Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 29 grudnia 2025 07:20
  • Data zakończenia: 29 grudnia 2025 08:00

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Uszkodzenie poprawnie działającej instalacji elektrycznej budynku przedstawione na rysunku jest skutkiem

Ilustracja do pytania
A. zwarcia doziemnego.
B. przeciążenia instalacji.
C. wpływu prądu piorunowego do instalacji.
D. zwarcia międzyfazowego w instalacji.
Odpowiedź wskazująca na wpływ prądu piorunowego do instalacji jako przyczynę uszkodzeń jest słuszna. Prąd piorunowy, ze względu na swoje ekstremalne natężenie i napięcie, jest w stanie spowodować znaczne uszkodzenia instalacji elektrycznych, co widać na przedstawionym rysunku. Zjawisko to jest szczególnie niebezpieczne, ponieważ może prowadzić do uszkodzeń zarówno sprzętu elektrycznego, jak i struktury budynku. Przykładowo, w praktyce budowlanej i elektrycznej, rekomenduje się instalowanie systemów odgromowych, które mają na celu ochronę przed skutkami uderzenia pioruna. Systemy te powinny być zgodne z normami IEC 62305, co wymaga odpowiedniego zaprojektowania oraz instalacji, aby skutecznie kierować prąd piorunowy do ziemi. Dobre praktyki w tej dziedzinie podkreślają znaczenie regularnych przeglądów instalacji oraz świadomości zagrożeń związanych z wyładowaniami atmosferycznymi. Dodatkowo, ważne jest, aby osoby odpowiedzialne za instalacje elektryczne były odpowiednio przeszkolone i znały zasady projektowania w kontekście ochrony przeciwprzepięciowej.

Pytanie 2

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 2 przy zwartych przewodach pomiarowych.
B. 1 przy odłączonych przewodach pomiarowych.
C. 1 przy zwartych przewodach pomiarowych.
D. 2 przy odłączonych przewodach pomiarowych.
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 3

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ALY 2,5 mm2
B. YLY 2,5 mm2
C. ADY 2,5 mm2
D. YDY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 4

Na podstawie przedstawionego planu instalacji określ, które z wymienionych elementów należy wytrasować w pokoju i na tarasie.

Ilustracja do pytania
A. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo wtyczkowe bez uziemienia.
B. 2 punkty oświetleniowe sufitowe, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo podwójne bez uziemienia.
C. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 1 gniazdo pojedyncze bez uziemienia, 2 gniazda podwójne bez uziemienia, 1 łącznik.
D. 2 punkty oświetleniowe sufitowe, 3 gniazda wtyczkowe, 2 łączniki.
Świetnie, że wskazałeś dwa punkty oświetleniowe sufitowe, trzy gniazda wtyczkowe i dwa łączniki. To naprawdę dobrze pasuje do planu instalacji. Te dwa punkty sufitowe to dobra sprawa, bo zapewnią fajne oświetlenie w pomieszczeniu, a różne źródła światła na pewno będą tu przydatne. Według normy PN-EN 12464-1 to wszystko powinno być ok. Co do gniazd, trzy sztuki to minimum, żeby móc podłączyć różne sprzęty, więc pod tym względem jest super. Co do łączników, to świetna sprawa, że są dwa, bo można zarządzać oświetleniem z różnych miejsc, a to naprawdę ułatwia życie. No i pamiętaj, że dobrze zaplanowana instalacja zwiększa bezpieczeństwo, unikając gniazd bez uziemienia, co jest ważne dla zgodności z przepisami.

Pytanie 5

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Kabelkowe
B. Szynowe
C. Uzbrojone
D. Rdzeniowe
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 6

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. przyłącze
B. wewnętrzna linia zasilająca
C. złącze
D. rozdzielnica główna
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 7

W którym wierszu tabeli prawidłowo określono funkcje i liczby przewodów jednożyłowych, które należy umieścić w rurach instalacyjnych, aby wykonać poszczególne obwody w układzie sieciowym TN-S, zakończone punktami odbioru o przedstawionych symbolach graficznych?

Ilustracja do pytania
A. W wierszu 1.
B. W wierszu 4.
C. W wierszu 3.
D. W wierszu 2.
Wiersz 4 tabeli prawidłowo określa wymagania dotyczące liczby przewodów w obwodach sieciowych TN-S. Dla obwodu 3, który odpowiada za oświetlenie, potrzebne są trzy przewody: jeden przewód fazowy, jeden neutralny oraz jeden ochronny, co jest zgodne z normami dotyczących instalacji elektrycznych. Z kolei dla obwodu 2, który obsługuje gniazdo siłowe, wymagane jest pięć przewodów: trzy fazowe, jeden neutralny i jeden ochronny. Zastosowanie odpowiedniej liczby przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W przypadku niewłaściwej liczby przewodów, może dojść do przeciążeń, które stanowią poważne zagrożenie pożarowe. Standardy takie jak PN-IEC 60364-1 stanowią wytyczne, które należy przestrzegać w celu zapewnienia bezpieczeństwa i zgodności z obowiązującymi normami. W praktyce, prawidłowe określenie liczby przewodów jest istotne, aby uniknąć nieprawidłowości instalacyjnych, które mogą prowadzić do awarii sprzętu lub uszkodzenia instalacji.

Pytanie 8

Na podstawie tabeli 2 dobierz dławik indukcyjny do oprawy oświetleniowej, w której znajdują się dwie świetlówki o długości 60 cm, wybrane z tabeli 1.

Ilustracja do pytania
A. L 36W
B. L 32W
C. L 18W
D. L 22W
Wybieranie dławika, który nie ma odpowiedniej mocy do świetlówek, to dość powszechny błąd. Dławiki L 22W, L 18W czy L 32W po prostu nie dadzą rady zasilać dwóch świetlówek T8, które każda mają 18W. Zbyt słaby dławik może prowadzić do różnych problemów - świetlówki mogą migotać lub nawet w ogóle nie działać. Dodatkowo, może to zwiększyć zużycie energii oraz skrócić żywotność zarówno dławika, jak i świetlówek. Bezpieczeństwo też nie jest bez znaczenia, bo dławiki niewłaściwie dobrane do obciążenia mogą się przegrzewać, co jest niebezpieczne. W elektryce naprawdę warto trzymać się zasad doboru komponentów i zalecań producentów. Dlatego dobrze jest przeanalizować wymagania obciążeniowe i stosować odpowiednie dławiki, bo to może uchronić przed typowymi błędami przy montażu oświetlenia.

Pytanie 9

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (5÷20) · In
C. (5÷10) · In
D. (2÷3) · In
Wybrałeś wartość (5÷10) · In, czyli zakres krotności prądu znamionowego, w którym uruchamia się wyzwalacz elektromagnetyczny w wyłączniku instalacyjnym typu C. To jest właśnie zgodne z normą PN-EN 60898-1 – tzw. „eski” typu C mają za zadanie chronić instalację przed skutkami zwarć i większych przeciążeń. Moim zdaniem dobrze znać ten przedział, bo pozwala to dobrać charakterystykę zabezpieczeń do rodzaju obciążenia w instalacji. Typ C jest najbardziej uniwersalny – stosuje się go w mieszkaniach, biurach, czasem w niewielkich zakładach, czyli wszędzie tam, gdzie mogą się pojawić wyższe prądy rozruchowe, np. od silników czy transformatorów. Prąd wyzwalający elektromagnetycznie musi być wystarczająco wysoki, żeby nie rozłączać obwodu przy każdym chwilowym skoku, ale też na tyle niski, żeby chronić przed zwarciem. Z mojego doświadczenia, jeśli założy się wyłącznik o zbyt „czułej” charakterystyce, to potem są telefony od użytkowników, że „wywala korki” przy włączaniu odkurzacza czy wiertarki. Typ C ze swoim zakresem 5 do 10 razy prądu znamionowego naprawdę dobrze sprawdza się w praktyce, bo łączy szybkość reakcji na zwarcie z odpornością na krótkie impulsy prądowe.

Pytanie 10

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
B. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
C. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
D. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
Protokół z badań po modernizacji sieci musi zawierać kluczowe informacje, takie jak nazwisko zleceniodawcy, nazwisko wykonawcy oraz czas wykonywania pomiarów. Te elementy są niezbędne, aby zapewnić pełną przejrzystość i odpowiedzialność w procesie pomiarów. Zleceniodawca, jako osoba zlecająca prace, powinien być wymieniony, aby można było w razie potrzeby zidentyfikować odpowiednie osoby odpowiedzialne za projekt. Nazwisko wykonawcy jest istotne, ponieważ odpowiada on za prawidłowe wykonanie badań, co jest kluczowe dla zapewnienia bezpieczeństwa i jakości sieci. Czas wykonywania pomiarów także ma znaczenie, ponieważ umożliwia śledzenie postępu prac oraz weryfikację, czy pomiary zostały przeprowadzone zgodnie z harmonogramem. Wszystkie te dane są zgodne z najlepszymi praktykami w branży oraz standardami, które zalecają dokumentowanie szczegółowych informacji o przebiegu prac oraz wynikach badań.

Pytanie 11

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. aR 16 A
B. gG 16 A
C. aM 20 A
D. gB 20 A
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 12

Który aparat obwodu głównego będzie włączony zgodnie z przedstawionym schematem między wyłącznik różnicowoprądowy a stycznik?

Ilustracja do pytania
A. Przekaźnik przeciążeniowy.
B. Wyłącznik silnikowy.
C. Rozłącznik bezpiecznikowy.
D. Ochronnik przeciwprzepięciowy.
Wybranie innego urządzenia zamiast wyłącznika silnikowego pokazuje, że chyba nie do końca rozumiesz, jak działają różne elementy obwodu elektrycznego. Na przykład przekaźnik przeciążeniowy jest odpowiedzialny za wykrywanie nadmiaru prądu, ale nie włącza silnika. On tylko chroni, a nie uruchamia. Rozłącznik bezpiecznikowy z kolei rozłącza obwód, żeby ochronić przed przeciążeniem, ale nie działa tak dynamicznie jak wyłącznik silnikowy. Ochronnik przeciwprzepięciowy ma inną rolę, bo tylko zabezpiecza przed nagłymi wzrostami napięcia, a nie zarządza zasilaniem silnika. Wybór niewłaściwych elementów może prowadzić do poważnych problemów w systemach elektrycznych, dlatego każdy element powinien być dobrany odpowiednio do jego funkcji i zastosowania. W praktyce, jeśli pomylisz rolę wyłącznika silnikowego, to mogą pojawić się błędne decyzje projektowe, co jest niezgodne z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 13

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 1.
B. Przyrząd 4.
C. Przyrząd 3.
D. Przyrząd 2.
Wybór przyrządu niezgodnego z funkcją wykrywania wadliwych połączeń elektrycznych pod obciążeniem może prowadzić do poważnych konsekwencji operacyjnych. Przyrządy, które nie są zaprojektowane do pomiaru temperatury, takie jak multimetry czy oscyloskopy, nie są w stanie wykryć problemów związanych z nadmiernym nagrzewaniem, które często występują w przypadku wadliwych połączeń. Wiele osób może błędnie zakładać, że tradycyjne metody pomiarowe są wystarczające do diagnozowania problemów w torach elektrycznych. Niemniej jednak, nie uwzględniają one krytycznego aspektu, jakim jest temperatura operacyjna, która może z łatwością umknąć w standardowych pomiarach elektrycznych. Dodatkowo, niezrozumienie zasad termowizji prowadzi do zaniedbań w utrzymaniu infrastruktury, co może skutkować poważnymi awariami i dużymi kosztami napraw. Dlatego coraz ważniejsze staje się stosowanie nowoczesnych technologii, takich jak termowizja, które dostarczają nie tylko precyzyjnych danych, ale również umożliwiają przewidywanie i zapobieganie awariom jeszcze przed ich wystąpieniem.

Pytanie 14

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 100 W
B. 500 W
C. 1000 W
D. 50 W
W przypadku błędnego wyboru wartości mocy, należy zwrócić uwagę na kilka kluczowych zagadnień związanych z interpretacją wyników pomiarów. Odpowiedzi 50 W, 100 W, 1000 W oraz 500 W mogą wydawać się atrakcyjne, jednak nie uwzględniają one rzeczywistych parametrów pomiarowych wykorzystywanych w watomierzu. Na przykład, wybór 50 W może wynikać z nieporozumienia dotyczącego wskazania watomierza, które być może nie uwzględnia poprawnych wartości prądu oraz napięcia. Dodatkowo, odpowiedzi 100 W oraz 1000 W również nie są zgodne z zasadami obliczania mocy. Warto pamiętać, że moc elektryczna jest definiowana jako iloczyn napięcia i prądu, a ich niewłaściwe zrozumienie może prowadzić do znacznych błędów w ocenie wydajności urządzeń elektrycznych. Typowe myślenie, które prowadzi do takich błędów, opiera się na pomijaniu kluczowych parametrów technicznych, takich jak rzeczywiste wartości prądu i napięcia zainstalowanego urządzenia. W praktyce, ignorowanie tych zasad skutkuje nieprawidłowymi wynikami i może stanowić zagrożenie dla bezpieczeństwa użytkowania instalacji elektrycznych. Ważne jest, aby każdy, kto zajmuje się pomiarami elektrycznymi, rozumiał, w jaki sposób odczyty są generowane i jakie parametry wpływają na ostateczne wyniki pomiarów.

Pytanie 15

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Reflektometru
B. Waromierza
C. Watomierza
D. Woltomierza
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 16

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. B.
B. D.
C. C.
D. A.
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 17

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. LY 2,5 mm2
B. DY 2,5 mm2
C. YDY 5×2,5 mm2
D. YLY 7×2,5 mm2
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 18

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla zmywarki
B. zasilającego gniazdka jedynie w kuchni
C. oddzielnego dla urządzeń gospodarstwa domowego
D. zasilającego gniazdka w łazience oraz kuchni
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 19

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Zmiana rodzaju użytych przewodów
C. Wymiana uszkodzonych źródeł światła
D. Instalacja dodatkowego gniazda elektrycznego
Wymiana uszkodzonych źródeł światła to naprawdę ważna sprawa, jeśli chodzi o dbanie o instalację elektryczną. To nie tylko poprawia oświetlenie, co jest kluczowe dla komfortu ludzi, ale także dba o ich bezpieczeństwo. Uszkodzone żarówki czy świetlówki mogą być niebezpieczne, bo mogą prowadzić do pożarów czy porażenia prądem, jeśli ich nie wymienimy na czas. Z tego, co wiem, zgodnie z normami PN-IEC 60364, regularne sprawdzanie i konserwacja, w tym wymiana źródeł światła, powinny się odbywać w ustalonych odstępach czasowych. Dzięki temu wszystko działa sprawnie i bez pieprzenia. Przykładowo, zamiana tradycyjnych żarówek na LEDy nie tylko oszczędza prąd, ale też dłużej działają, a to jest korzystne zarówno dla portfela, jak i dla środowiska.

Pytanie 20

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. pośredniego.
B. bezpośredniego.
C. przeważnie bezpośredniego.
D. przeważnie pośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 21

Przeciążenie w instalacji elektrycznej polega na

A. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
B. bezpośrednim połączeniu dwóch faz w systemie.
C. przekroczeniu maksymalnego prądu znamionowego instalacji.
D. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 22

Którym symbolem oznacza się, przedstawiony na rysunku, przewód do wykonania instalacji oświetleniowej wtynkowej?

Ilustracja do pytania
A. YDYp
B. YDYtżo
C. OMYp
D. SMYp
Wybór niewłaściwych symboli przewodów w kontekście instalacji oświetleniowych wtynkowych może prowadzić do poważnych nieprawidłowości oraz zagrożeń. Odpowiedzi takie jak "OMYp", "YDYp" czy "SMYp" nie spełniają wymogów dotyczących przewodów wtynkowych, co jest kluczowe w projektowaniu instalacji. Symbol "OMYp" wskazuje na przewód o podwyższonej elastyczności, który nie jest odpowiedni do instalacji wtynkowych, ponieważ jego konstrukcja nie zapewnia odpowiedniej ochrony w zamkniętych przestrzeniach, co jest niezgodne z normami bezpieczeństwa. Z kolei "YDYp" nie zawiera oznaczenia dotyczącego przewodu ochronnego, co jest fundamentalne, aby zabezpieczyć instalację przed wadami izolacji. Odpowiedź "SMYp" jest związana z przewodami stosowanymi w instalacjach mobilnych, co dodatkowo potwierdza, że nie powinny być one używane w instalacjach stacjonarnych. Błędny dobór symboli wynika często z braku znajomości specyfikacji technicznych oraz norm, takich jak PN-IEC 60364, które jasno określają, jakie przewody są odpowiednie w konkretnych zastosowaniach. Dostosowanie do tych standardów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 23

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Uliczną.
B. Punktową.
C. Przenośną.
D. Biurową.
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 24

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,0 V
B. 12,0 V
C. 12,4 V
D. 11,3 V
Odpowiedź 12,0 V jest poprawna, ponieważ przy analizie wykresu zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania, można stwierdzić, że dla akumulatora o pojemności 100 Ah, który przez 30 minut był obciążony prądem 60 A, rzeczywiście napięcie wynosi około 12,0 V. W praktyce, akumulatory kwasowo-ołowiowe, które najczęściej są używane w zastosowaniach motoryzacyjnych i przemysłowych, charakteryzują się spadkiem napięcia w trakcie rozładowania, co jest uzależnione od wielu czynników, takich jak temperatura czy stopień naładowania. Zrozumienie tych zależności jest kluczowe w kontekście zapewnienia optymalnej pracy urządzeń zasilanych akumulatorami, a także w trakcie ich konserwacji i wymiany. Dobrą praktyką jest regularne monitorowanie stanu napięcia akumulatora, co pozwala na wczesne wykrywanie problemów i uniknięcie nieprzewidzianych awarii.

Pytanie 25

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 16 A
B. 26 A
C. 6 A
D. 20 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 26

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Stycznik.
C. Wyłącznik nadmiarowoprądowy.
D. Rozłącznik instalacyjny.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ to urządzenie jest kluczowym elementem ochrony instalacji elektrycznej przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych lub nagłych zmian w sieci zasilającej. Ograniczniki przepięć mają za zadanie zredukować napięcie do poziomu, który nie zagraża sprzętowi elektrycznemu. W praktyce stosuje się je w mieszkaniach, biurach oraz w obiektach przemysłowych, aby zabezpieczyć wrażliwe urządzenia, takie jak komputery czy systemy automatyki. Zgodnie z normami, takimi jak PN-EN 61643-11, ograniczniki te powinny być instalowane w bliskim sąsiedztwie chronionych urządzeń, co zapewnia ich skuteczność. Warto również wspomnieć, że ograniczniki przepięć są dostępne w różnych klasach, co pozwala na ich dobór zgodnie z charakterystyką instalacji oraz potrzebami użytkownika, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 27

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Prąd upływu.
B. Chwilową moc obciążenia.
C. Impedancję pętli zwarcia.
D. Rezystancję izolacji.
Pomiar prądu upływu, impedancji pętli zwarcia oraz chwilowej mocy obciążenia opiera się na innych zasadach pomiarowych i wymaga odmiennych przyrządów. Prąd upływu dotyczy prądów, które uciekają z instalacji do ziemi lub do obudowy urządzeń, co jest istotne z punktu widzenia bezpieczeństwa, ale nie jest bezpośrednio związane z pomiarem rezystancji izolacji. Z kolei impedancja pętli zwarcia jest mierzona w celu oceny skuteczności ochrony przeciwporażeniowej i nie może być określona przy użyciu miernika izolacji. Mierniki do pomiaru impedancji pętli zwarcia wykorzystują inną metodologię pomiarową i zazwyczaj są dostosowane do pracy w obwodach z obciążeniem. Chwilowa moc obciążenia również nie jest zależna od wartości rezystancji izolacji, gdyż odnosi się do momentalnego zużycia energii przez urządzenie, co jest mierzono za pomocą liczników energii elektrycznej. Typowe nieporozumienie polega na myleniu różnych parametrów elektrycznych, co może prowadzić do niewłaściwych pomiarów i, w konsekwencji, do nieprawidłowych ocen stanu instalacji. Dlatego ważne jest, aby przed przystąpieniem do pomiarów dobrze zrozumieć zastosowanie konkretnego narzędzia pomiarowego oraz jego możliwości.

Pytanie 28

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Oczkowego.
B. Nasadowego.
C. Płaskiego.
D. Ampulowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 29

Rysunek przedstawia pomiar impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. bezpośredniego pomiaru.
B. zastosowania dodatkowego źródła.
C. kompensacyjną.
D. spadku napięcia.
Pomiar impedancji pętli zwarciowej można przeprowadzać różnymi metodami, jednak nie każda z nich zapewnia taką samą dokładność i wiarygodność. Pierwsza z nieprawidłowych odpowiedzi, dotycząca zastosowania dodatkowego źródła, sugeruje, że użycie źródła napięcia jest wystarczające do przeprowadzenia tego pomiaru bez wskazania na konieczność jego kompensacji. Odpowiedź ta myli koncepcję pomiaru z prostym zastosowaniem źródła, co nie odzwierciedla rzeczywistych warunków w obwodzie. Kolejna odpowiedź, dotycząca pomiaru spadku napięcia, również jest problematyczna, ponieważ metoda ta nie uwzględnia wpływu rezystancji przewodów, co może prowadzić do znacznych błędów w odczytach. Bezpośrednie pomiary opierają się na idealnych warunkach, które rzadko występują w rzeczywistości, i nie są w stanie dostarczyć pełnego obrazu sytuacji w instalacji elektrycznej. Metoda kompensacyjna zaś, która uwzględnia te zmienne, pozwala na uzyskanie bardziej precyzyjnych wyników. Z kolei odpowiedź dotycząca pomiaru kompensacyjnego, mimo że prawidłowa, nie oddaje pełni zalet tej metody, a także zniekształca zrozumienie jej zastosowania, co może prowadzić do niewłaściwych wniosków w praktyce. Kluczowe jest zrozumienie, że w każdym pomiarze należy brać pod uwagę wszystkie zmienne, aby uzyskać rzetelne wyniki, a metody uproszczone mogą nie być wystarczające dla skutecznej analizy.

Pytanie 30

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Synchroniczną z biegunami utajonymi.
B. Synchroniczną jawnobiegunową.
C. Indukcyjną klatkową.
D. Komutatorową prądu przemiennego.
Wybierając odpowiedzi, które wskazują na inne rodzaje maszyn, użytkownik może napotkać nieporozumienia związane z podstawowymi zasadami działania maszyn elektrycznych. Maszyna indukcyjna klatkowa, na przykład, nie ma wyraźnie zaznaczonych biegunów magnetycznych, co jest kluczowym elementem dla poprawnej identyfikacji maszyny na rysunku. Indukcyjne maszyny klatkowe działają na zasadzie indukcji elektromagnetycznej, gdzie wirnik nie ma stałych biegunów, a moment obrotowy jest generowany przez różnicę prędkości między wirnikiem a polem magnetycznym. Z kolei maszyny synchroniczne z biegunami utajonymi również różnią się pod względem budowy, ponieważ ich bieguny nie są bezpośrednio widoczne, co może prowadzić do pomyłek. W przypadku maszyn komutatorowych prądu przemiennego, kluczowe są inne mechanizmy pracy, w których używane są komutatory do zmiany kierunku prądu w uzwojeniach wirnika. Zrozumienie różnic między tymi typami maszyn jest istotne, aby móc prawidłowo identyfikować ich zastosowania w przemyśle. W praktyce, wiele z tych błędnych odpowiedzi wynika z niepełnego zrozumienia zasad działania i konstrukcji tych maszyn, co może prowadzić do niewłaściwego doboru urządzeń w aplikacjach przemysłowych, a tym samym do obniżenia efektywności systemów elektrycznych.

Pytanie 31

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 500 V
B. 2500 V
C. 250 V
D. 1000 V
Stosowanie napięcia 500 V, 250 V czy 2500 V do pomiaru rezystancji izolacji przewodu YDY 5x6 450/700 V jest nieprawidłowe z kilku powodów. Napięcie 500 V jest zbyt niskie, aby skutecznie ocenić stan izolacji, szczególnie w przypadku przewodów o niższej klasie napięcia, które mogą wykazywać defekty poddawane jedynie wyższym napięciom. Zastosowanie zbyt niskiego napięcia może prowadzić do fałszywie pozytywnych wyników, co skutkuje błędną oceną stanu izolacji i potencjalnym zagrożeniem bezpieczeństwa. Z kolei 250 V jest jeszcze niższe i również nie dostarcza wystarczającej energii do wykrycia ewentualnych uszkodzeń izolacji. Przeciwnie, napięcie 2500 V jest zbyt wysokie dla tego typu przewodów i może doprowadzić do uszkodzenia izolacji, co w konsekwencji może spowodować poważne awarie systemu elektrycznego. Z tego powodu kluczowe jest stosowanie napięć, które są zgodne z normami i zaleceniami branżowymi, aby zapewnić zarówno dokładność pomiarów, jak i bezpieczeństwo instalacji. Warto w tym kontekście przypomnieć, że zgodnie z normą PN-EN 60364-4-6, pomiar rezystancji izolacji powinien być przeprowadzany przy napięciu 1000 V dla instalacji o napięciu do 1000 V, co podkreśla znaczenie stosowania odpowiednich wartości napięcia w praktyce inżynieryjnej.

Pytanie 32

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. warystora.
B. odgromnika zaworowego.
C. odgromnika wydmuchowego.
D. iskiernika.
Wybory takie jak 'odgromnika wydmuchowego', 'iskiernika' czy 'odgromnika zaworowego' odzwierciedlają typowe nieporozumienia dotyczące rozróżnienia między różnymi elementami ochrony przeciwprzepięciowej. Odgromnik wydmuchowy, choć również pełni funkcję ochronną, różni się zasadniczo od warystora, gdyż ich działanie opiera się na odprowadzaniu energii z piorunów i wyładowań atmosferycznych, a nie na zmieniającej się rezystancji w zależności od napięcia. Iskiernik natomiast to element, który działa poprzez tworzenie łuku elektrycznego i jest używany w sytuacjach wymagających natychmiastowego odprowadzenia wysokich napięć, ale jego symbol graficzny jest odmienny. W przypadku odgromnika zaworowego mamy do czynienia z innym rodzajem technologii, który wykorzystuje różne mechanizmy do ochrony przed przepięciami. Typowe błędy myślowe mogą wynikać z mylenia funkcji i zastosowania tych elementów, co prowadzi do nieporozumień w zakresie ich symboliki. Dla każdego z tych elementów istnieją specyficzne standardy i praktyki, które są kluczowe dla ich poprawnego stosowania w systemach ochrony. Dlatego zrozumienie, które z tych elementów są stosowane w określonych kontekstach jest niezbędne dla zapewnienia odpowiedniego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 33

W jaki sposób steruje się oświetleniem w układzie, którego schemat przedstawiono na rysunku?

Łącznik 1 sterujeŁącznik 2 steruje
A.oddzielnie źródłami światła tylko w punkcie A.oddzielnie źródłami światła tylko w punkcie B.
B.oddzielnie po jednym ze źródeł światła w punktach A i B.oddzielnie po jednym ze źródeł światła w punktach A i B.
C.wszystkimi źródłami światła jednocześnie tylko w punkcie A.wszystkimi źródłami światła jednocześnie tylko w punkcie B.
D.wszystkimi źródłami światła w punktach A i B jednocześnie.wszystkimi źródłami światła w punktach A i B jednocześnie.
Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Poprawna odpowiedź D wskazuje, że w układzie przedstawionym na schemacie, oświetlenie jest sterowane za pomocą dwóch łączników, które są połączone z dwoma źródłami światła. Każde źródło posiada po dwie żarówki o mocy 60 W, co daje łączną moc 240 W dla całego układu. W praktyce oznacza to, że użytkownik ma możliwość włączania i wyłączania wszystkich żarówek jednocześnie poprzez oba łączniki. Takie rozwiązanie jest zgodne z zasadami prostoty i funkcjonalności, które są kluczowe w projektowaniu instalacji oświetleniowych. W branży elektrycznej standardem jest stosowanie łączników w taki sposób, aby ich działanie było intuicyjne dla użytkowników. Dodatkowo, takie sterowanie pozwala na oszczędność energii, gdyż użytkownik może łatwo wyłączyć całe oświetlenie, gdy nie jest potrzebne. Zastosowanie dwóch łączników w jednym obwodzie jest również praktyczne w kontekście bezpieczeństwa, gdyż pozwala na zdalne sterowanie oświetleniem z różnych miejsc w pomieszczeniu.

Pytanie 34

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Samoczynne wyłączenie zasilania
B. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
C. Bardzo niskie napięcie ze źródła bezpiecznego
D. Dodatkowe miejscowe wyrównawcze połączenia ochronne
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.

Pytanie 35

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektromagnetycznym
B. magnetoelektrycznym
C. ferrodynamicznym
D. elektrodynamicznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.

Pytanie 36

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 208 mA
B. 130 mA
C. 170 mA
D. 106 mA
W przypadku, gdy wybrano inną wartość niż 208 mA, można zauważyć, że takie błędne odpowiedzi mogą wynikać z kilku nieporozumień dotyczących odczytów z miliamperomierza. Często zdarza się, że osoby nie zwracają uwagi na położenie wskazówki lub nie potrafią prawidłowo oszacować wartości, co skutkuje błędnymi wnioskami. Wartości takie jak 130 mA, 170 mA czy 106 mA są znacznie niższe niż rzeczywiste wskazanie. To może sugerować, że osoba udzielająca takiej odpowiedzi nie przeanalizowała dokładnie skali, na której dokonuje się pomiaru, lub nie rozumie, jak działa miliamperomierz. Zrozumienie, jak interpretować odczyty, jest niezbędne w praktyce inżynierskiej. Odczytywanie wartości z miliamperomierza wymaga precyzyjnego spojrzenia na wskaźnik, a także uwzględnienia tolerancji błędu pomiaru, co jest szczególnie istotne w obwodach wymagających ścisłej kontroli parametrów. Zastosowanie niewłaściwej wartości prądu w projektach elektronicznych może prowadzić do uszkodzenia komponentów lub niewłaściwego działania całego układu. Dlatego tak ważne jest, aby umiejętnie korzystać z narzędzi pomiarowych i rozumieć ich zasady działania.

Pytanie 37

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,4 s i 0,8 s
B. 0,4 s i 0,2 s
C. 0,2 s i 0,4 s
D. 0,8 s i 0,4 s
Wybór odpowiedzi, która nie odpowiada rzeczywistym wymaganiom czasów wyłączenia w układach sieci typu IT, może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Czas wyłączenia w obwodach z przewodem neutralnym rzeczywiście powinien wynosić 0,4 s, jednak czas dla obwodu bez przewodu neutralnego nie powinien być skracany poniżej 0,8 s. Odpowiedzi sugerujące 0,2 s oraz 0,4 s dla obwodu bez przewodu neutralnego błędnie interpretują zasady ochrony w układach elektrycznych, co może skutkować wydłużonym czasem reakcji urządzenia ochronnego w razie wystąpienia zagrożenia. Podobne błędy myślowe wynikają z niepełnego zrozumienia zjawisk zachodzących w obwodach elektrycznych. W przypadku awarii, krótszy czas wyłączenia niż wymagany może nie zapewnić skutecznej ochrony, co stwarza ryzyko porażenia prądem dla użytkowników. Ponadto, nieodpowiednie wartości czasów wyłączenia mogą prowadzić do niewłaściwego doboru urządzeń zabezpieczających oraz niezgodności z obowiązującymi normami, takimi jak IEC 60364. W kontekście projektowania instalacji elektrycznych, kluczowe jest stosowanie się do sprawdzonych standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 38

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,39
B. 0,69
C. 0,49
D. 0,84
Odpowiedzi, które nie zgadzają się z poprawnym wynikiem, zazwyczaj wynikają z błędów w obliczeniach lub złego zrozumienia podstawowych pojęć związanych z mocą silników elektrycznych. Na przykład, wartość 0,69 może sugerować, że obliczenia nie uwzględniają współczynnika mocy lub są oparte na błędnie podanych danych. Często można się spotkać z błędnym założeniem, że moc czynna jest równa mocy mechanicznej, co jest nieprawdziwe, ponieważ moc dostarczona do silnika zawsze jest większa niż moc wyjściowa ze względu na straty energetyczne. Inne odpowiedzi, takie jak 0,49 czy 0,39, mogą wynikać z niepoprawnego przeliczenia wartości mocy czynnej, co w praktyce prowadzi do znacznego niedoszacowania efektywności silnika. Niezrozumienie roli współczynnika mocy w obliczeniach sprawności także często prowadzi do błędnych wyników. Warto zaznaczyć, że efektywność silników ma ogromne znaczenie w kontekście zrównoważonego rozwoju, a wybór silników o wyższej sprawności wpływa na oszczędności energii oraz redukcję emisji CO2. Prawidłowe obliczenia związane z mocą czynnościową oraz jasne zrozumienie relacji między mocą a sprawnością są kluczowe w projektowaniu i eksploatacji systemów napędowych.

Pytanie 39

Którą wstawkę kalibrową należy zastosować w bezpieczniku o wkładce topikowej pokazanej na rysunku?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Odpowiedź C jest prawidłowa, ponieważ wstawka kalibrowa posiada oznaczenie zgodne z parametrami wkładki topikowej bezpiecznika, która wynosi 25A przy napięciu 500V. W przypadku bezpieczników, kluczowe jest, aby zastosowana wstawka kalibrowa odpowiadała nominalnym wartościom prądu i napięcia. W przeciwnym razie, może to prowadzić do niewłaściwego działania obwodu elektrycznego, co w konsekwencji może spowodować uszkodzenie urządzeń lub stanowić zagrożenie dla bezpieczeństwa. Stosując odpowiednią wkładkę, zapewniamy, że obwód będzie chroniony przed przeciążeniami oraz zwarciami, co jest zgodne z normami bezpieczeństwa elektrycznego. Wiedza na temat doboru odpowiednich wkładek kalibrowych jest niezbędna w każdej instalacji elektrycznej; pozwala to na zminimalizowanie ryzyka awarii oraz zapewnienie długotrwałej i stabilnej pracy urządzeń elektrycznych.

Pytanie 40

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 16 A, 20 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 20 A, 16 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.