Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 22:48
  • Data zakończenia: 17 grudnia 2025 23:02

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką powierzchnię tynku mozaikowego nałożono na cokole o wysokości 50 cm wokół budynku o wymiarach w rzucie 15 x 10 m?

A. 45 m2
B. 95 m2
C. 25 m2
D. 75 m2
W przypadku odpowiedzi, które wskazują na inne wartości powierzchni tynku mozaikowego, można zauważyć kilka typowych błędów myślowych. Na przykład, odpowiedzi takie jak 45 m2 czy 75 m2 mogą wynikać z błędnego wyliczenia obwodu budynku. Użytkownicy mogą pomylić się, dodając dodatkowe metry lub pomijając niektóre części konstrukcji, co prowadzi do znacznych rozbieżności w końcowym wyniku. Inna możliwość błędu dotyczy pomiaru wysokości cokołu – jeśli ktoś zastosuje wysokość 1 m zamiast 0,5 m, otrzyma niepoprawny wynik, który będzie dwukrotnie większy niż właściwy. Ważne jest zrozumienie, że każdy element w obliczeniach ma znaczenie i wpływa na końcowy wynik. W przypadku odpowiedzi 95 m2, błąd mógł wynikać ze pomyłkowego obliczenia powierzchni całkowitej ścian budynku, co jest błędnym podejściem, ponieważ obliczamy jedynie powierzchnię cokołu. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego zlecania ilości materiałów, co przekłada się na nieefektywność kosztową i czasową w realizacji projektu budowlanego. Dlatego kluczowe jest dokładne i staranne podejście do obliczeń oraz znajomość podstawowych zasad dotyczących obliczania powierzchni w budownictwie.

Pytanie 2

Na rysunku przedstawiono fragment stropu gęstożebrowego typu

Ilustracja do pytania
A. Ceram.
B. Akermana.
C. Fert.
D. Teriva.
Odpowiedź "Teriva" jest poprawna, ponieważ rysunek przedstawia charakterystyczny dla tego systemu strop gęstożebrowy. System stropowy Teriva jest szeroko stosowany w budownictwie mieszkaniowym oraz przemysłowym w Polsce. Składa się z żelbetowych belek nośnych oraz pustaków ceramicznych, które są umieszczane pomiędzy belkami. Taki układ zapewnia wysoką nośność oraz dobre właściwości akustyczne i cieplne. Przykładowo, stosowanie stropów Teriva jest zgodne z normą PN-EN 1992, która reguluje projektowanie konstrukcji żelbetowych. System ten charakteryzuje się także łatwością montażu i dobrym wykorzystaniem materiałów budowlanych, co przekłada się na efektywność czasową i kosztową całej inwestycji. W praktyce stropy Teriva są często wykorzystywane w budynkach jednorodzinnych oraz wielorodzinnych, a ich popularność wynika z połączenia wysokiej jakości, wydajności oraz ekonomiki budowy.

Pytanie 3

Na podstawie wyciągu ze Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych SST wskaż, ile litrów zaprawy gipsowej można uzyskać z 20 kg worka suchej, gotowej mieszanki?

Szczegółowa Specyfikacja Techniczna Wykonania i Odbioru Robót Budowlanych SST
(wyciąg)
B.3.03. Tynk gipsowy
Dane techniczne:
- średnia grubość tynku: 10 mm (grubość min.8 mm)
- ciężar nasypowy: 800kg/m3
- uziarnienie: do 1,2 mm
- wydajność: 100 kg = 125 l zaprawy
- zużycie: 0,8 kg na mm i m2
- czas schnięcia: średnio około 14 dni
A. 25,01
B. 50,01
C. 2,51
D. 5,01
Wyniki, które wskazują na objętości inne niż 25,01 l, opierają się na błędnych założeniach dotyczących przeliczeń masy na objętość. Możliwe, że błędna odpowiedź wynika z nieprawidłowego zastosowania wzoru lub ignorowania kluczowych proporcji zawartych w dokumentacji technicznej. Na przykład, odpowiedzi sugerujące objętości takie jak 50,01 l lub 5,01 l mogą wynikać z nieodpowiedniego pomnożenia lub podzielenia masy suchej mieszanki bez uwzględnienia właściwego współczynnika konwersji. Typowy błąd myślowy polega na założeniu, że objętość zaprawy jest bezpośrednio proporcjonalna do masy, co nie jest zgodne z rzeczywistością, ponieważ gęstość materiału odgrywa kluczową rolę w tej relacji. Dodatkowo, niektóre odpowiedzi mogą się opierać na nieaktualnych lub niekompletnych danych technicznych, co podkreśla znaczenie korzystania z wiarygodnych źródeł dokumentacji. Aby uniknąć takich błędów, zaleca się gruntowne zapoznanie się z obowiązującymi standardami branżowymi dotyczącymi przeliczeń i proporcji w budownictwie, co przyczyni się do poprawy efektywności pracy oraz jakości realizowanych projektów.

Pytanie 4

Przy ręcznym sporządzaniu zaprawy cementowo-wapiennej z wykorzystaniem wapna hydratyzowanego, należy łączyć poszczególne składniki w następującym porządku:

A. piasek + cement + wapno + woda
B. woda + cement + wapno + piasek
C. piasek + cement + woda + wapno
D. wapno + woda + piasek + cement
Kolejność składników w przygotowywaniu zaprawy cementowo-wapiennej jest kluczowa, a nieprawidłowe podejścia mogą prowadzić do poważnych problemów. Dodawanie piasku jako pierwszego składnika, jak sugeruje jedna z odpowiedzi, może skutkować niejednolitym wymieszaniem materiałów i obniżeniem jakości zaprawy. Piasek, jako materiał sypki, wymaga dokładnego połączenia z innymi składnikami, co jest trudne do osiągnięcia, jeśli nie są one odpowiednio rozpuszczone w wodzie. Z kolei dodanie wapna przed cementem może zakłócić proces hydratacji, gdyż wapno nie wchodzi w reakcję z wodą tak efektywnie, jak cement. Ważne jest, aby zrozumieć, że cement jest odpowiedzialny za uzyskanie twardości zaprawy, a woda działa jako aktywator tego procesu. Złe proporcje lub niewłaściwa kolejność mogą prowadzić do pęknięć, zmniejszenia przyczepności oraz długoterminowych uszkodzeń strukturalnych. Takie błędy są często wynikiem niepełnej wiedzy na temat chemii materiałów budowlanych, dlatego kluczowe jest przestrzeganie standardów budowlanych oraz praktyk zalecanych przez specjalistów, aby osiągnąć optymalne wyniki w budownictwie. Właściwe przygotowanie zaprawy cementowo-wapiennej wpływa na jej funkcjonalność i trwałość, co ma bezpośredni wpływ na niezawodność całego obiektu budowlanego.

Pytanie 5

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. wiszące
B. ramowe
C. na kozłach
D. stojakowe
Odpowiedzi stojakowe, wiszące oraz ramowe nie są najlepszym wyborem do zastosowania podczas rozbiórki ścianek działowych z kilku istotnych powodów. Rusztowania stojakowe, choć stabilne, zazwyczaj zajmują więcej miejsca i mogą ograniczać dostęp do obszaru pracy, co jest niepraktyczne w wąskich korytarzach czy pomieszczeniach biurowych. Ich konstrukcja nie pozwala na elastyczne dostosowanie wysokości, co może prowadzić do ograniczeń w efektywności wykonywanych prac. Rusztowania wiszące, z kolei, są dedykowane do zastosowań na elewacjach budynków lub pracach na wysokościach, co czyni je nieodpowiednimi w sytuacjach, gdy prace odbywają się blisko podłoża. W sytuacjach, gdy konieczne jest wykonywanie precyzyjnych cięć lub demontażu ścianek działowych, rusztowania wiszące mogą stwarzać niebezpieczeństwo i utrudniać kontrolę nad wykonywanymi zadaniami. Ostatecznie, rusztowania ramowe, choć popularne w różnych zastosowaniach budowlanych, nie zawsze zapewniają pożądaną elastyczność i łatwość dostępu do zróżnicowanych wysokości, co jest istotne w przypadku prac związanych z demontażem ścianek działowych. Właściwe zrozumienie zastosowań różnych typów rusztowań jest kluczowe, aby uniknąć nieefektywności i ryzyka podczas realizacji projektów budowlanych.

Pytanie 6

Aby połączyć mury, które były wznoszone w różnych okresach, należy użyć na długości muru

A. strzępia schodkowe
B. szczelinę dylatacyjną
C. spoinę zbrojoną
D. zaprawę plastyfikowaną
Strzępia schodkowe to rozwiązanie konstrukcyjne stosowane w przypadku połączeń murów, które zostały wzniesione w różnym czasie. Ich stosowanie jest uzasadnione w sytuacjach, gdy istnieje potrzeba utrzymania integralności strukturalnej budynku oraz zapewnienia właściwej odporności na różne obciążenia. Strzępia schodkowe działają jak dodatkowe wzmocnienie, które pozwala na lepsze połączenie murów, minimalizując ryzyko pęknięć czy uszkodzeń spowodowanych różnicami w osiadaniu lub ruchami konstrukcji. Praktyczne zastosowanie strzępi schodkowych można zaobserwować w budynkach historycznych, gdzie różne etapy budowy sprawiają, że mury mają inne właściwości. W takich przypadkach strzępia schodkowe nie tylko poprawiają estetykę połączenia, ale też zapewniają lepszą stabilność całej konstrukcji. W standardach budowlanych, takich jak Eurokod 6, podkreśla się znaczenie odpowiednich połączeń murów w celu zachowania bezpieczeństwa i trwałości budynków, co czyni strzępia schodkowe praktycznym i skutecznym rozwiązaniem.

Pytanie 7

W czasie intensywnych upałów cegłę ceramiczną pełną należy przed wykorzystaniem do murowania

A. zgromadzić pod zadaszeniem
B. zamoczyć w wodzie
C. nakryć plandeką
D. zagruntować gruntownikiem
Zamoczenie cegły ceramicznej pełnej w wodzie przed jej użyciem do murowania jest kluczowym krokiem, szczególnie podczas upalnych dni. Cegły ceramiczne mają tendencję do absorbowania wilgoci z zaprawy murarskiej, co może prowadzić do tzw. 'wyciągania wody' z zaprawy, a tym samym do osłabienia jej właściwości wiążących. W wyniku tego proces murowania może być mniej skuteczny, a struktura muru może być osłabiona. Poprzez wcześniejsze zamoczenie cegły, zmniejszamy ryzyko nadmiernego wchłaniania wody z zaprawy, co pozwala na uzyskanie optymalnego połączenia między cegłami a zaprawą. W praktyce, stosując tę metodę, można również uniknąć pęknięć i innych uszkodzeń strukturalnych, które mogą wystąpić w wyniku nadmiernego wysychania na skutek wysokich temperatur. Dobrą praktyką jest zamoczenie cegły na co najmniej 30 minut przed rozpoczęciem murowania, co zapewni odpowiednią wilgotność cegły oraz zaprawy, co skutkuje mocniejszym i bardziej trwałym murem.

Pytanie 8

Na rysunku przedstawiono układ cegieł w

Ilustracja do pytania
A. przenikających się murach o grubości 2½ i 2½ cegły.
B. narożniku murów o grubości 2½ i 2½ cegły.
C. narożniku murów o grubości 2½ i 1½ cegły.
D. przenikających się murach o grubości 2½ i 1½ cegły.
Wybór jednej z pozostałych odpowiedzi może wynikać z nieprawidłowej analizy rysunku oraz braku zrozumienia podstawowych zasad dotyczących układu murów. Odpowiedzi, które sugerują przenikające się mury, są błędne, ponieważ na rysunku widoczny jest wyraźny narożnik, a nie miejsce, gdzie mury się przenikają. Przenikające się mury, zazwyczaj wykorzystywane w bardziej skomplikowanych konstrukcjach, wymagają zastosowania specjalnych technik układania cegieł oraz zrozumienia, jak różne grubości muru wpływają na ich zachowanie pod obciążeniem. Ponadto, błędne odpowiedzi mogą wynikać z typowego błędu myślowego, polegającego na myleniu grubości murów. Na przykład, odpowiedzi sugerujące jedynie mury o grubości 2½ cegły ignorują fakt, że na rysunku widoczny jest mur o grubości 1½ cegły. Takie nieścisłości mogą prowadzić do poważnych konsekwencji w praktyce budowlanej, gdzie niewłaściwe zaplanowanie grubości murów może wpłynąć na stabilność całej konstrukcji. Dlatego ważne jest, aby dokładnie analizować rysunki oraz znać zasady dotyczące układania cegieł, aby unikać takich pomyłek.

Pytanie 9

Na podstawie danych zawartych w tabeli oblicz, ile worków zaprawy murarskiej będzie potrzebnych do wymurowania ściany o długości 4,0 m, wysokości 2,5 m i grubości 1 cegły.

Zużycie zaprawy z 25-kilogramowego worka
Rodzaj ścianyPowierzchnia ściany
dla grubości ściany (z cegły pełnej) 1/2 cok. 0,33 m²
grubości 1 cok.0,16 m²
grubości 1 ½cok. 0,11 m²
grubości 2 cok. 0,08 m²
A. 93 szt.
B. 63 szt.
C. 40 szt.
D. 16 szt.
Żeby policzyć, ile worków zaprawy murarskiej potrzebujemy do wymurowania ściany, najpierw musimy określić jej powierzchnię. Mamy ścianę, która ma 4,0 m długości i 2,5 m wysokości. Więc robimy obliczenia: 4,0 m * 2,5 m = 10 m². Następnie trzeba wiedzieć, ile m² pokryjemy z jednego worka zaprawy. Z reguły to około 0,16 m² z worka. Teraz dzielimy powierzchnię ściany przez to, co pokrywa jeden worek: 10 m² / 0,16 m², co daje 62,5. Ostatecznie zaokrąglamy to do 63 worków. To ważne, żeby dobrze to obliczyć, bo jak źle oszacujemy, to może być opóźnienie w pracy i dodatkowe koszty. Zastosowanie norm, jak PN-EN 998-2, daje pewność, że wszystko będzie solidne i trwałe. Wiedza o tym, jak obliczać materiały, jest ważna nie tylko dla wykonawców, ale także dla inwestorów, żeby dobrze planować budżet budowlany.

Pytanie 10

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1 : 2 : 6, należy zastosować odpowiednio

A. 1 część wapna, 2 części cementu oraz 6 części piasku
B. 1 część cementu, 2 części wapna i 6 części piasku
C. 1 część cementu, 2 części wapna oraz 6 części wody
D. 1 część wapna, 2 części cementu oraz 6 części wody
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:2:6 oznacza, że na każdą część cementu przypadają dwie części wapna i sześć części piasku. Taki skład jest powszechnie stosowany w budownictwie, szczególnie przy murowaniu. Cement działa jako spoiwo, które łączy pozostałe składniki, a wapno wpływa na elastyczność i trwałość zaprawy. Piasek z kolei zapewnia odpowiednią strukturę i wytrzymałość. W praktyce, stosując tę proporcję, można uzyskać zaprawę o dobrej przyczepności, odporności na czynniki atmosferyczne oraz długowieczności, co jest kluczowe w konstrukcjach budowlanych. Przykładowo, przy budowie murów z cegły, taka zaprawa zapewnia stabilność i odporność na pęknięcia, co jest zgodne z normami budowlanymi PN-EN 998-2. Warto również dodać, że odpowiednie dobieranie składników wpływa na właściwości termiczne i akustyczne muru, co jest istotne w kontekście komfortu użytkowania budynków.

Pytanie 11

Na rysunku przedstawiono

Ilustracja do pytania
A. rzut budynku.
B. przekrój budynku.
C. elewację budynku.
D. widok budynku.
Odpowiedź "przekrój budynku" jest prawidłowa, ponieważ przedstawiony rysunek ukazuje wewnętrzną strukturę budynku, co jest charakterystyczne dla przekrojów. Przekrój budynku to rysunek techniczny, który ilustruje, jak wygląda obiekt po przecięciu go w wybranym miejscu, co pozwala na analizę rozmieszczenia elementów konstrukcyjnych, instalacji oraz przestrzeni wewnętrznych. Dzięki poziomym liniom wskazującym na różne poziomy oraz linii przecięcia, można zrozumieć wysokości pomieszczeń, grubość ścian czy rozmieszczenie okien i drzwi. W projektowaniu architektonicznym oraz inżynieryjnym, przekroje odgrywają kluczową rolę w dokumentacji budowlanej, umożliwiając precyzyjne przedstawienie wymagań konstrukcyjnych oraz estetycznych. Przykładem praktycznym zastosowania przekroju budynku może być analiza wymagań dotyczących wentylacji i oświetlenia w pomieszczeniach, co jest niezbędne w procesie projektowania zgodnym z normami budowlanymi i przepisami prawa budowlanego.

Pytanie 12

Narzędzie przedstawione na rysunku należy zastosować do

Ilustracja do pytania
A. wyrównywania tynku,
B. wyznaczenia powierzchni tynku.
C. narzucania tynku,
D. zacierania tynku.
Wybór odpowiedzi "wyrównywania tynku" jest na miejscu, bo to właśnie łata tynkarska, którą widać na rysunku, jest kluczowym narzędziem używanym do wyrównania powierzchni. Ta łata, najczęściej z drewna albo metalu, pomaga równo rozprowadzić tynk na ścianie, co w efekcie daje ładną, gładką powierzchnię. Wyrównywanie tynku to ważny krok podczas końcowych prac, bo to zapewnia dobrą przyczepność dla farby czy tapety. Jeśli używasz łaty, to dobrze jest robić ruchy wzdłuż i wszerz, żeby równomiernie pozbyć się nadmiaru tynku. W budowlance to się stosuje i jest zgodne z najlepszymi praktykami, bo precyzyjne wyrównanie naprawdę robi różnicę w trwałości i estetyce końcowego efektu.

Pytanie 13

Jak przeprowadza się ocenę gładkości tynków zwykłych w trakcie odbioru prac tynkarskich?

A. Zarysowując powierzchnię przy pomocy gwoździa
B. Pocierając powierzchnię tynku dłonią
C. Uderzając w powierzchnię delikatnym młotkiem
D. Przesuwając gąbką po tynku
Prawidłowa odpowiedź opiera się na metodzie oceny gładkości tynków, która polega na bezpośrednim pocieraniu powierzchni dłonią. Ta technika pozwala na bezpośrednie odczucie ewentualnych nierówności, chropowatości czy innych defektów, które mogą być niewidoczne dla oka. Umożliwia to sprawdzenie, czy tynk spełnia wymagania w zakresie estetyki i funkcjonalności, które są kluczowe w branży budowlanej. W praktyce, podczas odbioru robót tynkarskich, inspektorzy często stosują tę metodę, aby szybko ocenić jakość wykonania. Gdy powierzchnia jest gładka, tynk jest zazwyczaj uznawany za właściwie nałożony, co jest zgodne ze standardami branżowymi określającymi dopuszczalne odchylenia i wymagania dotyczące gładkości. Warto również zauważyć, że odpowiednia gładkość tynków ma wpływ na późniejsze procesy malarskie czy tapetowania, dlatego kontrola ta jest niezbędna w każdym etapie budowy.

Pytanie 14

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1:2,5:10,5, jakie składniki należy użyć?

A. 1 część cementu, 2,5 części wapna oraz 10,5 części wody
B. 1 część wapna, 2,5 części cementu oraz 10,5 części piasku
C. 1 część wapna, 2,5 części cementu oraz 10,5 części wody
D. 1 część cementu, 2,5 części wapna oraz 10,5 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji objętościowej 1:2,5:10,5 wymaga zastosowania odpowiednich ilości składników, które są kluczowe dla uzyskania właściwych właściwości mechanicznych i trwałości zaprawy. Cement, wapno i piasek odgrywają fundamentalną rolę w procesie wiązania i twardnienia zaprawy, a proporcje te są zgodne z normami budowlanymi, które zalecają stosunek tych składników w celu uzyskania optymalnych wyników. W praktyce stosowanie cementu, wapna i piasku w takich proporcjach pozwala na uzyskanie zaprawy o dobrej plastyczności, która może być łatwo aplikowana, a jednocześnie charakteryzuje się odpowiednią wytrzymałością na ściskanie i odpornością na działanie czynników atmosferycznych. Takie zaprawy znajdują zastosowanie w budownictwie, szczególnie przy murowaniu ścian, gdzie właściwa kompozycja jest kluczowa dla długowieczności konstrukcji.

Pytanie 15

Grupa złożona z 6 pracowników prowadziła prace rozbiórkowe budynku przez 5 dni roboczych, każdego dnia pracując 8 godzin. Jaki był całkowity koszt robocizny, jeżeli cena za 1 roboczogodzinę wynosiła 10 zł?

A. 240 zł
B. 480 zł
C. 400 zł
D. 2 400 zł
Aby obliczyć całkowity koszt robocizny w tym przypadku, musimy najpierw ustalić całkowitą liczbę roboczogodzin przepracowanych przez brygadę. Znamy liczbę robotników, dni pracy oraz czas pracy w ciągu jednego dnia. Brygada składa się z 6 robotników, którzy pracowali przez 5 dni po 8 godzin dziennie. Możemy to obliczyć jako: 6 robotników * 5 dni * 8 godzin = 240 roboczogodzin. Następnie, aby uzyskać całkowity koszt robocizny, mnożymy liczbę roboczogodzin przez stawkę za 1 roboczogodzinę, która wynosi 10 zł. Zatem 240 roboczogodzin * 10 zł = 2400 zł. Prawidłowa odpowiedź to 2400 zł, co jest zgodne z praktykami w branży budowlanej, gdzie precyzyjne obliczenia kosztów robocizny są kluczowe dla efektywnego zarządzania budżetem projektu oraz ustalania stawek wynagrodzeń. Tego typu kalkulacje są powszechnie stosowane w ofertach przetargowych oraz w budżetowaniu projektów budowlanych, co pozwala na lepszą kontrolę kosztów oraz optymalizację wydatków.

Pytanie 16

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. izolujących cieplnie
B. renowacyjnych
C. szlachetnych
D. jednowarstwowych zewnętrznych
Odpowiedź dotycząca tynków renowacyjnych jest prawidłowa, ponieważ zaprawa tynkarska oznaczona symbolem R została zaprojektowana z myślą o zastosowaniu w pracach renowacyjnych. Tynki renowacyjne są stosowane w celu przywrócenia oryginalnych właściwości estetycznych oraz ochronnych istniejących budynków, które mogą być narażone na degradację ze względu na warunki atmosferyczne lub inne czynniki. Przykłady zastosowania obejmują renowację historycznych elewacji, gdzie ważne jest zachowanie charakterystyki materiałów oryginalnych, ale również w przypadku budynków, które doznały uszkodzeń, takich jak pęknięcia czy zawilgocenie. Tynki te często zawierają specjalne dodatki, które poprawiają ich przyczepność, elastyczność oraz parametry izolacyjne, co czyni je idealnym wyborem do renowacji. Dobrze przemyślany dobór tynku renowacyjnego zgodnego z charakterystyką budynku oraz jego otoczenia jest kluczowy, a normy PN-EN 998-1 oraz PN-EN 1015-12 mogą służyć jako wytyczne w tym zakresie.

Pytanie 17

Rysunek przedstawia umowne i uproszczone oznaczenie klatki schodowej w rzucie i dotyczy kondygnacji

Ilustracja do pytania
A. najwyższej
B. powtarzalnej
C. wyrównawczej
D. najniższej
Wybór odpowiedzi, która nie dotyczy kondygnacji najniższej, może wynikać z paru nieporozumień na temat architektury i układu budynków. Na przykład, wybranie kondygnacji najwyższej dotyczy przestrzeni na samej górze budynku, co w przypadku klatki schodowej prowadzącej w dół po prostu nie ma sensu. Ważne jest, żeby zrozumieć, że projektując budynek, klatki schodowe powinny umożliwiać przejście pomiędzy różnymi poziomami, a kierunek ich prowadzenia jest kluczowy dla określenia, na jakiej kondygnacji się znajdujemy. Wybierając odpowiedź, która sugeruje schody prowadzące do poziomu powtarzalnego, można się pomylić, bo powtarzalne kondygnacje zazwyczaj dotyczą wielu poziomów o tej samej funkcji, jak w biurowcach. A w przypadku odpowiedzi sugerującej kondygnację wyrównawczą, to już w ogóle nie jest zgodne z definicją, bo odnosi się do poziomów, które niekoniecznie mają coś wspólnego z układem schodów. Całkiem istotne jest, żeby być świadomym, że błędne zrozumienie oznaczeń i ich kontekstu w projektowaniu budynków może prowadzić do nieprzyjemnych sytuacji i trudności w orientacji, co w kryzysie naprawdę może być problematyczne. Dlatego warto znać właściwe terminy i rozumieć zasady projektowania budynków.

Pytanie 18

Urządzenia przedstawionego na rysunku używa się do cięcia

Ilustracja do pytania
A. metali.
B. bloczków gazobetonowych.
C. płyt pilśniowych.
D. glazury.
Wybór odpowiedzi, która wskazuje na cięcie płyt pilśniowych, glazury lub bloczków gazobetonowych, jest nieuzasadniony, ponieważ każde z tych materiałów wymaga innych narzędzi i technik cięcia. Płyty pilśniowe najczęściej tnie się za pomocą pił ręcznych lub elektrycznych, które są zaprojektowane do pracy z materiałami drewnopochodnymi, a ich konstrukcja różni się znacznie od przecinarki do metalu. Glazura z kolei, będąca materiałem ceramicznym, wymaga użycia narzędzi takich jak piły diamentowe, które są zaprojektowane do pracy z twardymi, kruchymi materiałami. Zastosowanie przecinarki do metalu w tym kontekście byłoby nieefektywne, ponieważ tarcza tnąca nie jest przystosowana do obróbki materiałów takich jak glazura, co może prowadzić do uszkodzenia zarówno narzędzia, jak i obrabianego materiału. Bloczek gazobetonowy, będący materiałem budowlanym o zróżnicowanej strukturze, również wymaga narzędzi dedykowanych do cięcia, jak piły do betonu lub narzędzia pneumatyczne. Powszechnym błędem jest zatem zakładanie, że jedno narzędzie może być używane do wielu różnych materiałów, co w praktyce prowadzi do nieskuteczności oraz zwiększenia ryzyka wypadków. Zrozumienie specyfiki każdego materiału oraz odpowiedniego doboru narzędzi jest kluczowe w efektywnej i bezpiecznej pracy. W branży budowlanej i obróbczej znajomość tych zasad jest niezbędna dla osiągnięcia wysokiego poziomu jakości wykonania oraz bezpieczeństwa pracy.

Pytanie 19

Urządzenia przedstawionego na rysunku używa się do

Ilustracja do pytania
A. wykonywania bruzd w murze.
B. fazowania naroży ścian.
C. szlifowania i cięcia różnych materiałów.
D. wykuwania otworów w murze.
Analizując inne odpowiedzi, można zauważyć, że wynikały one z nieporozumień dotyczących zastosowania narzędzia. Na przykład, fazowanie naroży ścian wymaga użycia innych narzędzi, takich jak szlifierki kątowe czy strugarki, które są przystosowane do nadawania odpowiednich kątów i wykończeń. Takie narzędzia mają zupełnie inną konstrukcję i funkcjonalność. Ponadto, szlifowanie i cięcie różnych materiałów jest zadaniem dla urządzeń takich jak piły, szlifierki oraz frezarki, które potrafią obrobić różnorodne materiały, ale nie są przeznaczone do wykonywania bruzd. Często mylnie interpretuje się również pojęcie wykuwania otworów w murze, które najczęściej wiąże się z używaniem młotków udarowych lub wiertarek. Te narzędzia służą do tworzenia otworów, a nie rowków, co jest kluczową różnicą w kontekście funkcji frezarki do bruzd. Zrozumienie zastosowania poszczególnych narzędzi w budownictwie jest istotne, aby efektywnie planować prace budowlane oraz unikać nieefektywnych rozwiązań. Niewłaściwe dobieranie narzędzi prowadzi do nieefektywności oraz zwiększa ryzyko uszkodzeń materiałów budowlanych.

Pytanie 20

Aby wykonać tynk ciągniony, należy zastosować

A. stalowe listewki kierunkowe
B. paki oraz profilowane kielnie
C. pneumatyczne urządzenia natryskowe
D. profile przesuwane po prowadnicach
Użycie profili na prowadnicach to kluczowa sprawa przy robieniu tynku ciągnionego. W tej metodzie chodzi o nałożenie zaprawy tynkarskiej na ścianę za pomocą tych profili, co pozwala równomiernie rozprowadzić materiał. Dzięki profilowanym prowadnicom łatwiej kontrolować grubość tynku i uzyskać gładką powierzchnię. W praktyce najpierw montuje się te profile na ścianie, a potem nakłada się zaprawę i wygładza narzędziami tynkarskimi. Ta technika jest zgodna z normami budowlanymi, które mówią, że tynki muszą być robione w sposób zapewniający trwałość i odpowiednie parametry. No i tynk ciągniony jest często stosowany w budynkach, gdzie estetyka jest bardzo ważna, jak w obiektach publicznych czy domach jednorodzinnych - tam gładkie ściany są pożądane przez inwestorów.

Pytanie 21

Cementowa zaprawa wyróżnia się wysoką

A. wytrzymałością na ściskanie
B. kapilarnością
C. higroskopijnością
D. odpornością na skurcz
Zaprawa cementowa charakteryzuje się dużą wytrzymałością na ściskanie, co czyni ją materiałem o kluczowym znaczeniu w budownictwie. Wytrzymałość na ściskanie definiuje zdolność materiału do przenoszenia obciążeń bez deformacji czy zniszczenia. W przypadku zapraw cementowych, wartość ta jest wynikiem odpowiednich proporcji składników, takich jak cement, woda i kruszywo. Przykładowo, zaprawy stosowane w murach nośnych muszą spełniać normy PN-EN 998-1, które precyzują minimalne wartości wytrzymałościowe zależnie od zastosowania. W praktyce, wytrzymałość zaprawy na ściskanie jest kluczowa w kontekście budowy ścian, fundamentów, oraz wszelkich innych konstrukcji, gdzie obciążenia są znaczące. Dodatkowo, odpowiednie dobranie klasy cementu oraz techniki mieszania i aplikacji zaprawy wpływa na jej trwałość i odporność na czynniki atmosferyczne, co jest istotne dla długowieczności obiektów budowlanych.

Pytanie 22

Na ilustracji przedstawiono sposób wykonania

Ilustracja do pytania
A. paroizilacji.
B. izolacji cieplnej.
C. hydroizolacji.
D. izolacji akustycznej.
Hydroizolacja to ważna sprawa, bo zabezpiecza różne elementy budowlane przed wodą i wilgocią. Na ilustracji widzisz czarną membranę izolacyjną – to typowy materiał używany do hydroizolacji. W budownictwie takie rozwiązania są kluczowe, zwłaszcza w miejscach, gdzie woda gruntowa czy opady są na porządku dziennym. Jak dobrze zabezpieczysz budynek, to unikniesz wielu problemów, jak zagrzybienie czy korozja stali. W praktyce można używać różnych technik hydroizolacji, na przykład membran bitumicznych, folii PVC czy specjalnych mas uszczelniających. Dobrze jest też regularnie sprawdzać te elementy i dbać o nie, żeby działały jak najdłużej. Jeśli chodzi o normy, to metody hydroizolacji powinny być zgodne z PN-EN 13967 i PN-EN 1504-2, które określają, jakie wymagania musi spełniać materiały i systemy w budownictwie. Dzięki temu nie tylko budynki będą trwalsze, ale też komfort ich użytkowania wzrośnie, bo nie będzie problemów z wilgocią.

Pytanie 23

Aby uniknąć wilgoci na zewnętrznych ścianach parteru budynku z bloczków betonowych, pierwszą warstwę należy ułożyć na

A. zaprawie cementowej
B. lepiku asfaltowym
C. papie asfaltowej
D. zaprawie cementowo-wapiennej
Zgadza się, papa asfaltowa to dobry wybór. Działa jak tarcza przed wilgocią, chroniąc ściany budynku przed wodą. Ułożenie bloczków betonowych na tej papie to świetny pomysł, bo izoluje nam to od wilgoci z gruntu i deszczu, a to naprawdę ważne, żeby wszystko było trwałe. Papa asfaltowa ma super właściwości, jeśli chodzi o odporność na wodę, co w budownictwie jest mega ważne. Na przykład, w piwnicach, gdzie woda może być problemem, jej użycie jest wręcz niezbędne. Trzeba pamiętać, że według norm budowlanych, stosowanie papy na fundamentach i ścianach parteru to naprawdę dobra praktyka, bo minimalizuje ryzyko wilgoci i uszkodzeń. Generalnie, dobrze jest myśleć o izolacji od początku budowy, bo to wpływa na to, jak długo konstrukcja wytrzyma i czy będzie bezpieczna.

Pytanie 24

Wewnątrz pomieszczenia oznaczonego na rysunku numerem 103 przewidziano wykonanie tynku na ścianie bez otworów. Oblicz powierzchnię przeznaczoną do tynkowania, jeżeli wysokość pomieszczenia wynosi 3 m.

Ilustracja do pytania
A. 12,96 m2
B. 11,82 m2
C. 14,52 m2
D. 10,56 m2
Obliczanie powierzchni do tynkowania może być mylące, szczególnie gdy nie uwzględnia się wszystkich istotnych parametrów pomieszczenia. Odpowiedzi, które nie są zgodne z poprawnym wynikiem, mogą wynikać z błędów przy obliczaniu obwodu lub zignorowania elementów takich jak okna i drzwi. Na przykład, niektórzy mogą obliczyć powierzchnię pomieszczenia bez uwzględnienia, że część ściany jest zajęta przez otwory. Typowym błędem jest przyjęcie założenia, że cała powierzchnia jest dostępna do tynkowania, co jest niezgodne z praktycznymi standardami budowlanymi. Ważne jest, aby przed przystąpieniem do obliczeń dokładnie zmierzyć wszystkie wymiary pomieszczenia i uwzględnić przy tym wymiary otworów. Zignorowanie tych kroków prowadzi do nieprawidłowych wyników, które mogą wpływać na późniejsze prace wykończeniowe. W kontekście standardów budowlanych, zawsze zaleca się skrupulatne obliczenia oraz przygotowanie dokładnego planu przed rozpoczęciem jakichkolwiek prac budowlanych. Zrozumienie, jak obliczać powierzchnie do tynkowania w sposób dokładny, jest kluczem do efektywnego zarządzania projektem budowlanym oraz zapewnienia optymalnej jakości wykonania.

Pytanie 25

Jakie narzędzie powinno się zastosować do usunięcia nadmiaru zaprawy podczas ręcznego tynkowania?

A. Pacy
B. Czerpaka tynkarskiego
C. Kielni murarskiej
D. Łaty
Wybór czerpaka tynkarskiego jako narzędzia do ściągania nadmiaru zaprawy jest niewłaściwy. Czerpak tynkarski służy przede wszystkim do przenoszenia zaprawy na miejsce pracy, a nie do wygładzania powierzchni. Jego konstrukcja nie jest przystosowana do precyzyjnego usuwania nadmiaru materiału, co jest kluczowym aspektem tynkowania. Z kolei paca, choć istotna, pełni inną funkcję. Jest stosowana do wygładzania i formowania zaprawy, jednak przy jej pomocy trudniej uzyskać równą powierzchnię w porównaniu do łaty. Kielnia murarska, będąca narzędziem o bardziej specyficznych zastosowaniach, również nie jest odpowiednia do ściągania nadmiaru zaprawy, ponieważ służy głównie do precyzyjnego nakładania materiału w mniejszych ilościach. Typowe błędy myślowe prowadzące do wyboru niewłaściwych narzędzi często wynikają z braku zrozumienia funkcji tych narzędzi oraz ich zastosowań w praktyce budowlanej. Brak znajomości technik tynkarskich oraz nieodpowiedni dobór narzędzi może skutkować nierówną powierzchnią, co w dłuższej perspektywie wpłynie negatywnie na estetykę oraz trwałość tynku.

Pytanie 26

Tynk III kategorii powszechny to

A. narzut jedno- lub dwu-warstwowy wygładzany pacą
B. narzut o jednej warstwie, wyrównany kielnią
C. tynk trójwarstwowy zatarty packą na gładko
D. tynk trójwarstwowy wygładzony pacą pokrytą filcem
W kontekście tynków, odpowiedzi sugerujące narzuty jedno- lub dwuwarstwowe, jak również tynki zatartym pacą obłożoną filcem, nie są zgodne z definicją tynku pospolitego III kategorii. Tynki jednowarstwowe, które sugerują uproszczony proces aplikacji, mogą nie spełniać wymaganych standardów jakości i trwałości, szczególnie w trudnych warunkach eksploatacyjnych. Przy tynku jednowarstwowym, ryzyko pęknięć i uszkodzeń wzrasta, ponieważ nie ma warstw, które mogłyby absorbowąć różnice w temperaturze czy wilgotności. Narzuty wyrównane kielnią są również nieodpowiednie, gdyż nie zapewniają odpowiedniej estetyki ani trwałości powierzchni. Tynki trójwarstwowe, które są zatarte pacą obłożoną filcem, mogą być mylone z tynkami dekoracyjnymi, które mają zupełnie inną funkcję i zastosowanie, skupiając się na efektach wizualnych, a nie na spełnieniu funkcji ochronnych czy izolacyjnych. Dlatego ważne jest, aby dobrze rozumieć różnice między poszczególnymi rodzajami tynków, co zapobiega wybieraniu niewłaściwych rozwiązań podczas prac budowlanych. Powinno się zawsze kierować się standardami budowlanymi i fachową wiedzą, aby uniknąć niekorzystnych skutków w przyszłości.

Pytanie 27

Na którym rysunku przedstawiono lico muru, który wykonano w wiązaniu krzyżykowym?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór odpowiedzi, która nie jest zgodna z wiązaniem krzyżykowym, może wynikać z mylnego rozpoznania układu cegieł na rysunku. Często zdarza się, że osoby uczące się o różnych rodzajach wiązań murarskich, mylą układ cegieł w innych typach wiązań, takich jak wiązanie w stylu angielskim czy niemieckim, które mają zupełnie inne zasady układania. Wiązanie angielskie polega na układaniu cegieł w taki sposób, że każdy rząd posiada jedną cegłę, która przesunięta jest w stosunku do rzędu poniżej, co skutkuje brakiem charakterystycznego krzyżowania, które widoczne jest w wiązaniu krzyżykowym. Z kolei wiązanie niemieckie charakteryzuje się stałym przesunięciem cegieł w każdym rzędzie, co również nie odpowiada układowi przedstawionemu w odpowiedzi A. Te różnice są istotne, ponieważ każdy typ wiązania ma swoje specyficzne właściwości wytrzymałościowe i estetyczne, które mają bezpośredni wpływ na trwałość i stabilność konstrukcji. Rozumienie tych różnic jest kluczowe w projektowaniu i wykonywaniu murów, ponieważ niewłaściwe użycie jednego z typów wiązań może prowadzić do obniżenia jakości i bezpieczeństwa budowli. Dlatego ważne jest, aby nie tylko znać różne typy wiązań, ale także umieć je poprawnie rozpoznać na podstawie wizualnych wskazówek zawartych w projektach budowlanych.

Pytanie 28

Którego z narzędzi należy użyć do murowania ścian w systemie Ytong?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Murowanie ścian w systemie Ytong wymaga zastosowania odpowiednich narzędzi, które są kluczowe dla osiągnięcia zamierzonych efektów. Często zdarza się, że osoby próbujące dobudować ściany z bloczków Ytong sięgają po narzędzia, które nie są dostosowane do tego typu materiałów. Na przykład, stosowanie młotka metalowego czy innych twardych narzędzi może prowadzić do uszkodzenia bloczków, co wpływa na ich stabilność oraz wygląd. Gumowy młotek, ze względu na swoje właściwości amortyzujące, pozwala na precyzyjne i delikatne uderzenia, co jest niezbędne w przypadku materiałów o cienkich ściankach. Użycie niewłaściwych narzędzi może nie tylko prowadzić do pęknięć, ale również sprawić, że murowanie będzie czasochłonne i nieefektywne. Przykładowo, niewłaściwe ustawienie czy zniekształcenie bloczków może powodować nieprawidłowe spoinowanie, co z kolei wpływa na trwałość całej konstrukcji. Zrozumienie zasadności stosowania odpowiedniego narzędzia jest fundamentalne w procesie budowlanym i powinno być podstawą dla każdego profesjonalisty w branży.

Pytanie 29

Jaką minimalną grubość powinny mieć ścianki oddzielające kanały dymowe w kominach wykonanych z cegły?

A. 1/2 cegły
B. 3/4 cegły
C. 1 cegła
D. 1/4 cegły
Wybierając odpowiedź, która sugeruje, że grubość przegródek jest mniejsza niż 1/2 cegły, można się łatwo pomylić, jeśli nie zna się roli tych przegródek w kominach. One są naprawdę ważne dla utrzymania dobrej izolacji i oddzielania kanałów dymowych. Grubości 3/4 cegły, 1/4 cegły czy 1 cegła są po prostu niewłaściwe i nie spełniają wymogów bezpieczeństwa. Jeśli przegródki będą za cienkie, jak w przypadku 1/4 cegły, może to prowadzić do problemu z odprowadzaniem spalin, co jest niebezpieczne dla zdrowia. Z kolei 1 cegła to może być za dużo, jeśli chodzi o koszty budowy, a przy tym nie warto przesadzać z materiałami. W sumie, nieprzestrzeganie norm dotyczących grubości tych przegródek może prowadzić do poważnych problemów, jak zapchanie kanałów dymowych, co pokazuje, że warto trzymać się zasad budowlanych przy projektowaniu kominów.

Pytanie 30

Aby uzyskać zaprawę cementowo-wapienną M4, należy użyć składników w proporcjach objętościowych 1 : 1 : 6, co oznacza

A. 1 część cementu : 1 część piasku : 6 części wapna hydratyzowanego
B. 1 część cementu : 1 część wapna hydratyzowanego : 6 części wody
C. 1 część cementu : 1 część wapna hydratyzowanego : 6 części piasku
D. 1 część wapna hydratyzowanego : 1 część piasku : 6 części cementu
W przypadku błędnych odpowiedzi, często występuje nieporozumienie dotyczące rozróżnienia składników zaprawy. Proporcje 1 : 1 : 6 powinny być interpretowane jako 1 część cementu, 1 część wapna hydratyzowanego oraz 6 części piasku, co jest kluczowe dla uzyskania pożądanej jakości zaprawy. Wybór odpowiednich proporcji ma ogromny wpływ na właściwości mechaniczne zaprawy, takie jak wytrzymałość na ściskanie, która jest fundamentalna w budownictwie. Nieprawidłowe stosunki, takie jak 1 część cementu, 1 część piasku i 6 części wapna hydratyzowanego, mogą prowadzić do zbyt dużego uwodnienia, co zmniejsza wytrzymałość i trwałość zaprawy. Ponadto, pomijanie piasku lub zbyt niskie jego proporcje skutkują gorszą pracą i adhezją zaprawy. Takie błędy mogą także prowadzić do problemów w dłuższej perspektywie czasowej, takich jak pęknięcia czy odspajanie elementów budowlanych. Warto również zauważyć, że błędne proporcje mogą wynikać z niewłaściwego zrozumienia właściwości materiałów budowlanych i ich interakcji. Dlatego kluczowe jest przestrzeganie standardów i dobrych praktyk w budownictwie, aby zapewnić bezpieczeństwo oraz trwałość konstrukcji.

Pytanie 31

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. średniowysokich.
B. niskich.
C. wysokich.
D. wysokościowych.
Zrozumienie, jak się klasyfikuje budynki według wysokości, to bardzo ważna sprawa, bo mogą się pojawić jakieś niejasności. Można spotkać się z odpowiedziami, które mówią, że budynek biurowy z 9 piętrami to coś średniowysokiego, niskiego albo wyskokowego, ale to mija się z prawdą. W przepisach nie ma dokładnej definicji 'średniowysoki', co może prowadzić do zamieszania. Budynek o 27 metrach zdecydowanie nie może być uznany za niski, bo te zazwyczaj mieszczą się poniżej 12 metrów. Jeśli się to pomija, to można wyciągnąć złe wnioski co do projektowania i budowy. Kiedy uznajemy, że budynek jest wysoki, projektanci muszą wziąć pod uwagę różne normy, co wpływa na systemy zabezpieczeń, takie jak windy przeciwpożarowe czy inne instalacje. Jeśli ktoś nie rozumie tego, to może to prowadzić do złego projektowania i niebezpiecznych sytuacji. Dlatego architekci i inżynierowie powinni znać definicje, ale też praktyczne skutki związane z klasyfikacją budynków.

Pytanie 32

Na podstawie danych zawartych w tabeli, określ dopuszczalną odchyłkę od pionu muru spoinowanego, mierzoną na całej wysokości ściany budynku dwukondygnacyjnego.

Tabela. Dopuszczalne odchyłki wymiarów murów (fragment)
Rodzaj odchyłekDopuszczalne odchyłki [mm]
mury spoinowanemury niespoinowane
Zwichrowania i skrzywienia
− na 1 m długości
− na całej powierzchni
3
10
6
20
Odchylenia od pionu
− na wysokości 1 m
− na wysokości kondygnacji
− na całej wysokości ściany
3
6
20
6
10
30
A. 10 mm
B. 20 mm
C. 12 mm
D. 6 mm
Wybór 6 mm, 10 mm czy 12 mm jako dopuszczalnego odchylenia to nietrafiony pomysł. Nie bierze on pod uwagę kluczowych norm budowlanych, które mówią, że dla dwukondygnacyjnych budynków odchylenie musi być co najmniej 20 mm. Dlaczego te odpowiedzi są błędne? Bo wynikają z niezrozumienia wymagań budowlanych i praktycznych aspektów. Choć czasami niewielkie odchylenia mogą być dopuszczalne, w przypadku murów spoinowanych precyzja jest kluczowa, więc te wartości są za małe, żeby zapewnić stabilność na dłużej. Takie myślenie może prowadzić do poważnych problemów w konstrukcji, których naprawa będzie kosztowna. Dlatego każdy, kto pracuje w budownictwie, powinien znać te normy i mieć pojęcie, jak je stosować praktycznie. Większe odchylenia są zgodne z wymaganiami, co pozwala utrzymać jakość budowy. Ważne, żeby zrozumieć te różnice, bo to klucz do dobrze wykonanej pracy.

Pytanie 33

Ile bloczków gazobetonowych o wymiarach 24 x 24 x 59 cm, których zużycie wynosi 7 szt./m2, będzie potrzeba do postawienia 3 zewnętrznych ścian garażu wolnostojącego, przy założeniu, że wysokość ścian wynosi 2,5 m, a wymiary garażu w rzucie to 4,0 x 6,0 m?

A. 168 sztuk
B. 350 sztuk
C. 280 sztuk
D. 175 sztuk
W przypadku błędnych odpowiedzi często występują nieporozumienia w zakresie obliczania powierzchni ścian oraz w przeliczeniu wymagań dotyczących ilości bloczków. Niekiedy użytkownicy mogą pomylić się przy określaniu wymiarów garażu, co prowadzi do niepoprawnego obliczenia powierzchni ścian. Dodatkowo, nieprawidłowe zrozumienie pojęcia jednostek zużycia materiałów budowlanych, takich jak bloczki gazobetonowe, może prowadzić do zaniżenia lub zawyżenia ilości potrzebnych bloczków. Na przykład, jeżeli ktoś obliczy powierzchnię tylko jednej ściany lub pomyli się w obliczeniach, może dojść do błędnych wniosków. Zdarza się także, że nie uwzględnia się pełnej wysokości ścian, co skutkuje niekompletną analizą potrzebnych materiałów. Kluczowe jest, aby przy takich obliczeniach zachować precyzję oraz stosować prawidłowe jednostki, aby uniknąć problemów w realizacji budowy. Przykłady błędnych rozważań obejmują również niezrozumienie, jak przeliczać jednostki w metrach kwadratowych na sztuki bloczków, co wymaga znajomości podstawowych zasad budownictwa oraz umiejętności matematycznych. Takie podstawowe błędy mogą prowadzić do znacznych niedoborów materiałów na placu budowy, co w konsekwencji powoduje opóźnienia oraz zwiększa koszty całej inwestycji.

Pytanie 34

Wykorzystanie deskowania pełnego jest kluczowe przy realizacji stropu?

A. DZ-3
B. Akermana
C. Fert
D. Teriva
Systemy DZ-3, Fert i Teriva, mimo że są powszechnie stosowane w budownictwie, nie wymagają pełnego deskowania przy wykonywaniu stropów w taki sposób, jak ma to miejsce w systemie Akermana. W przypadku DZ-3, który jest systemem stropowym opartym na prefabrykowanych elementach, zastosowanie deskowania pełnego nie jest konieczne, ponieważ elementy te są odpowiednio przystosowane do przenoszenia obciążeń i zapewniają sztywność konstrukcji. To podejście może prowadzić do błędnych wniosków, gdyż brak deskowania nie oznacza braku stabilności, ale raczej zastosowanie dostosowanych rozwiązań technologicznych. W systemie Fert, który również oparty jest na elementach prefabrykowanych, strop wykonuje się z betonu sprężonego, co dodatkowo eliminuje potrzebę pełnego deskowania, ponieważ sprężenie zapewnia odpowiednią nośność. Podobnie w systemie Teriva, który wykorzystuje pustaki ceramiczne, znaczenie deskowania jest ograniczone do zapewnienia odpowiedniej formy, ale nie wymaga pełnego deskowania. Użytkownicy często mylą wymagania dotyczące deskowania z wymaganiami konstrukcyjnymi, co może prowadzić do nieprawidłowego doboru metod budowlanych i zastosowania nieodpowiednich technik. Kluczowe jest zrozumienie, że różne systemy stropowe mają różne wymagania i dostosowanie technologii do specyfiki zastosowania jest fundamentalnym aspektem pracy w budownictwie.

Pytanie 35

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:2:6 (cement:wapno:piasek), wykorzystano 20 dm3 ciasta wapiennego. Jaką ilość piasku należy dodać do tej zaprawy?

A. 0,090 m3
B. 0,060 m3
C. 0,009 m3
D. 0,006 m3
Aby obliczyć, ile piasku należy dodać do zaprawy cementowo-wapiennej o proporcjach 1:2:6, zaczynamy od zrozumienia, że proporcja odnosi się do objętości poszczególnych składników. W tym przypadku mamy 1 część cementu, 2 części wapna i 6 części piasku. Suma proporcji wynosi 1 + 2 + 6 = 9 części. Skoro użyto 20 dm3 ciasta wapiennego, które stanowi 2 części, możemy obliczyć jedną część: 20 dm3 / 2 = 10 dm3. Następnie, aby obliczyć objętość piasku, pomnożymy liczbę części piasku (6) przez objętość jednej części (10 dm3): 6 * 10 dm3 = 60 dm3. Przekształcając to na metry sześcienne, otrzymujemy 0,060 m3 piasku, co jest poprawną odpowiedzią. Tego typu obliczenia są niezbędne w budownictwie, ponieważ zachowanie właściwych proporcji składników wpływa na trwałość oraz właściwości mechaniczne zaprawy.

Pytanie 36

Perlit to lżejsze kruszywo stosowane w budownictwie do wytwarzania zapraw

A. ciepłochronnych
B. krzemionkowych
C. szamotowych
D. kwasoodpornych
Perlit to naprawdę świetny materiał, jeśli chodzi o izolację. Dzięki swojej porowatej strukturze świetnie trzyma powietrze, co znacząco poprawia izolację termiczną zapraw. Z tego co widziałem, często stosuje się go w mieszankach tynkarskich i zaprawach, żeby zmniejszyć straty ciepła w budynkach. To jest ważne, zwłaszcza teraz, kiedy wszyscy myślimy o zrównoważonym budownictwie i efektywności energetycznej. Poza tym, perlit jest lekki, co znacznie ułatwia transport i użycie. Dzięki temu nasze konstrukcje są mniej obciążone. Warto pamiętać, że świetnie sprawdza się w systemach ociepleń, co naprawdę przekłada się na długowieczność i efektywność energetyczną budynków.

Pytanie 37

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. 25o - 30o
B. w dowolnej
C. 15o - 20o
D. < 10o
Odpowiedź 15o - 20o jest uważana za optymalną temperaturę do prowadzenia robót tynkarskich, ponieważ w tym zakresie można zapewnić odpowiednią plastyczność zaprawy tynkarskiej. W zbyt niskich temperaturach, poniżej 10o, proces wiązania zaprawy jest spowolniony, co może prowadzić do problemów z przyczepnością oraz pęknięć. Z kolei przy temperaturach przekraczających 20o, zwłaszcza w zakresie 25o - 30o, woda w zaprawie może zbyt szybko parować, co skutkuje niepełnym wiązaniem i osłabieniem struktury tynku. Dobry praktyką jest także monitorowanie wilgotności powietrza oraz stosowanie odpowiednich dodatków, które mogą poprawić właściwości zaprawy w trudnych warunkach atmosferycznych. Warto również pamiętać, że zgodnie z normą PN-B-10101, minimalne i maksymalne temperatury dla robót tynkarskich powinny być przestrzegane, aby zapewnić długotrwałość i jakość wykonania.

Pytanie 38

Na rysunku przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. polskim.
B. krzyżykowym.
C. wozówkowym.
D. główkowym,
Wybór odpowiedzi, która nie odnosi się do wiązania wozówkowego, często może brać się z braku zrozumienia różnych technik murowania. Na przykład, wiązanie główkowe to układanie cegieł tylko na krótkich bokach, co nie jest najlepszym rozwiązaniem dla stabilności, zwłaszcza w wyższych murach. Z kolei wiązanie polskie, które stosuje cegły w różnych kierunkach, nie cieszy się dużym powodzeniem i nie jest za bardzo polecane w nowoczesnym budownictwie. Wiązanie krzyżykowe, które polega na układaniu cegieł w krzyż, też nie wygląda najlepiej w kontekście stabilności. Wiedza o tych systemach wiązania jest bardzo ważna, żeby nie popełniać błędów w projektach. W praktyce trzeba pamiętać, że wybór odpowiedniego wiązania powinien opierać się na tym, jakie są wymagania projektu, jak obciążenia i stabilność. Użycie złego wiązania może prowadzić do poważnych problemów, takich jak pęknięcia murów czy obniżenie nośności, co może być niebezpieczne dla ludzi korzystających z budynku.

Pytanie 39

W celu przygotowania zapraw cementowo-wapiennych zimą, zaleca się wykorzystanie jako spoiwa

A. cementu portlandzkiego
B. cementu hutniczego
C. wapna hydratyzowanego
D. wapna hydraulicznego
Wybór wapna hydraulicznego jako spoiwa do zapraw cementowo-wapiennych w warunkach zimowych nie jest właściwy, gdyż tego typu wapno, mimo że posiada zdolność do twardnienia w wodzie, nie radzi sobie dobrze w niskich temperaturach. Wapno hydrauliczne wymaga określonej temperatury i wilgotności do skutecznego wiązania, a w zimowych warunkach może prowadzić do osłabienia struktury zaprawy. Z kolei cement hutniczy, który jest produktem ubocznym przemysłu stalowego, ma zastosowanie głównie w specjalistycznych konstrukcjach, ale jego użycie w standardowych zaprawach cementowo-wapiennych jest rzadkie i wymaga szczegółowych badań wytrzymałościowych, co czyni go niewłaściwym wyborem na zimę. Cement portlandzki, choć powszechnie stosowany w budownictwie, również nie jest idealnym rozwiązaniem na zimę, ponieważ jego proces schnięcia i twardnienia jest uzależniony od temperatury otoczenia, co w zimnych warunkach może prowadzić do problemów z utwardzeniem i trwałością. W praktyce błędne wnioski mogą wynikać z mylnego przekonania, że wszystkie rodzaje wapna i cementu mogą być stosowane zamiennie, co prowadzi do niedoceniania ich specyficznych właściwości oraz wpływu temperatury na procesy chemiczne zachodzące w zaprawach.

Pytanie 40

Na ilustracji przedstawiono fragment stropu

Ilustracja do pytania
A. Fert.
B. Kleina.
C. Teriva.
D. Akermana.
Strop Kleina stanowi jedno z bardziej klasycznych rozwiązań w budownictwie, które zyskało popularność dzięki swojej solidności oraz prostocie konstrukcyjnej. W jego budowie wykorzystuje się stalowe belki, co pozwala na znaczne zmniejszenie ciężaru całej konstrukcji, a jednocześnie zapewnia wysoką nośność. Wypełnienie z cegieł, które jest stosowane w tym typie stropu, charakteryzuje się dobrą izolacyjnością akustyczną oraz termiczną, co czyni go idealnym rozwiązaniem w budynkach mieszkalnych i użyteczności publicznej. Strop Kleina jest również zgodny z normami budowlanymi, co czyni go bezpiecznym i trwałym rozwiązaniem. Z punktu widzenia inżynierii, ważnym aspektem jest możliwość dostosowania tego typu stropu do różnych warunków oraz obciążeń, co czyni go elastycznym rozwiązaniem w projektowaniu budynków. Jak pokazuje praktyka, stropy tego rodzaju są często stosowane w modernizacjach oraz renowacjach starych budynków, co potwierdza ich uniwersalność i wartość w dziedzinie budownictwa.