Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 3 listopada 2025 16:42
  • Data zakończenia: 3 listopada 2025 17:20

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 25 A
B. 20 A
C. 16 A
D. 10 A
Wybór niewłaściwej wartości prądu znamionowego zabezpieczenia przedlicznikowego może wynikać z błędnych założeń dotyczących obliczeń oraz zrozumienia charakterystyki instalacji trójfazowej. Przykładowo, wybór 25 A może wydawać się uzasadniony w kontekście zabezpieczenia przed przeciążeniem, jednak przekracza on obliczoną wartość prądu znamionowego, co może prowadzić do nieodpowiedniej ochrony. Przy wyborze zabezpieczeń istotne jest, aby były one dostosowane do rzeczywistych warunków pracy. Zbyt wysoka wartość prądu zabezpieczenia zwiększa ryzyko uszkodzenia odbiorników, ponieważ nie będą one odpowiednio chronione przed przeciążeniami, a ich praca może stać się niestabilna. Z kolei wybór 16 A oraz 10 A jest niebezpieczny, ponieważ nie zapewniają one wystarczającej mocy dla zasilania odbiorników o mocy 13 kW. Zabezpieczenia te mogą działać w trybie wyzwolenia zbyt często, co prowadzi do niepożądanych przerw w zasilaniu i mogą skutkować uszkodzeniami urządzeń. Przy doborze wartości prądu zabezpieczenia, warto również wziąć pod uwagę normy branżowe, takie jak PN-IEC 60364, które zalecają dobór zabezpieczeń z odpowiednim marginesem, aby zapewnić bezpieczeństwo i stabilność pracy instalacji. Dlatego kluczowe jest zrozumienie zasadności doboru odpowiednich zabezpieczeń i ich wpływu na pracę całej instalacji elektrycznej.

Pytanie 2

Jakie jest najwyższe dozwolone różnicowe natężenie prądu znamionowego wyłącznika różnicowoprądowego w celu zapewnienia ochrony przeciwpożarowej?

A. 10 mA
B. 30 mA
C. 300 mA
D. 100 mA
Wybór wartości 30 mA, 100 mA lub 10 mA jako maksymalnego dopuszczalnego różnicowego prądu znamionowego dla wyłącznika różnicowoprądowego w kontekście ochrony przeciwpożarowej jest błędny. Prąd różnicowy 30 mA jest najczęściej stosowany w instalacjach do ochrony przed porażeniem elektrycznym ludzi, natomiast jego zastosowanie w kontekście ochrony przeciwpożarowej jest niewłaściwe. W tego typu sytuacjach, wyłączniki o wartości 30 mA mogą być niewystarczające, gdyż ich czułość nie jest zaprojektowana do detekcji prądów, które mogą prowadzić do zapłonu. Podobnie, wartości 100 mA i 10 mA również nie są adekwatne w kontekście ochrony przeciwpożarowej. Wyłączniki 100 mA mogą być stosowane w instalacjach przemysłowych, ale ich zastosowanie również nie zapewnia odpowiedniego poziomu ochrony przed ryzykiem pożaru, ponieważ nie są przeznaczone do wykrywania niewielkich prądów upływowych, które mogą być początkiem pożaru. Ponadto, wyłącznik 10 mA, choć oferuje wysoką czułość dla ochrony ludzi, nie jest rekomendowany dla ogólnej ochrony przeciwpożarowej, ponieważ jego zastosowanie w instalacjach elektrycznych o dużym obciążeniu może prowadzić do częstych fałszywych alarmów. W praktyce, właściwy dobór wyłączników różnicowoprądowych powinien opierać się na analizie ryzyk i zgodności z odpowiednimi normami, takimi jak normy IEC 61008 oraz IEC 60947, które definiują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Właściwy dobór wartości prądu gwarantuje nie tylko bezpieczeństwo ludzi, ale również minimalizuje ryzyko strat materialnych związanych z pożarami wywołanymi przez instalacje elektryczne.

Pytanie 3

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Ochronne miejscowe połączenia wyrównawcze
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Podwójna lub wzmocniona izolacja elektryczna
D. Separacja elektryczna odbiornika
Odpowiedzi takie jak podwójna lub wzmocniona izolacja elektryczna, separacja elektryczna odbiornika oraz umieszczenie części czynnych poza zasięgiem ręki, są istotnymi elementami ochrony przeciwporażeniowej, lecz nie spełniają roli uzupełniającej w kontekście uszkodzeń w instalacjach niskonapięciowych. Podwójna lub wzmocniona izolacja może rzeczywiście skutecznie chronić przed porażeniem, jednak w przypadku jej uszkodzenia nie zapewnia dodatkowej ochrony, ponieważ nie ma możliwości odprowadzenia prądu do ziemi. Separacja elektryczna, polegająca na oddzieleniu odbiornika od źródła zasilania, może zredukować ryzyko, ale nie eliminuje go całkowicie i nie zapewnia dodatkowego zabezpieczenia w przypadku awarii izolacji. Umieszczenie części czynnych poza zasięgiem ręki to praktyka prewencyjna, która ma na celu zminimalizowanie ryzyka dostępu do niebezpiecznych elementów, jednak nie odpowiada na sytuacje, gdy dojdzie do awarii systemu. Kluczowym błędem w myśleniu jest skupienie się na pojedynczych metodach ochrony, zamiast na kompleksowym podejściu do bezpieczeństwa elektrycznego. Właściwe wdrożenie połączeń wyrównawczych, zgodnie z normami EN 61140, ma fundamentalne znaczenie w kontekście całościowego bezpieczeństwa instalacji elektrycznych.

Pytanie 4

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. stratności magnetycznej blach stojana
B. rezystancji uzwojeń wirnika
C. rezystancji uzwojeń stojana
D. natężenia pola magnetycznego rozproszenia
Pomiar rezystancji uzwojeń stojana jest kluczowym elementem badań eksploatacyjnych silnika klatkowego, ponieważ pozwala na ocenę stanu technicznego silnika oraz jego efektywności. Wysoka rezystancja może wskazywać na uszkodzenia uzwojeń, które mogą prowadzić do przegrzewania i obniżenia sprawności energetycznej silnika. Przykładem zastosowania tej wiedzy jest regularna konserwacja silników w przemyśle, gdzie monitorowanie rezystancji uzwojeń pozwala na wczesne wykrycie potencjalnych awarii. Zgodnie z normą IEC 60034, regularne pomiary rezystancji oraz analiza ich trendów mogą być wykorzystane do planowania działań prewencyjnych, co znacząco wydłuża żywotność maszyny i zwiększa bezpieczeństwo pracy. Dodatkowo, wiedza na temat rezystancji uzwojeń stoi w związku z szerszym zagadnieniem strat w silnikach elektrycznych, co jest kluczowe dla optymalizacji zużycia energii w zakładach przemysłowych.

Pytanie 5

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających zmniejszy się.
B. Spadek napięcia na przewodach zasilających wzrośnie.
C. Moc wydobywana w piecu wzrośnie 1,5 raza.
D. Moc wydobywana w piecu zmaleje 1,5 raza.
Pojęcie spadku napięcia jest kluczowe w kontekście efektywności instalacji elektrycznych i w niniejszym przypadku odpowiedzi, które sugerują zwiększenie spadku napięcia, są niepoprawne, ponieważ nie uwzględniają zasady związanej z oporem przewodów. W rzeczywistości, gdy przekrój przewodu wzrasta, opór maleje, co prowadzi do zmniejszenia spadku napięcia na przewodach. Odpowiedzi, które mówią o zmniejszeniu mocy wydzielanej w piecu, mogą wynikać z błędnego zrozumienia relacji między napięciem, prądem a mocą. Moc wydobywana przez urządzenia elektryczne zależy od napięcia i prądu, a zatem jeśli spadek napięcia maleje, urządzenie ma szansę na stabilniejsze zasilanie, a nie jego zmniejszenie. Podobnie, twierdzenie o zwiększeniu mocy wydzielanej w piecu jest mylące, ponieważ moc pieca elektrycznego jest ustalana przez parametry zasilania i nie wzrośnie w wyniku wymiany przewodu, lecz pozostaje na poziomie 12 kW, zgodnie z jego specyfikacją. Użytkownicy często nie rozumieją, że zmiana przekroju przewodu nie zmienia wymagań dotyczących mocy urządzenia, lecz wpływa korzystnie na parametry przesyłowe energii, co powinno być kluczowym elementem w analizie tego przypadku.

Pytanie 6

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. odczytów aparatury kontrolno-pomiarowej
B. konfiguracji zabezpieczeń
C. intensywności drgań
D. stanu szczotek
Odpowiedzi, które mówią o sprawdzaniu poziomu drgań, ustawień zabezpieczeń i wskazań aparatury kontrolno-pomiarowej, mają sens, bo to ważne dla konserwacji i monitorowania silników elektrycznych. Poziom drgań to bezpośredni sygnał, co się dzieje z silnikiem. Jak są duże drgania, to może być coś nie tak z łożyskami, wirnik może być źle wyważony lub mogą być inne uszkodzenia, co prowadzi do poważnych problemów, a w efekcie dłuższego przestoju. Ustawienia zabezpieczeń są konieczne dla bezpieczeństwa pracy. Jak są źle ustawione, silnik może się przegrzewać albo ulec awarii. No i wskazania aparatury kontrolno-pomiarowej pokazują napięcie, prąd i inne parametry elektryczne, co pomaga na bieżąco monitorować stan silnika. Ignorowanie tego może skutkować nieefektywnością, większym zużyciem energii i skróceniem żywotności urządzeń. Więc mimo że te wszystkie rzeczy są istotne przy oględzinach, to jednak nie są bezpośrednio związane ze stanem szczotek, które powinny być sprawdzane w ramach konserwacji, a nie na co dzień, gdy silnik działa.

Pytanie 7

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Zadziałanie wyłącznika różnicowoprądowego
B. Rozbudowanie instalacji
C. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
D. Zadziałanie zabezpieczenia przedlicznikowego
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 8

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C40
B. S303 C25
C. S303 C20
D. S303 C32
Wybór nieodpowiedniego wyłącznika nadprądowego do zasilania silnika klatkowego może prowadzić do poważnych konsekwencji dla bezpieczeństwa i efektywności całego systemu. W przypadku odpowiedzi S303 C40, chociaż nominalna wartość prądu jest wystarczająca do obsługi silnika, to jednak wybór wyłącznika o większej wartości prądowej może prowadzić do sytuacji, w której wyłącznik nie zadziała w przypadku rzeczywistych przeciążeń. Wyłącznik ten, ze względu na swoje właściwości, może nie reagować na chwilowe wzrosty prądu, co w konsekwencji może prowadzić do uszkodzeń silnika, a nawet pożaru. Na przykład, w przypadku prądu rozruchowego, który może być znacznie wyższy niż prąd znamionowy, wyłącznik C40 może nie zadziałać, co stwarza duże ryzyko awarii. Z kolei odpowiedź S303 C25 i S303 C20 są zbyt niskie, aby zapewnić odpowiednią ochronę dla silnika o podanych parametrach. Takie podejście nie uwzględnia zapasu bezpieczeństwa, co może prowadzić do zbyt częstego zadziałania wyłącznika w normalnych warunkach pracy silnika. Dobrą praktyką jest stosowanie wyłączników, które są w stanie wykryć zarówno przeciążenia, jak i zwarcia, a odpowiedni dobór wartości znamionowej jest kluczowy w zapewnieniu stabilności i bezpieczeństwa całego systemu elektrycznego. Dlatego w kontekście obiektu, jakim jest silnik klatkowy, należy kierować się zasadami doboru sprzętu ochronnego zgodnie z aktualnymi normami i standardami, aby uniknąć nieprzewidzianych awarii.

Pytanie 9

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gR
B. gB
C. aL
D. aM
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 10

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Obudowa
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Ogrodzenie
D. Samoczynne wyłączenie zasilania
Ogrodzenia, umieszczenie części czynnych poza zasięgiem ręki oraz obudowy to środki, które mimo że mogą zwiększać bezpieczeństwo w pewnych kontekstach, nie są skutecznymi metodami ochrony przeciwporażeniowej. Ogrodzenia mogą zapobiegać dostępowi do obiektów elektrycznych, ale nie eliminują ryzyka porażenia prądem, gdyż osoba mogąca mieć kontakt z urządzeniem nadal może do niego dotrzeć w sytuacji awaryjnej. Umieszczenie części czynnych poza zasięgiem ręki jest techniką, która może być stosowana w projektowaniu instalacji, jednak nie zawsze jest wystarczającą ochroną, szczególnie w przypadku niewłaściwego użytkowania lub braku wiedzy o zachowaniach ryzykownych. Wreszcie, obudowy mogą zapewnić pewien poziom ochrony przed przypadkowym dotknięciem, ale ich skuteczność zależy od jakości wykonania oraz zastosowanych materiałów. Obudowy nie chronią jednak przed awariami systemu, które mogą prowadzić do porażenia prądem. W kontekście ochrony przeciwporażeniowej, kluczowe jest zrozumienie, że wyłączenie zasilania jest jedynym sposobem, który w sposób aktywny reaguje na wystąpienie zagrożenia, co sprawia, że jest to najskuteczniejsza metoda zabezpieczenia przed porażeniem. Dlatego kluczowe jest stosowanie samoczynnych systemów wyłączania zasilania w instalacjach, aby zapewnić bezpieczeństwo użytkowników.

Pytanie 11

Jaki jest maksymalny dopuszczalny czas wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku uszkodzenia w systemie sieciowym TN-S, kiedy napięcie fazowe przekracza 400 V, a obwody odbiorcze mają prąd znamionowy do 32 A?

A. 0,2 s
B. 0,8 s
C. 0,1 s
D. 0,5 s
Czas wyłączenia zasilania w instalacjach elektrycznych jest kluczowym elementem ochrony przed porażeniem prądem. W przypadku odpowiedzi, które wskazują na czasy wyłączenia dłuższe niż 0,1 s, istnieje fundamentalne nieporozumienie dotyczące norm ochrony przeciwporażeniowej. Czas 0,5 s czy 0,2 s, choć mogą wydawać się wystarczające, nie spełniają wymogów stawianych przez normy, takie jak PN-EN 60364-4-41, które jasno określają, że najkrótszy czas wyłączenia zasilania powinien wynosić 0,1 s dla obwodów o prądzie znamionowym do 32 A w układzie TN-S. W wydłużonych czasach wyłączenia zwiększa się ryzyko dla zdrowia użytkowników, ponieważ dłuższa ekspozycja na prąd może prowadzić do poważnych obrażeń. Typowe błędy myślowe prowadzące do takich wniosków obejmują ignorowanie specyfiki norm oraz nieprawidłowe rozumienie zasad działania zabezpieczeń elektrycznych. Często myli się również czasy wyłączenia dla różnych rodzajów instalacji, co prowadzi do stosowania niewłaściwych wartości czasowych, które mogą być nieadekwatne do zapewnienia bezpieczeństwa. Wiedza o ochronie przed porażeniem prądem oraz znajomość aktualnych norm są kluczowe dla projektowania i eksploatacji instalacji elektrycznych, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników.

Pytanie 12

W systemach elektrycznych o niskim napięciu uzupełniająca ochrona przed porażeniem elektrycznym polega na

A. zainstalowaniu podwójnej lub wzmocnionej izolacji elektrycznej
B. wykonaniu ochronnych połączeń wyrównawczych miejscowych
C. zastosowaniu separacji elektrycznej pojedynczego odbiornika
D. umieszczeniu elementów czynnych poza zasięgiem rąk
Różnorodność odpowiedzi, które nie odnoszą się do wykonania ochronnych połączeń wyrównawczych, prowadzi do nieporozumień w zakresie ochrony przeciwporażeniowej. Zastosowanie separacji elektrycznej pojedynczego odbiornika może w pewnych sytuacjach zwiększyć bezpieczeństwo, jednak nie jest to wystarczająca metoda ochrony w przypadku uszkodzenia. Separacja nie eliminuje ryzyka porażenia, a w praktyce może prowadzić do sytuacji, w których elementy instalacji wciąż mogą być naładowane pomimo wyłączenia zasilania. Umieszczenie części czynnych poza zasięgiem ręki to kolejna koncepcja, która, choć może zwiększać bezpieczeństwo, nie eliminuje ryzyka kontaktu z elementami pod napięciem, zwłaszcza w sytuacjach awaryjnych. Instalowanie podwójnej lub wzmocnionej izolacji elektrycznej jest również skutecznym rozwiązaniem, ale w kontekście ochrony przed uszkodzeniami nie może zastąpić połączeń wyrównawczych, które bezpośrednio minimalizują potencjał elektryczny. Wszystkie te metody są ważne, jednak ich zastosowanie powinno być uzupełnione o odpowiednie połączenia wyrównawcze dla pełnej ochrony przed porażeniem.

Pytanie 13

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. stanu osłon części wirujących
B. wskazań aparatury kontrolno-pomiarowej
C. poziomu drgań
D. stanu szczotek
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 14

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 0,8 IΔN
B. Od 0,5 IΔN do 1,0 IΔN
C. Od 0,5 IΔN do 1,2 IΔN
D. Od 0,3 IΔN do 1,0 IΔN
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 15

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 500 mA
B. 30 mA
C. 100 mA
D. 1 000 mA
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.

Pytanie 16

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 3 lata
B. 2 lata
C. 5 lat
D. 4 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 17

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę proszkową.
B. Gaśnicę cieczy.
C. Tłumicę.
D. Hydronetkę.
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 18

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Umieszczenia elementów z napięciem poza zasięgiem ręki
B. Izolowania części czynnych
C. Instalowania osłon i barier
D. Samoczynnego szybkiego wyłączenia napięcia
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 19

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
B. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
C. Zawilgocenie izolacji przewodów AFL do odbiorców
D. Zwarcie doziemne jednej fazy
Odpowiedzi związane z zawilgoceniem izolacji przewodów, przeciążeniem obwodu oraz asymetrią obciążenia, choć mogą być logicznie uzasadnione, nie wyjaśniają w pełni sytuacji opisanej w pytaniu. Zawilgocenie izolacji przewodów AFL, choć może prowadzić do kłopotów z przewodnictwem elektrycznym, nie jest w stanie wywołać natychmiastowego uszkodzenia bezpiecznika po jego wymianie bez dodatkowego czynnika, takiego jak zwarcie doziemne. Przeciążenie obwodu w wyniku dogrzewania mieszkań również nie jest adekwatnym wytłumaczeniem, zwłaszcza że mówimy o szybkim uszkodzeniu bezpiecznika bez wskazania na długotrwałe przeciążenie. W przypadku przeciążenia, bezpiecznik zazwyczaj działa z opóźnieniem, co nie jest zgodne z opisanym zachowaniem. Asymetria obciążenia, chociaż może wprowadzać nierównomierności w działaniu systemu, nie prowadzi do bezpośredniego uszkodzenia bezpiecznika w opisany sposób. Typowe błędy myślowe to nadmierne skupienie na pojedynczym elemencie systemu, podczas gdy w rzeczywistości problem jest bardziej złożony i wymaga kompleksowego podejścia do analizy awarii w systemach elektroenergetycznych. W praktyce, zrozumienie mechanizmów działania zabezpieczeń oraz prawidłowe diagnozowanie problemów może pomóc w uniknięciu takich sytuacji w przyszłości.

Pytanie 20

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. przerwa w obwodzie stojana
B. przerwa w obwodzie wirnika
C. zwarcie międzyzwojowe w obwodzie stojana
D. zwarcie międzyzwojowe w obwodzie wirnika
Zwarcie międzyzwojowe w obwodzie wirnika jest najczęstszą przyczyną nadmiernego iskrzenia na komutatorze silnika szeregowego prądu stałego. Tego typu zwarcia powodują nieprawidłowy przepływ prądu w uzwojeniach wirnika, co skutkuje dużymi prądami roboczymi, a w konsekwencji prowadzi do powstania intensywnych łuków elektrycznych na komutatorze. Iskrzenie to nie tylko obniża efektywność pracy silnika, ale także może prowadzić do szybszego zużycia elementów komutatora oraz wirnika. Przykładowo, w silnikach stosowanych w aplikacjach przemysłowych, takich jak napędy trakcyjne czy maszyny robocze, kluczowe jest monitorowanie stanu uzwojeń, aby zminimalizować ryzyko zwarć. Regularne inspekcje oraz stosowanie systemów diagnostycznych, takich jak termowizja czy analiza drgań, mogą pomóc w wczesnym wykryciu problemów z uzwojeniami, co jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu. Ponadto, zrozumienie efektów zwarć międzyzwojowych jest kluczowe dla inżynierów projektujących układy napędowe, aby mogli tworzyć bardziej niezawodne i trwałe systemy.

Pytanie 21

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. mocy zainstalowanych urządzeń elektrycznych w instalacji
B. impedancji pętli zwarcia instalacji
C. maksymalnego spadku częstotliwości w sieci zasilającej
D. maksymalnej współczynnika przepięć
Odpowiedź dotycząca impedancji pętli zwarcia instalacji jest poprawna, ponieważ ta wartość jest kluczowa dla oceny skuteczności ochrony przeciwporażeniowej realizowanej przez samoczynne wyłączenie zasilania. Impedancja pętli zwarcia wpływa na prąd zwarciowy, który może przepłynąć przez instalację w przypadku awarii. Zgodnie z normami IEC 60364-4-41 oraz PN-IEC 61008-1, istotne jest, aby prąd wyłączający dla zastosowanego zabezpieczenia (np. wyłącznika nadprądowego lub różnicowoprądowego) był odpowiednio wyższy od wartości prądu zwarciowego, co zapewnia szybkie działanie zabezpieczeń. W praktyce, aby zapewnić skuteczność ochrony, projektanci instalacji elektrycznych muszą przeprowadzić obliczenia impedancji pętli zwarcia, co pozwala na dobór odpowiednich zabezpieczeń. Na przykład, w przypadku instalacji o napięciu znamionowym 230 V i użyciu bezpiecznika o prądzie wyłączającym 30 mA, wartość impedancji pętli zwarcia musi być obliczona tak, aby prąd zwarciowy wynosił co najmniej 150 mA, co zapewnia odpowiednie wyłączenie w wymaganym czasie.

Pytanie 22

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Zewnętrznego oplotu włóknistego
B. Pancerza stalowego
C. Żył aluminiowych
D. Powłoki polietylenowej
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 23

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. II
B. III
C. 0
D. I
Wybór klas I, II czy III wydaje się sensowny, ale tu trzeba zwrócić uwagę na bezpieczeństwo. Klasa I jest spoko, bo ma uziemienie, ale w wilgotnych miejscach może nie być wystarczająca. Klasa II, z dodatkową izolacją, też nie zawsze się sprawdzi, bo wciąż można mieć problem z porażeniem w miejscach, gdzie jest kontakt z wodą. Klasa III może wydawać się bezpieczniejsza, ale to dotyczy raczej specyficznych warunków. Używanie opraw klasy 0, które nie mają izolacji, jest po prostu niezgodne z normami, bo to nie tylko zagraża życiu, ale też nie spełnia wymagań norm PN-IEC 61140 i PN-EN 60598. Dlatego warto wiedzieć, że odpowiednia klasa ochronności jest kluczowa dla bezpieczeństwa w elektryce, a zły wybór może prowadzić do poważnych konsekwencji.

Pytanie 24

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz

A. In = 1 A, Un = 400 V
B. In = 2 A, Un = 400 V
C. In = 2 A, Un = 200 V
D. In = 1 A, Un = 200 V
Odpowiedź In = 2 A, Un = 400 V jest poprawna, ponieważ silnik zasilany jest napięciem 3×400 V i ma znamionowy prąd 3,2 A. Przy połączeniu w gwiazdę prąd w każdej fazie silnika wynosi Iz = 3,2 A, co oznacza, że wybierając zakres prądowy, wartość 2 A jest najbardziej odpowiednia, gdyż w praktyce przy pomiarach można zastosować urządzenia o wyższych zakresach. W przypadku napięcia, wybór 400 V jest również adekwatny, ponieważ to napięcie odpowiada zasilaniu silnika. Warto zwrócić uwagę, że stosowanie watomierzy z zakresami dostosowanymi do rzeczywistych parametrów pracy urządzeń jest kluczowe dla uzyskania dokładnych wyników pomiarów. Przykładem zastosowania takiej konfiguracji może być monitorowanie efektywności energetycznej silników w przemyśle, co pozwala na optymalizację zużycia energii oraz minimalizację strat. Dobrą praktyką w takich zastosowaniach jest również regularne kalibrowanie sprzętu pomiarowego oraz stosowanie urządzeń zgodnych z normami IEC 61010, co zapewnia bezpieczeństwo oraz dokładność pomiarów.

Pytanie 25

Który z podanych łączników chroni przewody w systemach elektrycznych przed skutkami zwarć?

A. Wyłącznik nadprądowy
B. Odłącznik
C. Przekaźnik termiczny
D. Stycznik
Wybór odłącznika, stycznika czy przekaźnika termicznego jako zabezpieczenia przewodów w instalacjach elektrycznych jest nieprawidłowy, gdyż każdy z tych elementów pełni inną funkcję, która nie jest bezpośrednio związana z ochroną przed zwarciami. Odłącznik jest urządzeniem, które służy głównie do rozłączania obwodu w celu przeprowadzenia konserwacji lub napraw, ale nie zapewnia automatycznej reakcji na zwarcia czy przeciążenia. Stycznik, z kolei, jest używany do zdalnego włączania i wyłączania obwodów, jednak nie jest przystosowany do wykrywania nadmiernego prądu i nie chroni przewodów w przypadku ich przegrzania. Przekaźnik termiczny, mimo że może reagować na zmiany temperatury związane z nadmiernym prądem, nie jest w stanie działać w tak szybki sposób jak wyłącznik nadprądowy, co czyni go mniej skutecznym w sytuacjach nagłych. Wybierając niewłaściwe zabezpieczenia, można narazić instalację na poważne uszkodzenia, co może prowadzić do zagrożeń pożarowych oraz awarii urządzeń elektrycznych. Dlatego niezwykle ważne jest, aby podczas projektowania instalacji elektrycznych stosować odpowiednie urządzenia zabezpieczające, zgodnie z normami i dobrymi praktykami branżowymi, aby zapewnić pełne bezpieczeństwo użytkowania.

Pytanie 26

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. B.
B. C.
C. D.
D. A.
Odpowiedź C jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz standardami technicznymi, pomiary skuteczności ochrony przeciwporażeniowej w szkołach powinny być przeprowadzane co 5 lat, natomiast pomiary rezystancji izolacji wymagają okresowego sprawdzania co rok. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników obiektów edukacyjnych, gdzie prawidłowa ochrona przed porażeniem prądem elektrycznym jest kluczowa. Przykładowo, w przypadku awarii systemów ochronnych, konsekwencje mogą być nie tylko materialne, ale przede wszystkim zdrowotne, zagrażające życiu uczniów i personelu. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zmniejszenia ryzyka wypadków. Warto zwrócić uwagę na standardy, takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące instalacji elektrycznych oraz ich okresowej konserwacji. Przestrzeganie tych zasad jest nie tylko obowiązkiem, ale również najlepszą praktyką w zarządzaniu bezpieczeństwem elektrycznym w obiektach edukacyjnych.

Pytanie 27

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 4,79 Ω
B. 2,87 Ω
C. 1,43 Ω
D. 0,71 Ω
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 28

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 1 660 Ω
B. Około 830 Ω
C. 2 000 Ω
D. 4 000 Ω
Największa dopuszczalna rezystancja uziomu <i>R<sub>A</sub></i> przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego <i>I<sub>N</sub> = 30 mA</i> i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 29

W jaki sposób zareaguje trójfazowy silnik indukcyjny obciążony momentem znamionowym po podłączeniu zasilania, jeśli jeden z fazowych przewodów zasilających został odłączony od zacisku silnika?

A. Zacznie obracać się z prędkością trzykrotnie niższą od znamionowej
B. Rozbiegnie się
C. Zacznie wirować w kierunku przeciwnym do spodziewanego
D. Nie uruchomi się
Pojawiające się pomysły dotyczące możliwości uruchomienia silnika przy odłączeniu jednego z przewodów fazowych wskazują na niepełne zrozumienie zasad działania silników indukcyjnych. Stwierdzenie, że silnik zacznie obracać się z prędkością trzykrotnie niższą od znamionowej, jest błędne, ponieważ zasilanie jednofazowe nie jest w stanie wytworzyć odpowiedniego obrotowego pola magnetycznego, które jest niezbędne do działania silnika trójfazowego. Silnik nie ma możliwości samodzielnego generowania takiego pola w przypadku braku trzech faz. Koncepcja rozbiegania się silnika w sytuacji braku jednego z faz jest również nieprawidłowa. Silnik nie będzie w stanie osiągnąć wymaganego momentu obrotowego ani prędkości, co skutkuje tym, że nie dojdzie do rozruchu. Wspomnienie o wirowaniu w kierunku przeciwnym do oczekiwanego jest pomyłką, ponieważ bez stabilnego zasilania silnik nie będzie w stanie rozpocząć jakiegokolwiek ruchu. Tego typu błędne rozumowanie może wynikać z mylenia zasad działania silników jednofazowych z silnikami trójfazowymi. Silniki jednofazowe mogą w pewnych warunkach działać przy zasilaniu z jednej fazy, jednak w przypadku silników trójfazowych sytuacja jest inna i wymaga pełnego zasilania z trzech faz, aby mogły one pracować prawidłowo i bezpiecznie. Wiedza na temat odpowiedniego zasilania silników indukcyjnych jest kluczowa nie tylko w kontekście ich uruchamiania, ale także w aspekcie ich długotrwałej i efektywnej eksploatacji.

Pytanie 30

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. neutralny N
B. fazowy LI
C. ochronny PE
D. fazowy L2
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 31

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 3 MΩ
B. 10 MΩ
C. 5 MΩ
D. 1 MΩ
Wybór niższej wartości minimalnej rezystancji izolacji, takiej jak 1 MΩ, 3 MΩ czy 10 MΩ, jest wynikiem niepełnego zrozumienia norm dotyczących bezpieczeństwa oraz wydajności silników elektrycznych. Przede wszystkim, zbyt niska wartość rezystancji izolacji, jak 1 MΩ, nie spełnia standardów, co może prowadzić do niebezpieczeństwa porażenia prądem, a także zwiększa ryzyko wystąpienia zwarć wewnętrznych. Silniki asynchroniczne są zaprojektowane tak, aby ich izolacja wytrzymywała znacznie wyższe napięcia i obciążenia, dlatego wartość 5 MΩ jest uważana za minimalną. Wybór 10 MΩ, choć teoretycznie wydaje się lepszą opcją, może być mylny, ponieważ zbyt wysoka rezystancja również może wskazywać na problemy z izolacją, takie jak nadmierne osuszenie materiału izolacyjnego, co prowadzi do jego kruchości i pęknięć. W praktyce, odpowiednie pomiary powinny być wykonywane z użyciem odpowiednich narzędzi, takich jak megger, aby dokładnie ocenić stan izolacji i zapewnić, że nie spadnie ona poniżej wspomnianych norm. Regularne monitorowanie rezystancji izolacji jest kluczowe w utrzymaniu silników w dobrym stanie, co przekłada się na ich długowieczność i optymalną wydajność. Ignorowanie tych zasad może prowadzić nie tylko do awarii silnika, ale również do poważnych wypadków w miejscu pracy.

Pytanie 32

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. oporu rdzenia stojana
B. oporu uzwojeń stojana
C. okresu jego działania
D. intensywności pola magnetycznego
Pomiar rezystancji uzwojeń stojana silnika indukcyjnego jest kluczowym elementem badań eksploatacyjnych, ponieważ pozwala na ocenę stanu uzwojeń, co jest istotne dla efektywności oraz niezawodności pracy silnika. Wysoka rezystancja może wskazywać na uszkodzenia, takie jak przegrzanie czy korozja. Regularne pomiary rezystancji uzwojeń pomagają w identyfikacji potencjalnych problemów zanim doprowadzą one do poważniejszych awarii, co w konsekwencji przyczynia się do obniżenia kosztów eksploatacji oraz zwiększenia czasu pracy silników. Przykładowo, w przemyśle motoryzacyjnym i w aplikacjach przemysłowych, gdzie silniki są kluczowym elementem pracy, monitorowanie parametrów jak rezystancja uzwojeń pozwala na optymalizację procesów produkcyjnych. Dobre praktyki w zakresie diagnostyki silników przewidują systematyczne wykonywanie tego typu pomiarów, co jest zgodne z normami ISO 9001, które podkreślają znaczenie jakości i monitorowania procesów.

Pytanie 33

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. prądu upływu
B. rezystancji uzwojeń stojana
C. prądu stanu jałowego
D. rezystancji przewodu ochronnego
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 34

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadprądowymi nie musi obejmować

A. specyfikacji technicznej instalacji
B. spisu terminów oraz zakresów prób i badań kontrolnych
C. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
D. opisu doboru urządzeń zabezpieczających
Właściwie dobrana instrukcja eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadprądowymi jest kluczowym dokumentem, który powinien zawierać niezbędne informacje dotyczące utrzymania i bezpieczeństwa tych systemów. Odpowiedź wskazująca na brak potrzeby zawarcia opisu doboru urządzeń zabezpieczających jest prawidłowa, ponieważ ten aspekt nie jest bezpośrednio związany z codzienną eksploatacją i konserwacją instalacji. W praktyce, dobór urządzeń zabezpieczających jest zagadnieniem, które powinno zostać omówione na etapie projektowania instalacji. W tej fazie kluczowe jest dostosowanie wyłączników do specyfiki obciążenia i warunków pracy, co powinno być zgodne z normami PN-IEC 60898 oraz PN-IEC 60947. Możliwość doboru odpowiednich urządzeń powinna być wcześniej przeanalizowana przez projektanta, a w instrukcji eksploatacyjnej powinny być uwzględnione jedynie informacje dotyczące ich użytkowania i konserwacji, co zwiększa efektywność i bezpieczeństwo pracy w obiektach.

Pytanie 35

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Waromierz
B. Fazomierz
C. Częstościomierz
D. Watomierz
Wybór pozostałych mierników, takich jak watomierz, częstościomierz i waromierz, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowań w kontekście pomiaru współczynnika mocy. Watomierz, mimo że mierzy zużycie energii, nie dostarcza informacji na temat relacji między mocą czynną a mocą pozorną. Jego pomiar koncentruje się na ilości energii przekazywanej w jednostce czasu, a więc nie bierze pod uwagę charakterystyki obciążenia indukcyjnego, co jest kluczowe przy ocenie współczynnika mocy. Częstościomierz z kolei mierzy częstotliwość sygnałów, co nie ma bezpośredniego związku z mocą, a więc nie może być użyty do analizy efektywności energetycznej silnika. Waromierz, używany do pomiaru wartości energii, również nie jest narzędziem adekwatnym do oceny współczynnika mocy, ponieważ jego zastosowanie ogranicza się głównie do analizy energii w kontekście statycznym, a nie dynamicznym. Typowym błędem myślowym jest założenie, że pomiar mocy elektrycznej i ocena współczynnika mocy są tożsame, co może prowadzić do wybierania niewłaściwych narzędzi pomiarowych i błędnej analizy wyników. Aby efektywnie zarządzać energią w instalacjach przemysłowych, kluczowe jest posługiwanie się odpowiednimi przyrządami, takimi jak fazomierz, które są zgodne z normami branżowymi i najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 36

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
B. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
C. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
D. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem
Kiedy podejmujemy decyzję o kolejności działań przed rozpoczęciem prac konserwacyjnych, kluczowe jest zrozumienie, jak błędy w sekwencji mogą prowadzić do zagrożeń. Zaczynanie od zabezpieczenia obwodu przed przypadkowym załączeniem, a następnie sprawdzanie braku napięcia, wprowadza ryzyko oszacowania, że urządzenie jest całkowicie bezpieczne, zanim upewnimy się, że nie ma napięcia. Z kolei uziemienie i zwarcie wszystkich faz bez wcześniejszego sprawdzenia braku napięcia może prowadzić do niebezpiecznych sytuacji, zwłaszcza w przypadku, gdy w urządzeniu występują nieoczekiwane napięcia, które mogą być spowodowane przez różne czynniki, takie jak indukcja czy błędy w instalacji elektrycznej. Niedostateczne zabezpieczenia mogą skutkować poważnymi wypadkami, na przykład porażeniem prądem lub uszkodzeniem sprzętu. Istotne jest, aby zawsze stosować się do ustalonych norm, takich jak PN-IEC 60364, które jasno określają standardy bezpieczeństwa w instalacjach elektrycznych. Kluczowym błędem myślowym jest założenie, że urządzenie jest bezpieczne tylko dlatego, że zostało odłączone od źródła zasilania, co może prowadzić do nieodpowiedzialnych działań i narażenia zdrowia i życia osób pracujących w pobliżu instalacji.

Pytanie 37

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zwiększy się czterokrotnie
B. Zmniejszy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się dwukrotnie
Odpowiedź, że ilość wydzielonego ciepła w jednostce czasu zwiększy się dwukrotnie, jest prawidłowa, ponieważ zmiana długości spirali grzejnej grzejnika elektrycznego wpływa na opór elektryczny. Zgodnie z prawem Ohma, opór R przewodnika jest proporcjonalny do jego długości l, co można zapisać jako R = ρ * (l/A), gdzie ρ to oporność właściwa, a A to pole przekroju poprzecznego. Skrócenie spirali grzejnej o połowę prowadzi do zmniejszenia oporu R. Przy stałym napięciu zasilania (U), moc P wydobywana z grzejnika może być określona wzorem P = U²/R. Zmniejszenie oporu o połowę spowoduje, że moc wzrośnie dwukrotnie, ponieważ w mianowniku wzoru P mamy wartość oporu, która uległa redukcji. W praktyce oznacza to, że grzejnik będzie efektywniej przekazywał ciepło do otoczenia, co jest istotne w kontekście optymalizacji systemów grzewczych, szczególnie w zastosowaniach przemysłowych i budowlanych, gdzie zarządzanie energią ma kluczowe znaczenie.

Pytanie 38

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 39

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B10
B. B16
C. C10
D. C16
Wybór C10, B16 czy C16 jako odpowiedzi na pytanie o wyłącznik nadprądowy spełniający warunki ochrony przeciwporażeniowej w przypadku impedancji pętli zwarcia Z = 4,2 Ω jest nieprawidłowy z kilku powodów. Wyłączniki oznaczone literą C są przystosowane do ochrony obwodów z większymi prądami rozruchowymi, co czyni je mniej odpowiednimi w kontekście ochrony przed porażeniem, szczególnie w obwodach, gdzie występuje duża różnorodność obciążeń. Przykładowo, C10 przy prądzie znamionowym 10 A, w przypadku zwarcia może nie zadziałać w odpowiednio szybkim czasie, co może prowadzić do zagrożenia dla bezpieczeństwa. Z kolei B16 charakteryzuje się prądem znamionowym 16 A, co również jest niewłaściwym doborem, gdyż w przypadku pętli zwarcia o impedancji 4,2 Ω, może generować prąd zwarciowy, który przekroczy granice działania wyłącznika, co skutkuje opóźnieniem w zadziałaniu i ryzykiem uszkodzenia instalacji. Warto przypomnieć, że zgodnie z normami PN-EN 60898, wyłączniki nadprądowe powinny być dobierane w taki sposób, aby zapewniały nie tylko ochronę przed przeciążeniami, ale również skuteczną ochronę przed porażeniem elektrycznym. Użycie niewłaściwego typu wyłącznika może prowadzić do niebezpiecznych sytuacji, w których użytkownicy są narażeni na ryzyko porażenia prądem, a także do uszkodzenia sprzętu elektrycznego. Dlatego kluczowe jest, aby podczas doboru wyłączników uwzględniać zarówno ich charakterystykę, jak i konkretne warunki, w jakich będą pracować.

Pytanie 40

Jak często należy przeprowadzać oględziny domowej instalacji elektrycznej?

A. 35 miesięcy
B. 12 miesięcy
C. 24 miesiące
D. 60 miesięcy
Oględziny domowej instalacji elektrycznej powinno się robić co 60 miesięcy. To, co mówią polskie normy, jak PN-IEC 60364, jest dość jasne. Regularne przeglądy są mega ważne, bo zapewniają bezpieczeństwo użytkowników i sprawiają, że instalacja działa bez problemów. W ciągu tych pięciu lat warto, żeby właściciele domów robili dokładne inspekcje. To znaczy, że powinno się nie tylko patrzeć na to, jak wygląda instalacja, ale też zmierzyć najważniejsze parametry elektryczne. Można na przykład sprawdzić przewody, gniazdka, wyłączniki, a także zobaczyć, czy zabezpieczenia działają, jak powinny. Z własnego doświadczenia wiem, że regularne przeglądy mogą zapobiegają awariom i pomagają zaoszczędzić na rachunkach za prąd, co w obecnych czasach ma znaczenie. Ciekawe, że przepisy mogą się różnić, zwłaszcza w budynkach publicznych, gdzie te zasady są często bardziej restrykcyjne.