Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 12:25
  • Data zakończenia: 19 grudnia 2025 12:43

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego składnika nie może zawierać przewód zasilający rozdzielnię główną w pomieszczeniu przemysłowym, które jest niebezpieczne pod kątem pożarowym?

A. Zewnętrznego oplotu włóknistego
B. Pancerza stalowego
C. Powłoki polietylenowej
D. Żył aluminiowych
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem dla kabel zasilający rozdzielnicę główną w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod względem pożarowym. Takie pomieszczenia wymagają zastosowania materiałów, które są odporne na działanie wysokich temperatur oraz ognioodporne. Oplot włóknisty, choć może być stosowany w mniej ryzykownych warunkach, nie spełnia wymagań dotyczących odporności na ogień. W praktyce oznacza to, że w przypadku pożaru, oplot włóknisty mógłby się szybko zapalić i przyczynić się do rozprzestrzenienia ognia. Aby zapewnić bezpieczeństwo, kabel w pomieszczeniach niebezpiecznych powinien być wykonany z materiałów, które są zgodne z normami, takimi jak PN-EN 60529 czy PN-EN 60332, które definiują wymagania dotyczące ochrony przed ogniem i wysoką temperaturą. Przykładem odpowiedniego rozwiązania są kable zasilające z pancerzem stalowym, które nie tylko chronią przed uszkodzeniami mechanicznymi, ale również mają właściwości ognioodporne, co czyni je idealnym wyborem dla rozdzielnic w krytycznych środowiskach przemysłowych.

Pytanie 2

Wkładki topikowe, jak przedstawiona na ilustracji, przeznaczone są do zabezpieczania

Ilustracja do pytania
A. urządzeń energoelektronicznych wyłącznie przed skutkami przeciążeń.
B. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
C. przewodów elektrycznych wyłącznie przed skutkami zwarć.
D. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
Wybór odpowiedzi, która ogranicza zastosowanie wkładek topikowych wyłącznie do ochrony przed przeciążeniami lub zwarciami w urządzeniach energoelektronicznych, jest mylny. W rzeczywistości wkładki te są zaprojektowane do ochrony przewodów elektrycznych, a ich funkcjonalność obejmuje zarówno zabezpieczanie przed przeciążeniami, jak i zwarciami. Odpowiedzi sugerujące, że wkładki topikowe mogą chronić jedynie przed skutkami przeciążeń lub zwarć w urządzeniach, ignorują kluczową rolę, jaką odgrywają w ochronie instalacji elektrycznych jako całości. W praktyce, niewłaściwe zrozumienie funkcji wkładek topikowych może prowadzić do niewłaściwego doboru zabezpieczeń, co zwiększa ryzyko uszkodzenia zarówno przewodów, jak i podłączonych urządzeń. Zgodnie z wytycznymi norm, takich jak PN-EN 60947, wkładki topikowe muszą być odpowiednio dobrane do parametrów instalacji, co podkreśla konieczność zrozumienia ich roli w systemie ochrony elektrycznej. Ignorując te aspekty, można łatwo wprowadzić w błąd, co skutkuje narażeniem na niebezpieczeństwo zarówno użytkowników, jak i sprzętu elektrycznego.

Pytanie 3

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B20
B. B10
C. B25
D. B16
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 4

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Izolowania części czynnych
B. Samoczynnego szybkiego wyłączenia napięcia
C. Umieszczenia elementów z napięciem poza zasięgiem ręki
D. Instalowania osłon i barier
Wybierając odpowiedzi, które nie dotyczą samoczynnego szybkiego wyłączenia napięcia, można napotkać na szereg nieporozumień odnośnie metod ochrony przed dotykiem pośrednim. Instalowanie osłon i zagrodzeń, mimo że jest zalecaną praktyką w wielu instalacjach, nie zapewnia wystarczającej ochrony w sytuacji, gdy dojdzie do awarii izolacji. Osłony mogą jedynie ograniczyć dostęp do części czynnych, ale ich skuteczność zależy od prawidłowego ich montażu i utrzymania. Ponadto, umieszczanie elementów pod napięciem poza zasięgiem ręki, chociaż może zapobiec przypadkowemu dotykaniu, nie eliminuje ryzyka porażenia w przypadku uszkodzenia tych elementów. Ostatecznie, izolowanie części czynnych jest istotne, ale nie wystarczające jako jedyne zabezpieczenie. Gdy izolacja ulegnie uszkodzeniu, nie można polegać wyłącznie na niej dla bezpieczeństwa. Z perspektywy norm i przepisów, kluczowe jest implementowanie zintegrowanych systemów ochrony, gdzie samoczynne szybkie wyłączenie napięcia działa jako krytyczny mechanizm awaryjny, który powinien być stosowany równolegle z innymi metodami, aby zapewnić maksymalne bezpieczeństwo. Warto zauważyć, że błędne wnioski często wynikają z pomijania złożoności problemu oraz niepełnego zrozumienia zasady działania poszczególnych elementów ochrony przeciwporażeniowej.

Pytanie 5

Przygotowując miejsce do przeprowadzenia badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz inspekcji oraz oceny stanu izolacji uzwojeń, uwzględnić między innymi wykonanie pomiarów

A. charakterystyki stanu jałowego
B. rezystancji uzwojeń
C. izolacji łożysk
D. drgań
Pomiar rezystancji uzwojeń trójfazowego silnika indukcyjnego jest kluczowy dla oceny jego stanu technicznego. Rezystancja uzwojeń pozwala na ocenę ich integralności oraz wykrycie potencjalnych uszkodzeń, takich jak zwarcia czy przerwy. W praktyce, pomiar ten jest często realizowany przy użyciu omomierza, a wartości rezystancji powinny być zgodne z danymi producenta. Niekiedy, po dokonaniu pomiaru, porównuje się wyniki z normami zawartymi w dokumentacji technicznej silnika. Dobrą praktyką jest także wykonywanie pomiarów rezystancji w różnych warunkach temperaturowych, ponieważ wpływ temperatury na rezystancję może być znaczący. Warto dodać, że w przypadku silników wykonanych z materiałów o wysokiej przewodności, takich jak miedź, rezystancja powinna być minimalna, co świadczy o ich dobrej kondycji. Regularne pomiary rezystancji uzwojeń mogą również pomóc w planowaniu działań konserwacyjnych oraz przewidywaniu potencjalnych awarii, co jest zgodne z zasadami zarządzania majątkiem technicznym.

Pytanie 6

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 3 lata
B. 5 lat
C. 2 lata
D. 4 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 7

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Wykonywanie pomiaru rezystancji izolacji instalacji.
B. Wymiana wkładek bezpiecznikowych.
C. Zamiana gniazdek.
D. Dokręcanie przewodów w złączach.
Wymiana wkładek bezpiecznikowych w instalacjach elektrycznych niewyłączonych spod napięcia w układzie sieciowym TN jest dozwolona, ponieważ ta czynność nie wiąże się z bezpośrednim narażeniem pracownika na kontakt z elementami pod napięciem. Wkładki bezpiecznikowe są elementami, które można wymieniać bez rozłączania obwodu, co jest zgodne z zasadami bezpieczeństwa określonymi w normach PN-IEC 60364. W praktyce, wymiana wkładek bezpiecznikowych jest powszechnie stosowaną procedurą, która może być przeprowadzana przez przeszkolonych pracowników elektrycznych, co pozwala na kontynuowanie pracy urządzeń w przypadku awarii. W kontekście dobrych praktyk, istotne jest, aby personel posiadał odpowiednie kwalifikacje oraz znał zasady BHP, co zapewnia bezpieczeństwo podczas takich operacji. Zastosowanie odpowiednich narzędzi oraz przestrzeganie procedur operacyjnych pozwala na zminimalizowanie ryzyka i zapewnienie ciągłości zasilania w instalacjach elektrycznych.

Pytanie 8

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Pogorszenie jakości izolacji przewodów instalacji
B. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
C. Zerwanie w układzie przewodów ochronnych
D. Przekroczenie maksymalnego czasu reakcji RCD
Uszkodzenia mechaniczne obudów i osłon urządzeń elektrycznych są jednymi z najłatwiejszych do zidentyfikowania podczas oględzin podtynkowej instalacji elektrycznej. Obejmują one widoczne wgniecenia, pęknięcia oraz inne defekty zewnętrzne, które mogą negatywnie wpłynąć na bezpieczeństwo i funkcjonowanie instalacji. Obudowy urządzeń elektrycznych, takie jak skrzynki rozdzielcze czy osłony gniazdek, pełnią kluczową rolę w ochronie przed uszkodzeniami mechanicznymi oraz zapewnieniu bezpieczeństwa użytkowników. Regularne oględziny tych elementów są zalecane w ramach przeglądów okresowych, zgodnie z normami PN-EN 60204-1 dotyczącymi bezpieczeństwa maszyn oraz obowiązującymi przepisami prawa budowlanego. Przykładowo, w przypadku pękniętej obudowy gniazdka, istnieje ryzyko kontaktu z elementami przewodzącymi prąd, co może prowadzić do porażenia elektrycznego. Dlatego kluczowym jest, aby wszelkie uszkodzenia były niezwłocznie naprawiane, co podkreśla znaczenie systematycznych kontroli i odpowiednich działań prewencyjnych w zakresie utrzymania instalacji elektrycznych w dobrym stanie.

Pytanie 9

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Częstościomierza
B. Waromierza
C. Woltomierza
D. Amperomierza
Amperomierz, woltomierz i częstościomierz to urządzenia pomiarowe, które, choć mają swoje zastosowania, nie są wystarczające do precyzyjnego określenia współczynnika mocy w obwodach prądu sinusoidalnego. Amperomierz mierzy natężenie prądu w obwodzie, co jest ważne, ale samodzielny pomiar nie dostarcza informacji o fazie prądu w stosunku do napięcia. W przypadku pomiaru mocy, kluczowe znaczenie ma określenie nie tylko wartości prądu, ale również jego relacji do napięcia, co nie jest możliwe bez urządzenia mierzącego różnicę fazową, jakim jest waromierz. Woltomierz, z kolei, mierzy napięcie w obwodzie, co także jest istotne, ale jego zastosowanie w obliczeniach mocy wymaga dodatkowego kontekstu fazowego. Częstościomierz mierzy częstotliwość sygnału, co nie ma bezpośredniego wpływu na obliczanie mocy czynnej czy współczynnika mocy. Typowym błędem w myśleniu o pomiarach mocy jest przekonanie, że wystarczy znać wartości prądu i napięcia, aby obliczyć moc, ignorując istotne aspekty związane z fazą sygnałów. Dlatego, aby uzyskać dokładne dane dotyczące współczynnika mocy, konieczne jest użycie waromierza w parze z watomierzem, co pozwala na pełne zrozumienie efektywności energetycznej danego urządzenia elektrycznego.

Pytanie 10

Korzystając z tabeli podaj jakimi przewodami, według sposobu Al, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
A.YDYp 2×1,514,5
B.YDYp 2×2,519,5
C.YDYp 3×1,513,5
D.YDYp 3×2,518
A. A.
B. D.
C. C.
D. B.
Wybór innej odpowiedzi niż D to dość powszechny błąd. Czasami wynika to z nieporozumień co do wymogów w systemie TN-S oraz jak dobierać przewody. Niektóre odpowiedzi mogą sugerować stosowanie przewodów, które nie mają odpowiednich parametrów dla gniazd jednofazowych z B16A. Kluczowy jest fakt, że dobierając przewód trzeba zwracać uwagę na jego parametry techniczne, a nie tylko na wygląd. No i obciążalność musi być odpowiednia, żeby przewody się nie przegrzewały. W TN-S ważny jest przewód ochronny, o którym niektóre odpowiedzi zapominają. Wiele osób nie wie, że w tym systemie przewód neutralny (N) i ochronny (PE) muszą być odseparowane – to fundamentalne dla bezpieczeństwa. Ignorowanie tych zasad może prowadzić do nieprzyjemnych sytuacji, jak porażenie prądem, gdy coś w instalacji się popsuje. Dlatego przy projektowaniu elektryki trzeba dobrze zrozumieć normy i praktyczne zastosowanie przewodów, bo to wpływa na bezpieczeństwo całej instalacji.

Pytanie 11

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Typ zastosowanych zabezpieczeń przeciwzwarciowych
B. Strzałka wskazująca wymagany kierunek obrotu
C. Termin kolejnego przeglądu technicznego
D. Poziom odchylenia napięcia zasilającego
Wybór informacji, które powinny być umieszczone na elektrycznym urządzeniu napędowym, jest kluczowy dla bezpieczeństwa oraz efektywności jego działania. W przypadku poziomu odchylenia napięcia zasilania, chociaż ważne jest monitorowanie tego parametru dla optymalizacji pracy maszyn, nie jest to informacja, która musi być bezpośrednio przedstawiona na urządzeniu. W praktyce, pomiar napięcia zasilania dokonuje się z użyciem urządzeń pomiarowych, a nadmierne umieszczanie takich informacji na samych urządzeniach mogłoby prowadzić do złożoności i zamieszania. Rodzaj zastosowanych zabezpieczeń zwarciowych również nie jest bezpośrednio wymagany do umieszczenia na widocznej części urządzenia. Informacje te są często dostępne w dokumentacji technicznej lub instrukcjach obsługi i powinny być znane personelowi odpowiedzialnemu za konserwację. Data następnego przeglądu technicznego, choć istotna, jest także informacją, którą można umieścić w systemach zarządzania utrzymaniem ruchu, a niekoniecznie na samym urządzeniu. Kluczowym błędem w tym podejściu jest myślenie, że wszystkie dane techniczne powinny być widoczne na samych maszynach. Ważne jest, aby informacje były dostępne w sposób przejrzysty i użyteczny, ale priorytetem powinny być te, które bezpośrednio wpływają na operacyjność i bezpieczeństwo, jak oznaczenie kierunku wirowania, które jest krytyczne dla prawidłowego funkcjonowania urządzenia.

Pytanie 12

Regularne kontrole eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym powinny być realizowane co najmniej raz na

A. kwartał
B. rok
C. 5 lat
D. 3 lata
Okresowe badania eksploatacyjne instalacji elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia bezpieczeństwa oraz niezawodności funkcjonowania tych systemów. Zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, zaleca się, aby takie badania były przeprowadzane nie rzadziej niż co pięć lat. Taki okres jest uzasadniony, ponieważ w ciągu tego czasu mogą wystąpić różne czynniki wpływające na stan techniczny instalacji, takie jak naturalne zużycie materiałów, zmiany w obciążeniu elektrycznym czy też zmiany w przepisach dotyczących bezpieczeństwa. Regularne kontrole pozwalają wykryć potencjalne usterki, co z kolei może zapobiec poważnym awariom oraz zagrożeniom pożarowym. Przykładowo, nieprawidłowo wykonana instalacja lub zużyty osprzęt mogą prowadzić do zwarć, które mogą zagrażać życiu mieszkańców. Dlatego zaleca się, aby każde badanie obejmowało przegląd stanu izolacji przewodów, oceny zabezpieczeń oraz identyfikację wszelkich nieprawidłowości. Dobrą praktyką jest również dokumentowanie wyników badań oraz wdrażanie niezbędnych działań naprawczych, co w przyszłości może posłużyć jako cenny materiał dowodowy w przypadku ewentualnych sporów.

Pytanie 13

Jakiego rodzaju wyłączników RCD należy użyć do zabezpieczenia instalacji elektrycznej obwodu gniazd jednofazowych w pracowni komputerowej, gdzie znajdują się 15 zestawów komputerowych?

A. 25/2/030-AC
B. 25/4/030-AC
C. 25/4/300-A
D. 25/2/030-A
Wybór innych typów wyłączników RCD do zabezpieczenia obwodu gniazd jednofazowych w pracowni komputerowej nie jest zalecany ze względu na różnice w parametrach, które mogą prowadzić do niewystarczającego poziomu ochrony. Chociaż niektóre z tych wyłączników mają swoje zastosowania, nie spełniają one wymogów bezpieczeństwa w kontekście pracy z urządzeniami komputerowymi. Na przykład, typ 25/4/300-A, z prądem różnicowym 300 mA, jest przeznaczony głównie do ochrony przed pożarem w obwodach zasilających, a nie dla ochrony użytkowników przed porażeniem prądem. Użycie takiego wyłącznika w pracowni komputerowej mogłoby spowodować, że w przypadku awarii, prąd nie zostanie odcięty wystarczająco szybko, co zwiększa ryzyko dla osób korzystających z urządzeń. Typ 25/2/030-AC, mimo że ma prąd różnicowy 30 mA, nie jest dostosowany do ochrony przed prądami stałymi, co może być istotne w przypadku zastosowań związanych z elektroniką. Natomiast 25/2/030-AC zawiera dodatkową opcję dla prądów stałych, co czyni go bardziej uniwersalnym, ale niekoniecznie lepszym w kontekście standardowego użytkowania komputerów. Kluczowym błędem jest zatem zakładanie, że każdy wyłącznik RCD może być stosowany w każdej sytuacji, co jest sprzeczne z zasadami projektowania instalacji elektrycznych, które zalecają użycie odpowiednich urządzeń w zależności od specyfiki użytkowania i potencjalnych zagrożeń.

Pytanie 14

Jakie uszkodzenie elektryczne może być przyczyną braku obrotów w lewą stronę w ręcznej wiertarce elektrycznej?

A. O przerwie w uzwojeniu stojana
B. O uszkodzeniu wyłącznika z regulatorem prędkości obrotowej
C. O zwarciu w uzwojeniach wirnika
D. O uszkodzeniu przełącznika kierunku prądu w wirniku
Uszkodzenia elektryczne w wiertarce elektrycznej mogą być mylnie interpretowane, co prowadzi do błędnych wniosków. Odpowiedź sugerująca, że problemy wynikają z uszkodzenia wyłącznika z regulatorem obrotów pomija fakt, że jeśli wiertarka działa w jednym kierunku, regulator obrotów, który zwykle kontroluje prędkość obrotową, nie wpływa na możliwość obracania się w lewo czy w prawo. To nieprawidłowe skupienie się na regulatorze może prowadzić do niepotrzebnych kosztów związanych z wymianą komponentów, które nie są przyczyną problemu. Z kolei sugerowanie, że występuje zwarcie w uzwojeniach wirnika, jest również mylnym podejściem. Zwarcie zazwyczaj prowadziłoby do całkowitego zablokowania obrotów lub przegrzania, a nie do ograniczenia ich kierunku. Wreszcie, przerwa w uzwojeniu stojana jest kolejną koncepcją, która nie wyjaśnia problemu. Przerwa w uzwojeniu mogłaby skutkować brakiem działania urządzenia w ogóle, a nie jedynie brakiem obrotów w jednym kierunku. Kluczowe jest zrozumienie, że przyczyna problemu leży w mechanizmie zmiany kierunku prądu, a nie w innych komponentach, co jest zgodne z praktykami diagnostycznymi w branży elektrycznej. Wiedza ta podkreśla znaczenie systematycznego podejścia do diagnozowania usterek, co jest podstawą efektywnej konserwacji narzędzi elektrycznych.

Pytanie 15

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. spadek prędkości obrotowej silnika
B. wzrost prędkości obrotowej silnika
C. unieruchomienie silnika
D. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 16

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 00
B. IP 22
C. IP 44
D. IP 66
Odpowiedź IP 44 to dobry wybór. Oznacza, że osprzęt jest odporny na ciało stałe, które jest większe niż 1 mm, i nie przepuszcza wody. To sprawia, że nadaje się do miejsc, gdzie jest więcej wilgoci, jak w łazienkach czy kuchniach. W praktyce oznacza to, że możesz używać tego osprzętu tam, gdzie jest para wodna, kurz lub inne zanieczyszczenia. W pomieszczeniach przemysłowych, gdzie produkuje się dużo pyłu, IP 44 też się sprawdzi. Nasze normy, czyli IEC 60529, mówią, że IP 44 to dobry poziom ochrony, co jest istotne, żeby było bezpiecznie i trwało to dłużej. Ale jeśli potrzebujesz czegoś lepszego, to niektóre sytuacje mogą wymagać wyższych stopni ochrony, jak IP 54 czy IP 66. Jednak zazwyczaj IP 44 da radę w standardowych warunkach.

Pytanie 17

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Grzałki oraz spirale grzejne
B. Termostaty i czujniki temperatury
C. Szczotkotrzymacze oraz szczotki węglowe
D. Przekładnie i skrzynki przekładniowe
Szczotkotrzymacze i szczotki węglowe są kluczowymi elementami w jednofazowych silnikach komutatorowych, które znajdują zastosowanie w większości odkurzaczy. Te części zamienne odpowiedzialne są za przewodzenie prądu do wirnika silnika, co umożliwia jego prawidłowe działanie. W miarę eksploatacji, szczotki węglowe ulegają naturalnemu zużyciu, co jest zjawiskiem oczekiwanym i wynika z tarcia mechanicznego. Regularna kontrola stanu szczotek i ich wymiana jest zatem istotna dla utrzymania efektywności działania odkurzacza. W praktyce, wymiana szczotkotrzymaczy oraz szczotek węglowych jest jednym z najczęściej wykonywanych czynności serwisowych, co potwierdzają zarówno technicy serwisowi, jak i producenci sprzętu. Dobrą praktyką jest stosowanie oryginalnych części zamiennych, co gwarantuje odpowiednią jakość i trwałość. Warto również pamiętać, że niewłaściwe działanie silnika może prowadzić do nadmiernego przegrzewania się, co z kolei może powodować dalsze uszkodzenia, dlatego wymiana tych elementów powinna być stałym punktem serwisowym.

Pytanie 18

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 1,43 Ω
B. 4,79 Ω
C. 0,71 Ω
D. 2,87 Ω
Wybór innych wartości impedancji pętli zwarcia, takich jak 2,87 Ω, 0,71 Ω lub 4,79 Ω, może wynikać z nieporozumień dotyczących zasad ochrony przeciwporażeniowej i obliczeń związanych z maksymalnym prądem zwarciowym. Przykładowo, odpowiadając 2,87 Ω, użytkownik mógł przyjąć, że taka wartość jest wystarczająca do zadziałania wyłącznika, jednak przy wyłączniku C16 i napięciu 230 V, wartość ta nie zapewnia optymalnej ochrony. Rzeczywisty prąd zwarciowy przy tej impedancji byłby niższy aniżeli minimalna wartość potrzebna do uruchomienia wyłącznika. W przypadku odpowiedzi 0,71 Ω, użytkownik mógł nie uwzględnić, że zbyt niska impedancja pętli zwarcia nie jest praktyczna, a wartości te są często zarezerwowane dla sytuacji, gdzie wymagana jest wysoka wydajność instalacji, co niekoniecznie odnosi się do standardowych warunków domowych. Z kolei wybór wartości 4,79 Ω wyraźnie przekracza wszystkie praktyczne limity, co skutkuje zbyt niskim prądem zwarciowym, aby zapewnić odpowiednie warunki do samoczynnego wyłączenia zasilania. Obliczenia te powinny być zgodne z normami, takimi jak PN-IEC 60364, które jasno określają, iż dla ochrony przeciwporażeniowej istotna jest analiza wartości impedancji pętli zwarcia w odniesieniu do wyłączników nadprądowych, aby zapewnić skuteczność systemu zabezpieczeń w instalacjach elektrycznych.

Pytanie 19

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Zbyt wysoka rezystancja przewodu uziemiającego
B. Brak ciągłości przewodu ochronnego
C. Pogorszenie stanu mechanicznego złącz przewodów
D. Brak ciągłości przewodu neutralnego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 20

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Cztery osoby
B. Trzy osoby
C. Jedna osoba
D. Dwie osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 21

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Niesymetryczne obciążenie transformatora
B. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
C. Przerwa w uzwojeniu pierwotnym
D. Przerwa w uziemieniu neutralnego punktu
Zwarcie między uzwojeniem pierwotnym a wtórnym transformatora jest jednym z najpoważniejszych zagrożeń, które mogą prowadzić do uszkodzenia urządzenia. Przekaźnik Buchholtza działa jako ochrona transformatora przed skutkami zwarcia, gdyż monitoruje przepływ oleju w transformatorze. W przypadku zwarcia, dochodzi do nagłego wzrostu temperatury i ciśnienia, co powoduje ruch oleju, a to z kolei uruchamia przekaźnik. Odpowiedź na to pytanie odnosi się do podstawowych zasad ochrony urządzeń elektrycznych. Działanie przekaźnika Buchholtza jest zgodne z normami IEC 60214, które określają wymagania dla transformatorów olejowych. W praktyce, stosowanie przekaźników Buchholtza pozwala na wczesne wykrywanie problemów oraz minimalizowanie ryzyka poważnych awarii, co jest kluczowe dla zapewnienia ciągłości pracy systemów energetycznych. W przypadku zadziałania przekaźnika, operator jednostki powinien niezwłocznie przeprowadzić diagnostykę w celu ustalenia przyczyny i podjąć odpowiednie działania naprawcze.

Pytanie 22

Grzałka jednofazowa o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, jeśli jego przekrój zostanie zwiększony do 2,5 mm2?

A. Spadną o 100%
B. Spadną o 40%
C. Wzrosną o 100%
D. Wzrosną o 40%
Odpowiedź, że straty mocy w przewodzie zmniejszą się o 40%, jest prawidłowa z kilku powodów związanych z zasadami działania prądów elektrycznych i strat energii. Straty mocy w przewodach elektrycznych są związane z oporem przewodnika, który można obliczyć z wykorzystaniem wzoru: P = I²R, gdzie P to moc strat, I to natężenie prądu, a R to opór przewodu. Przy zwiększeniu przekroju przewodu z 1,5 mm2 do 2,5 mm2, opór przewodu maleje, co prowadzi do zmniejszenia strat mocy. W praktyce, stosowanie przewodów o większym przekroju jest zalecane w celu minimalizacji strat energii, co jest zgodne z normami i zasadami efektywności energetycznej. Na przykład, w instalacjach przemysłowych oraz budowlanych, dobór odpowiednich przewodów elektrycznych wpływa na bezpieczeństwo, efektywność operacyjną oraz oszczędności w kosztach energii. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują zwiększenie efektywności energetycznej, a tym samym ograniczenie emisji CO2. Zmniejszenie strat mocy o 40% przy zastosowaniu przewodu o większym przekroju jest wymiernym zyskiem, który powinien być brany pod uwagę na etapie projektowania instalacji. Warto pamiętać, że zastosowanie odpowiednich przekrojów przewodów ma również wpływ na ich temperaturę roboczą, co poprawia bezpieczeństwo całego systemu.

Pytanie 23

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 1,4 ∙ In
B. 2,2 ∙ In
C. 0,8 ∙ In
D. 1,1 ∙ In
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.

Pytanie 24

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 35 mm2
B. 50 mm2
C. 20 mm2
D. 25 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 25

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Przegrzanie uzwojeń stojana
B. Zwarcie pomiędzy zwojami wirnika
C. Przegrzanie uzwojeń wirnika
D. Zbyt wysokie obroty wirnika
Zwarcie pomiędzy zwojami wirnika to sytuacja, w której dochodzi do niezamierzonego połączenia elektrycznego między różnymi zwojami w obrębie uzwojenia wirnika. Tego rodzaju uszkodzenie powoduje, że prąd elektryczny nie przepływa w sposób przewidziany przez projekt, co prowadzi do zwiększenia wartości prądów roboczych. W wyniku tego zjawiska na komutatorze silnika szeregowym pojawia się nadmierne iskrzenie, ponieważ prąd nie jest równomiernie rozłożony po wszystkich zwojach wirnika. Iskrzenie na komutatorze nie tylko powoduje zużycie materiału, ale także prowadzi do dodatkowych strat energii, co z kolei obniża efektywność silnika. W praktyce, aby zminimalizować ryzyko zwarcia, stosuje się różne metody, takie jak odpowiednie dobieranie izolacji uzwojeń, regularne przeglądy stanu technicznego oraz testowanie wytrzymałości izolacji. Dbanie o te aspekty jest zgodne z normami branżowymi, takimi jak IEC 60034, które dotyczą silników elektrycznych.

Pytanie 26

Jakie oznaczenia powinien mieć wyłącznik różnicowoprądowy zaprojektowany do ochrony przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtyczkowych uniwersalnych w instalacji jednofazowej 230 V/50 Hz?

A. P 304 25-30-AC
B. P 302 25-30-AC
C. P 344 C-20-30-AC
D. P 312 B-16-30-AC
Wyłącznik różnicowoprądowy P 312 B-16-30-AC jest odpowiednim wyborem do zabezpieczania obwodów gniazd wtyczkowych w instalacji jednofazowej 230 V/50 Hz. Oznaczenie to wskazuje na jego zdolność do detekcji prądów upływowych i jednoczesne zabezpieczenie przed przeciążeniami oraz zwarciami. W szczególności litera 'B' oznacza, że urządzenie jest przystosowane do obciążeń indukcyjnych, co czyni je idealnym w wielu zastosowaniach domowych oraz biurowych, gdzie używane są urządzenia elektryczne z silnikami. Warto również zwrócić uwagę na wartość prądu różnicowego, która wynosi 30 mA, co jest zgodne z normami bezpieczeństwa, zgodnie z dyrektywą 2014/35/UE. Użycie tego wyłącznika przyczynia się do zwiększenia bezpieczeństwa użytkowników, minimalizując ryzyko porażenia prądem, co powinno być priorytetem w każdym projekcie elektrycznym. Zastosowanie wyłączników różnicowoprądowych w takim obwodzie jest nie tylko najlepszą praktyką, ale także wymogiem wielu norm budowlanych i elektrycznych, co czyni je kluczowymi elementami nowoczesnych instalacji.

Pytanie 27

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 5 MΩ
B. 3 MΩ
C. 1 MΩ
D. 10 MΩ
Wybór niższej wartości minimalnej rezystancji izolacji, takiej jak 1 MΩ, 3 MΩ czy 10 MΩ, jest wynikiem niepełnego zrozumienia norm dotyczących bezpieczeństwa oraz wydajności silników elektrycznych. Przede wszystkim, zbyt niska wartość rezystancji izolacji, jak 1 MΩ, nie spełnia standardów, co może prowadzić do niebezpieczeństwa porażenia prądem, a także zwiększa ryzyko wystąpienia zwarć wewnętrznych. Silniki asynchroniczne są zaprojektowane tak, aby ich izolacja wytrzymywała znacznie wyższe napięcia i obciążenia, dlatego wartość 5 MΩ jest uważana za minimalną. Wybór 10 MΩ, choć teoretycznie wydaje się lepszą opcją, może być mylny, ponieważ zbyt wysoka rezystancja również może wskazywać na problemy z izolacją, takie jak nadmierne osuszenie materiału izolacyjnego, co prowadzi do jego kruchości i pęknięć. W praktyce, odpowiednie pomiary powinny być wykonywane z użyciem odpowiednich narzędzi, takich jak megger, aby dokładnie ocenić stan izolacji i zapewnić, że nie spadnie ona poniżej wspomnianych norm. Regularne monitorowanie rezystancji izolacji jest kluczowe w utrzymaniu silników w dobrym stanie, co przekłada się na ich długowieczność i optymalną wydajność. Ignorowanie tych zasad może prowadzić nie tylko do awarii silnika, ale również do poważnych wypadków w miejscu pracy.

Pytanie 28

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 1 000 mA
B. 500 mA
C. 100 mA
D. 30 mA
Odpowiedzi 100 mA, 500 mA i 1 000 mA są nieprawidłowe, ponieważ ich zastosowanie nie spełnia podstawowych wymagań dotyczących ochrony przed porażeniem prądem elektrycznym w kontekście gniazd wtyczkowych. Wyłączniki różnicowoprądowe o wyższych wartościach prądu różnicowego są projektowane głównie z myślą o ochronie instalacji przed pożarem w przypadku wystąpienia upływu prądu, a nie bezpośrednią ochroną osób. Na przykład, RCD o wartości 100 mA jest stosowany w obwodach zasilających, które nie są przeznaczone do użycia w pobliżu wody, takich jak obwody oświetleniowe w pomieszczeniach. Tego typu wyłączniki mają zbyt wysoki próg aktywacji, co oznacza, że nie zadziałają w przypadku małych, ale niebezpiecznych wycieków prądu, które mogą wystąpić, gdy użytkownik dotknie uszkodzonego urządzenia. Z tego powodu, stosowanie RCD o prądzie różnicowym 30 mA jest zalecane w miejscach, gdzie istnieje ryzyko porażenia, takich jak łazienki czy kuchnie. Stosowanie wyłączników o prądach różnicowych 500 mA lub 1 000 mA jest całkowicie nieodpowiednie w kontekście ochrony użytkowników, ponieważ nie zapewniają one wystarczającej ochrony w sytuacjach kryzysowych, a ich użycie może prowadzić do niebezpiecznych sytuacji, a nawet tragedii.

Pytanie 29

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Rozłącznik izolacyjny.
C. Stycznik.
D. Odłącznik.
Zrozumienie zadań i funkcji różnych aparatów łączeniowych niskiego napięcia jest kluczowe w dziedzinie elektrotechniki. Stycznik, na przykład, jest urządzeniem przeznaczonym do automatycznego włączania i wyłączania obwodów elektrycznych, ale nie zapewnia izolacji w takim samym stopniu jak rozłącznik izolacyjny. Dzięki swojej konstrukcji stycznik może być używany w aplikacjach, gdzie wymagane jest częste cykliczne włączanie i wyłączanie, co nie jest zgodne z funkcją rozłącznika izolacyjnego. Z kolei odłącznik jest urządzeniem, które służy do rozłączania obwodu, ale nie zawsze gwarantuje pełne odizolowanie od źródła zasilania. Warto zauważyć, że niektóre odłączniki mogą nie mieć funkcji wizualnej kontroli styków, co czyni je mniej bezpiecznymi w praktyce. Wyłącznik silnikowy natomiast, choć również służy do ochrony silników przed przeciążeniem, nie jest przeznaczony do izolacji obwodów. Te różnice w funkcjach mogą prowadzić do nieporozumień i błędnych wyborów w kontekście doboru odpowiednich urządzeń do danej aplikacji. Niezrozumienie tych podstawowych parametrów może skutkować niewłaściwym użytkowaniem sprzętu elektrycznego, co w dłuższej perspektywie może prowadzić do awarii i zagrożeń dla bezpieczeństwa. Warto zawsze odnosić się do aktualnych norm i wytycznych branżowych, aby właściwie dobierać aparaty łączeniowe do odpowiednich zastosowań.

Pytanie 30

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
B. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
C. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
D. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
Zalecenia dotyczące projektowania instalacji elektrycznych obejmują wiele praktycznych aspektów, które mają na celu zarówno bezpieczeństwo, jak i efektywność energetyczną. Rozdzielanie obwodów oświetleniowych od obwodów gniazd wtykowych jest standardową praktyką, która pomaga w zarządzaniu obciążeniem elektrycznym oraz zapewnia łatwiejszą diagnostykę w razie awarii. Takie rozdzielenie pozwala na niezależne wyłączanie oświetlenia, co jest szczególnie istotne w przypadku awarii obwodów gniazd. Z kolei zasilać gniazda wtykowe w kuchni z osobnego obwodu to również właściwe zalecenie, z uwagi na większe obciążenie związane z urządzeniami AGD. Zasilanie urządzeń o dużej mocy z wydzielonych obwodów jest praktyką, która chroni inne obwody przed przeciążeniem oraz zabezpiecza przed ryzykiem uszkodzenia urządzeń oraz pożaru."

Pytanie 31

Które z wymienionych urządzeń służy do ochrony przewodów w systemach elektrycznych przed skutkami zwarć?

A. Odłącznik
B. Przekaźnik termiczny
C. Bezpiecznik
D. Wyłącznik różnicowoprądowy
Odłącznik, przekaźnik termiczny oraz wyłącznik różnicowoprądowy to urządzenia, które w pewnym stopniu mogą przyczynić się do ochrony instalacji elektrycznych, ale nie pełnią funkcji zabezpieczania przewodów przed skutkami zwarć w taki sposób, jak bezpiecznik. Odłącznik służy do rozłączania obwodów, ale nie monitoruje i nie reaguje na zmiany natężenia prądu, co czyni go niewystarczającym w kontekście ochrony przed przeciążeniem. Przekaźnik termiczny, choć może reagować na wzrost temperatury związany z przeciążeniem, nie oferuje tak szybkiej reakcji jak bezpiecznik i nie jest stosowany przy krótkich zwarkach, które mogą uszkodzić urządzenia. Wyłącznik różnicowoprądowy z kolei chroni przed porażeniem prądem elektrycznym w przypadku upływu prądu do ziemi, jednak nie zabezpiecza przed przeciążeniami wynikającymi z zwarć w obwodzie. Często mylone są funkcje tych urządzeń, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że każde z tych urządzeń ma swoją rolę w systemie zabezpieczeń, ale bezpiecznik pozostaje jedynym skutecznym rozwiązaniem do bezpośredniej ochrony przed skutkami zwarć. W praktyce, pominięcie roli bezpiecznika w instalacji elektrycznej może prowadzić do poważnych zagrożeń, dlatego ważne jest przestrzeganie norm i dobrych praktyk w trakcie projektowania i montażu instalacji elektrycznych.

Pytanie 32

W instalacji domowej 230/400 V obwód zasilający elektryczną kuchnię o grzaniu rezystancyjnym jest chroniony przez wyłącznik nadprądowy typu S 194 B20. Jaką największą moc może mieć kuchnia podłączona do tego obwodu?

A. 6,6 kW
B. 13,8 kW
C. 24,0 kW
D. 8,0 kW
Wybór mocy kuchni elektrycznej na poziomie 8,0 kW, 24,0 kW lub 6,6 kW nie jest właściwy z uwagi na sposób obliczania moc elektrycznych w instalacjach domowych. Przyjmując, że obwód jest zabezpieczony wyłącznikiem nadprądowym 20 A, wartość ta determinuje maksymalne natężenie prądu, które może płynąć przez obwód bez ryzyka jego przeciążenia. Obliczenia mocy dla jednostkowych urządzeń elektrycznych opierają się na napięciu zasilania oraz dopuszczalnym prądzie. Wartości 8,0 kW i 6,6 kW sugerują, że obliczenia nie uwzględniają pełnego potencjału obwodu. Natomiast 24,0 kW jest znacząco wyższe niż maksymalne obciążenie, które może być realizowane przez wyłącznik 20 A. W przypadku zasilania trójfazowego, prawidłowe obliczenia mocy powinny uwzględniać także mnożnik √3, który jest kluczowy dla prawidłowego przeliczenia z jednego systemu na drugi. Ostatecznie, wszystkie te niepoprawne odpowiedzi demonstrują brak zrozumienia zasad obliczania mocy w kontekście napięcia i prądu w instalacjach elektrycznych. Ważne jest, aby znać i rozumieć standardy instalacji elektrycznych, co pozwala na uniknięcie poważnych problemów związanych z bezpieczeństwem oraz prawidłowym działaniem urządzeń.

Pytanie 33

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP3X
B. IP4X
C. IP5X
D. IP2X
Stopnie ochrony IP są kluczowym elementem w projektowaniu systemów oświetleniowych, zwłaszcza w kontekście warunków środowiskowych, w jakich będą one używane. Wybór niewłaściwego stopnia ochrony może prowadzić do licznych problemów, w tym do uszkodzenia sprzętu oraz zwiększonego ryzyka awarii. Odpowiedzi takie jak IP2X, IP3X czy IP4X wydają się na pierwszy rzut oka odpowiednie, jednak nie spełniają one wymagań ochrony przed pyłem w mocno zapylonych pomieszczeniach. IP2X ochrania jedynie przed ciałami stałymi o średnicy większej niż 12 mm, co nie jest wystarczające w przypadku intensywnego zapylenia. IP3X zwiększa tę ochronę, jednak nadal nie jest w stanie zapewnić całkowitej szczelności przed pyłem. IP4X oferuje ochronę przed ciałami stałymi o średnicy większej niż 1 mm, co może być niewystarczające w środowiskach, gdzie pył wnika do urządzeń elektrycznych. Istnieje ryzyko, że takie urządzenia będą narażone na uszkodzenia, a ich żywotność znacznie się skróci. Dlatego zawsze należy kierować się odpowiednimi normami oraz praktykami przy doborze sprzętu do warunków jego eksploatacji, aby uniknąć błędnych decyzji, które mogą prowadzić do kosztownych napraw oraz zmniejszenia efektywności operacyjnej.

Pytanie 34

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie między uzwojeniami U1 - U2 oraz W1 - W2.
B. przerwę w uzwojeniu U1 - U2.
C. uszkodzoną izolację w uzwojeniach U1 - U2 oraz V1 - V2.
D. zwarcie międzyzwojowe w uzwojeniu W1 - W2.
Wyniki pomiarów rezystancji izolacji uzwojeń U1 - U2 oraz V1 - V2, które wynoszą 0 Ω, jednoznacznie wskazują na uszkodzenie izolacji tych uzwojeń. Zgodnie z normami branżowymi, rezystancja izolacji powinna być na poziomie minimum 1 MΩ, a wartość zerowa oznacza bezpośrednie zwarcie z obwodem ochronnym (PE). Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem oraz uszkodzenia urządzeń. W praktyce, przed uruchomieniem silników trójfazowych, zawsze należy przeprowadzać pomiary rezystancji izolacji, aby zapewnić ich prawidłowe funkcjonowanie oraz bezpieczeństwo. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić dokładne oględziny oraz ewentualną wymianę uszkodzonego uzwojenia. Regularne monitorowanie tych parametrów jest kluczowe dla minimalizacji ryzyka awarii i zapewnienia długoterminowej niezawodności sprzętu.

Pytanie 35

Który z jednofazowych wyłączników zabezpieczających spełnia wymagania ochrony przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B10
B. B16
C. C10
D. C16
Wybór innego wyłącznika nadprądowego nie spełnia wymagań dotyczących ochrony przeciwporażeniowej przy podanej impedancji pętli zwarcia, co może prowadzić do poważnych konsekwencji w aspekcie bezpieczeństwa. Wyłączniki C10 oraz C16, które mają charakterystykę C, są przeznaczone do zabezpieczania obwodów, w których występują duże prądy rozruchowe, typowe dla silników i urządzeń indukcyjnych. Chociaż mogą być skuteczne w pewnych zastosowaniach, to w kontekście ochrony przed porażeniem elektrycznym są niewłaściwe, zwłaszcza przy niskich impedancjach pętli zwarcia. Czas reakcji tych wyłączników jest dłuższy niż w przypadku charakterystyki B, co może skutkować dłuższym czasem, w którym osoba narażona na porażenie prądem elektrycznym jest narażona na niebezpieczeństwo. W praktyce, niewłaściwy dobór wyłącznika może prowadzić do obniżonego poziomu bezpieczeństwa użytkowników oraz zwiększonego ryzyka uszkodzenia instalacji. Percepcja, że wyłączniki o wyższej charakterystyce są bardziej skuteczne, jest błędna w kontekście ochrony ludzkiego życia, co jest kluczowe w normach i zaleceniach dotyczących instalacji elektrycznych. Ważne jest, aby dobrze rozumieć zasady działania wyłączników oraz ich odpowiednie zastosowanie w zależności od specyfikacji instalacji elektrycznych.

Pytanie 36

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zmniejszenia strat energii i poprawy współczynnika mocy
B. Zwiększenia napięcia znamionowego
C. Zwiększenia częstotliwości prądu
D. Zmniejszenia prędkości obrotowej silników
Kompensacja mocy biernej jest kluczowym zagadnieniem w kontekście instalacji przemysłowych, ponieważ wpływa bezpośrednio na efektywność energetyczną systemu. Moc bierna to ta część zużywanej energii elektrycznej, która nie wykonuje użytecznej pracy, ale jest niezbędna do podtrzymania pola elektromagnetycznego w urządzeniach takich jak transformatory i silniki indukcyjne. Zastosowanie kompensacji mocy biernej, zazwyczaj za pomocą baterii kondensatorów, prowadzi do poprawy współczynnika mocy, co oznacza, że więcej dostarczonej energii jest wykorzystywane na pracę użyteczną. Dzięki temu zmniejszają się straty energii w systemie, co przekłada się na niższe rachunki za energię i zmniejszenie obciążenia sieci energetycznej. Co więcej, poprawa współczynnika mocy może również prowadzić do zmniejszenia opłat za moc bierną, które są często naliczane przez dostawców energii jako kara za niską efektywność energetyczną. Dlatego kompensacja mocy biernej jest nie tylko korzystna z punktu widzenia efektywności, ale również może przynieść wymierne korzyści finansowe dla przedsiębiorstw.

Pytanie 37

Osoby zajmujące się naprawą instalacji elektrycznych w budynkach mieszkalnych powinny posiadać

A. zaświadczenie o przeszkoleniu wydane przez administratora budynku
B. zaświadczenie o przeszkoleniu wystawione przez osobę mającą uprawnienia
C. pisemne zezwolenie na pracę od kierownika robót
D. uprawnienie potwierdzone odpowiednim świadectwem kwalifikacyjnym
Niektóre z wymienionych odpowiedzi mogą wydawać się logiczne, jednak nie spełniają wymogów prawnych i standardów branżowych. Potwierdzenie przeszkolenia przez administratora budynku nie jest wystarczające, ponieważ administrator nie jest odpowiednią instytucją do weryfikacji kwalifikacji technicznych. Wymagana jest formalna akredytacja oraz odpowiednie dokumenty potwierdzające umiejętności. Potwierdzenie przeszkolenia przez osobę posiadającą uprawnienia również nie jest wystarczające, gdyż osoba ta musi być uprawniona do wydawania takich certyfikatów, a nie tylko posiadać wiedzę. W praktyce, aby wykonywać prace związane z instalacjami elektrycznymi, niezbędne są odpowiednie kwalifikacje, które są regulowane przez prawo. Pisemne dopuszczenie do pracy przez kierownika robót, choć może być istotnym elementem procesu organizacyjnego pracy, nie zastępuje wymogu posiadania kwalifikacji. Wiele osób myli te pojęcia, co prowadzi do nieporozumień i potencjalnie niebezpiecznych sytuacji. W branży elektrycznej, gdzie bezpieczeństwo jest kluczowe, każdy pracownik musi być odpowiednio przeszkolony i posiadać udokumentowane uprawnienia, aby zapewnić, że wszelkie prace zostaną wykonane zgodnie z normami oraz regulacjami. Dlatego tak ważne jest, aby kierować się przyjętymi standardami, aby uniknąć jakichkolwiek zagrożeń związanych z niewłaściwym wykonywaniem instalacji elektrycznych.

Pytanie 38

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Która z przyczyn może odpowiadać za zwiększoną wartość ZS w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych
zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość Zs:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
D. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
Wybór niewłaściwie dobranego wyłącznika nadprądowego jako przyczyny zwiększonej wartości impedancji pętli zwarcia (ZS) jest błędny. W rzeczywistości, wyłączniki nadprądowe mają zadanie zabezpieczenia obwodu przed przeciążeniem i zwarciem, ale ich dobór nie wpływa bezpośrednio na wartość ZS. W rzeczywistych warunkach, nawet przy niewłaściwym doborze wyłącznika, pomiar ZS pozostanie niezmieniony, gdyż ZS zależy głównie od parametrów przewodów oraz ich połączeń. Podobnie, brak ciągłości przewodu ochronnego w mierzonym obwodzie nie tłumaczy znaczącego wzrostu ZS, ponieważ w takim przypadku miałoby to bardziej wpływ na bezpieczeństwo użytkowania, aniżeli na wartość impedancji. Przewód neutralny, choć również istotny w kontekście bezpieczeństwa, w przypadku braku ciągłości wpływa na działanie instalacji, a nie na wzrost ZS. Typowym błędem myślowym jest utożsamianie problemów z pomiarami z obwodami zabezpieczającymi, co prowadzi do nieprawidłowych wniosków. Kluczowe jest zrozumienie, że ZS jest funkcją rezystancji w obwodzie, a nie związanych z nimi zabezpieczeń, co podkreślają standardy IEC dotyczące projektowania oraz eksploatacji instalacji elektrycznych.

Pytanie 39

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Rezystancja przewodów ulegnie zmniejszeniu
B. Obciążalność długotrwała instalacji zostanie zmniejszona
C. Wytrzymałość elektryczna izolacji wzrośnie
D. Przewodność elektryczna przewodów ulegnie zwiększeniu
Jest trochę zamieszania, jeśli chodzi o różnice między YDY a YADY, co prowadzi do mylnych przekonań. Wydaje się, że ludzie myślą, że przewodność elektryczna się zwiększa z innym materiałem, ale to nie tak działa. Przewody 1,5 mm2 z obu typów mają tę samą przewodność, bo to zależy od przekroju, a nie od samego materiału. Też, jak mowa o wytrzymałości izolacji, to YADY wcale nie jest lepszy. Właściwości izolacyjne YADY są gorsze niż YDY, więc nie ma szans, że YADY jest bardziej odporny na wysokie napięcia. I wiesz, rezystancja też się nie zmienia, bo to zależy od materiału i długości, a nie od typu przewodu. W praktyce dobór przewodu powinien być oparty na normach, takich jak PN-IEC 60364, bo jak się użyje złych przewodów, to może być niebezpiecznie. Awaria sprzętu, przegrzewanie – to nie są rzeczy, które chcesz mieć na głowie.

Pytanie 40

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. umiejscowienie szczotek poza obszarem neutralnym
B. zbyt mocny nacisk szczotek na komutator
C. brak kontaktu szczotek z komutatorem
D. zaśmiecenie komutatora pyłem węglowym
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."