. multiplikację przełożenia.
B. multiplikację obrotów.
C. ruch ciągły.
D. ruch przerywany.
Rozważając błędne opcje, można zauważyć kilka typowych nieporozumień dotyczących mechanizmów. Ruch ciągły, choć bardzo powszechny w wielu zastosowaniach mechanicznych, nie pasuje do mechanizmu przedstawionego na rysunku. Mechanizm genewski jest zaprojektowany specjalnie do przekształcania ruchu ciągłego w przerywany. Multiplikacja obrotów czy przełożeń, choć są to ważne koncepcje w przekładniach, nie mają związku z mechanizmem genewskim. Multiplikacja obrotów dotyczy zwiększania liczby obrotów wyjściowych w stosunku do wejściowych, co jest charakterystyczne dla przekładni planetarnych czy zębatych, a nie ma żadnego odniesienia do przerywanego ruchu, który jest esencją mechanizmu genewskiego. Multiplikacja przełożenia odnosi się do zmiany momentu obrotowego, co również nie jest celem dla mechanizmu genewskiego. Typowym błędem myślowym jest zakładanie, że wszystkie mechanizmy obrotowe mają na celu ciągłe przekazywanie ruchu. W rzeczywistości, istnieją mechanizmy zaprojektowane do specyficznych funkcji, takich jak dokładne zatrzymywanie i uruchamianie elementów w określonych momentach, co jest kluczowe w wielu procesach produkcyjnych.

Pytanie 21

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. czerwony.
B. niebieski.
C. żółto-zielony.
D. niebiesko-zielony.
Wybór niepoprawnego koloru izolacji przewodu do połączeń ochronnych może wynikać z niezrozumienia istoty oznaczeń kolorystycznych w instalacjach elektrycznych. Kolor niebieski jest powszechnie stosowany do oznaczania przewodów neutralnych (N), a nie do przewodów ochronnych. Przewody neutralne pełnią funkcję zamknięcia obwodu i są niezbędne do działania urządzeń elektrycznych. Natomiast kolor czerwony, mimo że jest atrakcyjny wizualnie, w systemach elektrycznych używany jest rzadko i przeważnie nie ma ściśle przypisanej funkcji, choć czasem może być używany jako przewód fazowy. Takie zamieszanie może prowadzić do poważnych pomyłek, szczególnie w środowiskach przemysłowych, gdzie kolory przewodów mają kluczowe znaczenie dla bezpieczeństwa pracowników. Błędem myślowym jest założenie, że kolorystyka przewodów jest dowolna. Każdy kolor ma swoje konkretne przeznaczenie, a jego nieprzestrzeganie może prowadzić do groźnych sytuacji. Typowym błędem jest też niedocenienie potrzeby stałego kształcenia się w zakresie przepisów dotyczących kolorystyki przewodów. Wiedza o tym, jakie kolory są przypisane do konkretnych funkcji, jest kluczowa dla każdego technika zajmującego się instalacjami elektrycznymi. Dlatego tak ważne jest, by zawsze posługiwać się aktualnymi normami i standardami, które określają, jakie kolory powinny być stosowane w określonych sytuacjach.

Pytanie 22

Którego przyrządu należy użyć do sprawdzenia równoległości dwóch powierzchni?

A. Transametru.
B. Suwmiarki uniwersalnej.
C. Czujnika zegarowego.
D. Mikrometru.
Mikrometr, choć niezwykle precyzyjny, służy przede wszystkim do mierzenia grubości materiałów lub zewnętrznych wymiarów obiektów. Nie jest idealny do sprawdzania równoległości powierzchni, ponieważ jego konstrukcja nie pozwala na jednoczesne porównanie dwóch różnych płaszczyzn. Transametr to urządzenie mniej znane i rzadko stosowane w kontekście precyzyjnych pomiarów równoległości. Jego głównym zastosowaniem jest bardziej pomiar kątów i odległości w terenie, co sprawia, że nie nadaje się do precyzyjnych pomiarów mechanicznych. Suwmiarka uniwersalna, choć wszechstronna, ma ograniczenia w precyzji, zwłaszcza gdy chodzi o ocenę równoległości na dużych powierzchniach. Może być użyta do pomiaru odległości lub średnicy, ale nie zagwarantuje dokładności potrzebnej do oceny równoległości. Często spotykanym błędem jest przekonanie, że przyrząd, który mierzy odległości, automatycznie nadaje się do wszystkich rodzajów pomiarów. To mylne, gdyż w przypadku pomiaru równoległości kluczowa jest możliwość oceny odchyłek na dużej powierzchni, co zapewnia tylko czujnik zegarowy. Dlatego tak ważne jest, by stosować odpowiednie narzędzia do konkretnych zadań pomiarowych.

Pytanie 23

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. T
B. B
C. A
D. P
Zrozumienie, do którego przyłącza w zaworze hydraulicznym należy podłączyć zbiornik z cieczą, jest kluczowe dla prawidłowego funkcjonowania całego systemu. Przyłącze P, często mylone, służy do doprowadzenia ciśnienia roboczego z pompy do zaworu, a nie do podłączenia zbiornika. To często spotykany błąd, wynikający z braku znajomości podstawowych zasad działania układów hydraulicznych. Przyłącza A i B odpowiadają za sterowanie przepływem cieczy do siłowników i innych elementów wykonawczych. Ich funkcją jest kierowanie cieczy do odpowiednich części systemu, aby mogły one wykonać zaplanowaną pracę, np. przesunięcie tłoka. Podłączenie zbiornika do tych portów mogłoby skutkować niekontrolowanym działaniem siłowników lub w ogóle uniemożliwić działanie układu. Prawidłowe podłączenie zbiornika do przyłącza T jest niezbędne dla zapewnienia swobodnego powrotu cieczy do zbiornika po jej użyciu w systemie. Takie podejście nie tylko zapobiega nadmiernemu ciśnieniu, ale także minimalizuje ryzyko uszkodzeń mechanicznych całego układu. Dobry projektant systemów hydraulicznych wie, że stosowanie się do standardowych praktyk i zrozumienie funkcji poszczególnych przyłączy jest podstawą dla niezawodności i efektywności działania.

Pytanie 24

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. zaciskania wtyków RJ45.
C. ściągania izolacji.
D. cięcia przewodów.
Zrozumienie różnicy między różnymi narzędziami używanymi w elektryce jest kluczowe. Zacznijmy od narzędzi do ściągania izolacji. Służą one do usuwania zewnętrznej osłony przewodów, co umożliwia dostęp do miedzianego rdzenia. Ich konstrukcja jest dostosowana do precyzyjnego nacinania izolacji bez uszkadzania przewodu. Natomiast narzędzia do cięcia przewodów, jak sama nazwa wskazuje, są używane do przecinania przewodów. Zazwyczaj są to nożyce o ostrych krawędziach, które zapewniają czyste cięcie bez deformacji przewodu. Z kolei narzędzia do zaciskania wtyków RJ45 są używane głównie w pracach związanych z sieciami komputerowymi. Zaciskają złącza RJ45 na końcach kabli sieciowych (np. skrętki), umożliwiając ich podłączenie do routerów, switchów czy komputerów. Każde z tych narzędzi ma swoje specyficzne zastosowanie i użycie ich w niewłaściwy sposób może prowadzić do błędnych połączeń czy nawet uszkodzeń. Właściwe rozróżnienie i zastosowanie narzędzi zapewnia nie tylko profesjonalizm, ale też bezpieczeństwo i efektywność w pracy elektryka czy technika sieciowego. Ważne jest, by być świadomym, jakie narzędzie jest potrzebne do konkretnej pracy i dlaczego. Dzięki temu unikasz typowych błędów, które mogą prowadzić do problemów w późniejszym użytkowaniu instalacji.

Pytanie 25

Przetwornik poziomu, o zakresie pomiarowym 0 cm ÷ 100 cm, przetwarza liniowo zmierzony poziom na natężenie prądu z przedziału 4 mA ÷ 20 mA. Przy wzroście poziomu z wartości 55 cm na 75 cm natężenie prądu wyjściowego z przetwornika

A. wzrośnie o 3,2 mA
B. zmaleje o 1,6 mA
C. wzrośnie o 1,6 mA
D. zmaleje o 3,2 mA
Kiedy mamy do czynienia z przetwornikiem przetwarzającym poziom na prąd, kluczowe jest zrozumienie, jak funkcjonuje jego liniowość. Zakres od 0 cm do 100 cm jest przekształcany na 4 mA do 20 mA, co oznacza, że każdy centymetr zmiany poziomu ma przypisany konkretny przyrost prądu. W tym przypadku, zmiana o 1 cm odpowiada zmianie prądu o 0,16 mA. Często błędnym jest założenie, że wzrost poziomu automatycznie zmniejsza prąd, choć logicznie byłoby to sprzeczne z proporcjonalnością funkcji liniowej, gdzie większy poziom to wyższy prąd. Podobnie, niektórzy mogą zakładać, że zmiana z 55 cm na 75 cm jest mniejsza niż rzeczywistości, co prowadzi do wniosku, że wzrost mógłby być mniejszy. Takie błędne rozumowanie często wynika z nieuwagi lub niewłaściwego przeliczenia proporcji. Niezrozumienie, że zakresy muszą być bezpośrednio związane proporcjonalnie do siebie, jest typowym źródłem błędów. Dlatego w praktyce, technicy i inżynierowie muszą często sprawdzać swoje obliczenia i stosować wypracowane metody kalibracji, aby uniknąć takich pomyłek. Właściwe zrozumienie zasad działania takich systemów jest kluczowe w kontekście ich zastosowania w automatyzacji procesów przemysłowych, gdzie dokładność odczytów jest fundamentalna dla bezpieczeństwa i efektywności produkcji.

Pytanie 26

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. skuteczności ochrony przeciwporażeniowej.
B. parametrów ekonomicznych.
C. dopuszczalnego spadku napięcia.
D. obciążalności prądowej.
Przy doborze przewodów w instalacji elektrycznej, uwzględnienie parametrów ekonomicznych jest rzeczywiście mniej istotne w porównaniu do innych kryteriów. Choć koszty instalacji mogą mieć znaczenie w kontekście budżetowania projektu, są one drugorzędne w stosunku do kwestii bezpieczeństwa i wydajności. Dla elektryka priorytetem jest zapewnienie, że przewody spełniają odpowiednie normy techniczne i bezpieczeństwa. W praktyce oznacza to, że większą wagę przykłada się do obciążalności prądowej, dopuszczalnego spadku napięcia oraz skuteczności ochrony przeciwporażeniowej. Standardy takie jak PN-IEC 60364 wymagają, aby przewody były dobrane zgodnie z ich zdolnością do przenoszenia prądu i zapewniały minimalny spadek napięcia, co ma kluczowe znaczenie dla efektywności energetycznej systemu. Skuteczność ochrony przeciwporażeniowej jest również nie do przecenienia, ponieważ chroni przed porażeniem prądem elektrycznym. Podsumowując, parametry ekonomiczne są ważne, ale w kontekście projektowania instalacji elektrycznych ustępują miejsca bardziej krytycznym czynnikom technicznym, które zapewniają bezpieczeństwo i niezawodność systemu.

Pytanie 27

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 1001
B. input SW1 - 01001001, output SW2 - 0000
C. input SW1 - 10001100, output SW2 - 0000
D. input SW1 - 01011010, output SW2 - 0110
Ustawienie separatora toru pomiarowego czujnika w zakresie 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA jest kluczowe dla zapewnienia dokładności pomiarów oraz bezawaryjnej pracy urządzenia. Poprawna odpowiedź to ustawienie input SW1 na 01001001 oraz output SW2 na 0000. To ustawienie zapewnia, że sygnał wejściowy w pełni pokrywa zakres 0÷20 mA, co jest zgodne z wymaganiami sterownika PLC. W praktyce, ustawienie to pozwala na pełne odwzorowanie sygnałów z czujnika, eliminując ryzyko błędów pomiarowych. Dobrze dobrany separator sygnału nie tylko optymalizuje działanie systemu, ale także zapewnia jego długotrwałą niezawodność. Ustawienie SW1 na 01001001 oznacza, że aktywowane są odpowiednie przełączniki dla zakresu 0÷20 mA, co jest często wykorzystywane w aplikacjach przemysłowych, gdzie precyzja i stabilność odczytu są kluczowe. To ustawienie jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej, co gwarantuje nie tylko poprawność działania, ale również zgodność z normami.

Pytanie 28

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. P
C. PD
D. PID
Wybór innych typów regulatorów często wynika z błędnego zrozumienia ich charakterystyki. Regulator P, charakteryzujący się tylko reakcją proporcjonalną, nie jest wystarczający w systemach wymagających eliminacji uchybu ustalonego. Bez komponentu całkującego, jak w PI, nie może on zredukować stałego błędu do zera. Z kolei regulator PD, dodaje do proporcjonalnego komponentu element różniczkujący, który zwiększa szybkość reakcji na zmiany. Jednakże nie eliminuje stałego błędu, co czyni go nieodpowiednim w aplikacjach wymagających precyzyjnego ustalenia wartości zadanej, jak w pokazanym przykładzie. PID, będący połączeniem P, I i D, jest bardziej zaawansowany i zdolny do szybkiej reakcji na zmiany oraz eliminacji stałego błędu. Jednakże jego złożoność jest zbędna w systemach, gdzie nie występują szybkie zakłócenia i wystarcza prostota PI. Typowym błędem jest zakładanie, że bardziej rozbudowany PID zawsze będzie lepszy. W rzeczywistości, jego nieodpowiednie zastosowanie może prowadzić do nadmiernych oscylacji i destabilizacji. Właściwy wybór regulatora zależy od specyfiki systemu i jego wymagań dynamicznych, co w tym przypadku uzasadnia użycie PI.

Pytanie 29

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. SFC
B. LD
C. IL
D. FBD
Wybór innych języków programowania, takich jak IL, FBD czy SFC, często wynika z niepełnego zrozumienia specyfiki danego projektu. IL, czyli Instruction List, to język niskopoziomowy, przypominający asembler – jego skomplikowana składnia może zniechęcać mniej doświadczonych programistów. FBD, czyli Function Block Diagram, jest wizualny i skupia się na przepływie sygnałów pomiędzy blokami funkcyjnymi. Choć jest użyteczny w projektach wymagających rozbudowanej logiki numerycznej, to nie pasuje do prostych struktur drabinkowych jak ta na rysunku. Z kolei SFC, Sequential Function Chart, służy do opisywania sekwencji działań – idealnie nadaje się do procesów o złożonych przepływach pracy, ale nie do prostych układów przekaźnikowych. Typowym błędem jest zakładanie, że wszystkie języki są zamienne, co prowadzi do wyboru nieoptymalnego narzędzia. LD jest preferowany w zastosowaniach, gdzie priorytetem jest prostota i przejrzystość, co jest kluczowe w utrzymaniu i diagnostyce instalacji przemysłowych. Zrozumienie tych kontekstów jest istotne dla właściwego doboru języka w projekcie PLC.

Pytanie 30

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 10 barów i temperatura 90°C
B. Ciśnienie robocze 16 barów i temperatura 50°C
C. Ciśnienie robocze 16 barów i temperatura 90°C
D. Ciśnienie robocze 0,1 bara i temperatura 50°C
Maksymalne wartości ciśnienia roboczego i temperatury medium w zaworach elektromagnetycznych są kluczowe dla ich prawidłowego funkcjonowania i trwałości. W podanym fragmencie karty katalogowej znajdziemy informację, że ciśnienie robocze wynosi od 0,1 do 16 barów, co oznacza, że zawór może pracować z ciśnieniem nawet do 16 barów. To ważne, bo różne aplikacje w przemyśle wymagają różnych poziomów ciśnienia, a zawory muszą być w stanie spełnić te wymagania. Jeżeli chodzi o temperaturę medium, tutaj maksymalna wartość wynosi 90°C. Oznacza to, że ciecz lub gaz przepływające przez zawór mogą mieć temperaturę do 90°C, co jest istotne przy zastosowaniach w miejscach, gdzie medium może być gorące, na przykład w systemach grzewczych lub przemysłowych procesach chemicznych. Ważne jest, aby zawsze sprawdzać te parametry przed doborem zaworu do konkretnego zastosowania, ponieważ przekroczenie dopuszczalnych wartości może prowadzić do uszkodzenia zaworu i potencjalnych awarii w systemie. Warto też zwrócić uwagę na standardy branżowe, które regulują dobór i zastosowanie zaworów elektromagnetycznych, takie jak normy PN-EN dotyczące armatury przemysłowej.

Pytanie 31

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
C. Zasady blokady programowej sygnałów wejściowych.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
Zasady blokady sygnałów wyjściowych oraz blokady programowej sygnałów wejściowych to częste błędy koncepcyjne, gdy myślimy o wyłączaniu systemów sterowania. Pierwsza z nich sugeruje, że można po prostu zablokować sygnały na wyjściu, ale to nie rozwiązuje problemu potencjalnych awarii sterownika lub innych komponentów systemu. Blokowanie sygnałów wyjściowych może jedynie zatrzymać działanie siłowników czy innych wykonawczych elementów, ale nie gwarantuje, że system faktycznie przestanie działać w bezpieczny sposób. Podobnie zasady blokady programowej sygnałów wejściowych mogą wprowadzać fałszywe poczucie bezpieczeństwa – nawet jeśli blokujemy niektóre sygnały, to sterownik PLC może nadal operować na pozostałych danych, co może prowadzić do niekontrolowanych działań. Zasady prądu roboczego, które sugerują podanie stanu 1 na wejście, również są mylące. W sytuacjach awaryjnych wymagamy, aby system automatycznie przechodził w stan bezpieczny, co oznacza, że powinien przyjąć stan 0 jako domyślne ustawienie. W praktyce, błędne założenie, że podanie stanu 1 rozwiąże problem, może prowadzić do zwiększenia ryzyka awarii. Często spotykanym błędem jest niedocenianie potrzeby implementacji procedur fail-safe, które są fundamentem w projektowaniu systemów zautomatyzowanych, zwłaszcza tam, gdzie stawiamy na minimalizację ryzyka dla zdrowia i mienia. W kontekście standardów i dobrych praktyk unikanie przełączania systemu w stan aktywny w krytycznych momentach jest kluczowe dla zapewnienia bezpieczeństwa operacyjnego.

Pytanie 32

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Niepoprawne zrozumienie mechanizmu sekwencji współbieżnych w sieciach SFC może prowadzić do błędnych wniosków. Warianty przedstawione w innych odpowiedziach mogą sugerować różne sposoby na organizację procesów, ale często nie spełniają one kluczowych zasad. Na przykład, brak odpowiednich synchronizacji między krokami lub niewłaściwe użycie linii równoległych może prowadzić do niejasności i utrudniać prawidłowe działanie systemu. Typowym błędem myślowym jest zakładanie, że każda równoległa czynność może rozpocząć się w dowolnym momencie, co w rzeczywistości nie jest zgodne ze standardami SFC. Prawidłowa sekwencja powinna obejmować odpowiednie mechanizmy synchronizacji, co gwarantuje, że wszystkie procesy zakończą się przed przejściem do kolejnego etapu. Dobre praktyki, jak te zawarte w normach IEC, podkreślają konieczność precyzyjnego planowania i wizualnego przedstawiania procesów, aby uniknąć nieporozumień i błędów w działaniu systemów automatyki. Pamiętając o tych zasadach, można projektować bardziej wydajne i niezawodne systemy sterowania.

Pytanie 33

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 2
Ilustracja do odpowiedzi A
B. Miernik 1
Ilustracja do odpowiedzi B
C. Miernik 4
Ilustracja do odpowiedzi C
D. Miernik 3
Ilustracja do odpowiedzi D
Wiele osób wybiera błędny miernik, bo patrzy jedynie na jednostkę „V” bez zwracania uwagi na zakres i typ napięcia. Miernik numer 1 ma zakres do 6 V – byłby zbyt mało czuły i mógłby się uszkodzić przy napięciu 10 V. Miernik numer 2 ma zakres aż do 75 V, przez co wskazówka przy pomiarze 10 V niemal się nie poruszy, co uniemożliwia dokładny odczyt. Z kolei miernik numer 4 jest przeznaczony do pomiaru napięcia przemiennego (oznaczenie „~”), a w naszym układzie występuje napięcie stałe (DC), więc jego zastosowanie byłoby błędem technicznym – nie pokaże prawidłowego wyniku, a w skrajnym przypadku może zostać uszkodzony. W praktyce automatyki i elektrotechniki zawsze trzeba dopasować zakres przyrządu do mierzonego sygnału – najlepiej, gdy maksymalna wartość na skali jest nieco wyższa od maksymalnej wartości sygnału. Typowy sygnał analogowy z czujnika lub przetwornika to 0–10 V DC, dlatego właściwy jest woltomierz o zakresie obejmującym ten przedział, np. –5...15 V. Stosowanie miernika do AC lub o zbyt dużym zakresie prowadzi do błędnych wniosków diagnostycznych, co w automatyce może skutkować niewłaściwą regulacją urządzenia, np. zaworu proporcjonalnego. Moim zdaniem właśnie znajomość zakresów i typów napięć odróżnia praktyka od kogoś, kto tylko „mierzy, żeby coś się ruszyło na wskazówce”.

Pytanie 34

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. naprężeń.
B. temperatury.
C. ciśnienia.
D. pola magnetycznego.
To, co widzisz na zdjęciu, to typowy czujnik pola magnetycznego zwany kontaktronem. Kontaktrony są szeroko stosowane w systemach alarmowych i detekcji otwarcia drzwi czy okien. Działa to na zasadzie zamykania lub otwierania obwodu elektrycznego w obecności pola magnetycznego. W momencie, gdy magnes zbliża się do kontaktronu, jego wewnętrzne styki zbliżają się do siebie, co pozwala na przepływ prądu. To niesamowicie proste, ale skuteczne rozwiązanie. W branży standardem jest stosowanie takich czujników w miejscach, gdzie wymagana jest niezawodność i niskie koszty utrzymania. Kontaktrony są też często stosowane w licznikach energii elektrycznej, gdzie wykrywają nielegalne interwencje z zewnątrz. Moim zdaniem, to genialne, jak coś tak prostego może mieć tak szerokie zastosowanie w technologii i życiu codziennym. Warto też dodać, że kontaktrony są odporne na większość zakłóceń elektromagnetycznych, co czyni je idealnym wyborem w trudnych warunkach przemysłowych.

Pytanie 35

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczyska obu siłowników wysuną się.
B. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
C. Tłoczyska obu siłowników pozostaną wsunięte.
D. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
Poprawna odpowiedź to: tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się. Wynika to z analizy położenia zaworów w stanie spoczynku, czyli przy niewzbudzonych cewkach Y1 i Y2. Zawór 1V1 (sterujący siłownikiem 1A1) w pozycji podstawowej blokuje dopływ powietrza do komory wysuwu – dlatego tłoczysko pozostaje schowane. Natomiast zawór 2V1 (sterujący siłownikiem 2A1) w swojej pozycji spoczynkowej podaje ciśnienie na stronę wysuwu, przez co siłownik 2A1 się wysuwa. Sprężyna przy zaworze 2V1 ustawia go w pozycji, w której port 1 jest połączony z portem 2. W praktyce oznacza to, że po podaniu zasilania sprężonym powietrzem, bez aktywacji elektromagnesów, tylko siłownik 2A1 zostaje zasilony od strony tłoczyska i wykonuje ruch. Moim zdaniem to klasyczny przykład układu, który pokazuje znaczenie pozycji spoczynkowej zaworu oraz kierunku działania sprężyn – coś, co często umyka początkującym automatykom. W rzeczywistych aplikacjach takie rozwiązanie stosuje się np. do automatycznego ustawienia elementu w pozycji startowej po uruchomieniu maszyny.

Pytanie 36

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Amperomierz.
B. Częstotliwościomierz.
C. Omomierz.
D. Woltomierz.
Świetnie, wybrałeś amperomierz! To prawidłowy wybór, bo w miejscu oznaczonym literą X chcemy zmierzyć natężenie prądu płynącego przez rezystory R2 i R3, które są połączone szeregowo. Amperomierz to przyrząd, który włączamy w obwód szeregowo, tak aby prąd płynął przez niego, co pozwala na dokładny pomiar. Moim zdaniem, to jedno z podstawowych zastosowań amperomierza, bo często chcemy wiedzieć, jaki prąd płynie przez konkretne elementy obwodu. Ważne jest, aby pamiętać, że amperomierz ma bardzo mały opór własny, co minimalizuje wpływ na obwód. Standardy branżowe, takie jak IEC, podkreślają konieczność właściwego podłączenia amperomierzy, aby uniknąć błędów pomiarowych. W praktyce, amperomierze są nieodzowne w diagnostyce i utrzymaniu systemów elektrycznych, zarówno w elektronice konsumenckiej, jak i w systemach przemysłowych. Dobrze, że o tym pamiętasz!

Pytanie 37

Do przykręcenia zaworu za pomocą śruby przedstawionej na rysunku należy użyć

Ilustracja do pytania
A. klucza imbusowego.
B. wkrętaka gwiazdkowego.
C. klucza hydraulicznego nastawnego.
D. klucza „francuskiego”.
Klucz imbusowy jest nieodzownym narzędziem w przypadku pracy ze śrubami posiadającymi sześciokątne gniazdo. Ten typ śruby, znany jako śruba z łbem na klucz imbusowy, jest szeroko stosowany w wielu dziedzinach, od meblarstwa po inżynierię mechaniczną. Klucz imbusowy, czasami nazywany kluczem sześciokątnym, cechuje się prostotą budowy, co czyni go niezwykle praktycznym w użyciu. Jednym z głównych powodów popularności tego rozwiązania jest możliwość uzyskania dużego momentu obrotowego bez ryzyka uszkodzenia łba śruby. Użycie klucza imbusowego jest zgodne ze standardami ISO dla narzędzi ręcznych, co gwarantuje jego uniwersalność i zgodność z większością śrub tego typu na całym świecie. W praktyce, śruby na klucz imbusowy są często wykorzystywane w konstrukcjach, gdzie dostęp jest ograniczony, ponieważ klucz imbusowy może być stosowany pod kątem. To także narzędzie, które z powodzeniem znajdziemy w wielu zestawach do samodzielnego montażu, popularnych wśród skandynawskich firm meblowych. Moim zdaniem, jeśli ktoś często pracuje z montażem lub demontażem różnych elementów, posiadanie zestawu kluczy imbusowych to absolutna konieczność.

Pytanie 38

Która z przekładni mechanicznych na pokazanych rysunkach pracuje zgodnie z przedstawionym schematem kinematycznym?

Ilustracja do pytania
A. Przekładnia 4.
Ilustracja do odpowiedzi A
B. Przekładnia 3.
Ilustracja do odpowiedzi B
C. Przekładnia 1.
Ilustracja do odpowiedzi C
D. Przekładnia 2.
Ilustracja do odpowiedzi D
Schemat kinematyczny przedstawia przekładnię, w której osie wałów przecinają się pod kątem prostym – a więc klasyczną przekładnię stożkową. Przekładnia 2 to przekładnia pasowa, gdzie moment przenoszony jest przez elastyczny pas, a osie wałów są równoległe, więc nie odpowiada ona rysunkowi. Przekładnia 3 przedstawia układ ślimakowy – osie również przecinają się pod kątem prostym, ale nie w jednym punkcie, lecz są przesunięte, co daje zupełnie inny charakter pracy (przekształcenie ruchu obrotowego z dużym przełożeniem i samohamownością). Z kolei przekładnia 4 to przekładnia śrubowa, w której osie wałów są równoległe i zazębienie odbywa się liniowo. Typowym błędem jest utożsamianie każdego układu o kącie 90° z przekładnią stożkową – tymczasem tylko ona ma zęby ukształtowane na powierzchni stożka i zapewnia bezpośrednie, punktowe przenoszenie momentu między osiami przecinającymi się w jednym punkcie. W praktyce błędny dobór przekładni może powodować nieprawidłowe przeniesienie siły, zwiększony hałas lub nawet uszkodzenie łożysk i wałów. Dlatego w schematach zawsze zwraca się uwagę na wzajemne położenie osi i rodzaj zazębienia.

Pytanie 39

Którą funkcję logiczną realizuje element przedstawiony na rysunku?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Analizując różne możliwości, można zauważyć, że często jest trudno odróżnić funkcje logiczne tylko na podstawie tabelki prawdy. Źle dobrana odpowiedź mogła wynikać z błędnej interpretacji tabeli prawdy, która jest kluczowa w zrozumieniu logiki systemu. Tabela prawdy dla funkcji OR pokazuje, że wynik jest prawdziwy, gdy przynajmniej jedno wejście jest prawdziwe. W przeciwnym razie, jak w funkcji AND, wynik byłby prawdziwy tylko wtedy, gdy oba wejścia są prawdziwe, co w kontekście zaworów pneumatycznych oznaczałoby brak przepływu przy zasilaniu tylko jednego wejścia. Błędne wybranie funkcji NOT, sugerowałoby, że przy jednym zasileniu występuje brak przepływu, co nie odpowiada rzeczywistości w tym przypadku. Typowym błędem jest mieszanie funkcji XOR z OR, gdzie XOR wymaga tylko jednego aktywnego sygnału dla wyniku prawdziwego, ale nie obu jednocześnie. Zrozumienie tych różnic jest fundamentalne w projektowaniu niezawodnych systemów logicznych i ma kluczowe znaczenie w automatyzacji procesów.

Pytanie 40

Na rysunku przedstawiono przytwierdzenie siłownika za pomocą

Ilustracja do pytania
A. ucha ze sworzniem.
B. kołnierza.
C. uchwytu widełkowego ze sworzniem.
D. łap mocujących.
Kołnierz, mimo że jest popularnym sposobem montażu w niektórych aplikacjach, zazwyczaj służy do innych rodzajów przytwierdzeń. Często jest używany w aplikacjach, gdzie niezbędne jest szczelne połączenie elementów, takich jak w systemach rurociągowych. W kontekście siłowników jego zastosowanie jest ograniczone, ponieważ wymaga precyzyjnego dopasowania i nie oferuje takiej elastyczności w montażu jak łapy mocujące. Ucho ze sworzniem to metoda, która umożliwia ruch obrotowy siłownika wokół osi sworznia, co jest korzystne w aplikacjach wymagających dużej mobilności. Jednak w przedstawionym rysunku nie ma wskazania na takie rozwiązanie. Uchwyt widełkowy ze sworzniem również umożliwia ruch obrotowy, ale jest stosowany w innych konfiguracjach montażowych. Typowym błędem jest nieodróżnienie sytuacji, gdzie potrzeba stabilnego, stałego montażu od takich, gdzie ruchliwość jest kluczowa. Dlatego ważne jest, aby zrozumieć specyfikę zastosowania i wymagania każdej z tych metod, co pomoże uniknąć nieprawidłowych wniosków podczas projektowania systemów z siłownikami.