Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 lutego 2026 20:58
  • Data zakończenia: 3 lutego 2026 21:46

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zaciskania złączek Wago.
B. wciskania łożysk.
C. profilowania przewodów.
D. zdejmowania pierścieni Segera.
Analiza pozostałych odpowiedzi ujawnia powszechne nieporozumienia dotyczące zastosowań narzędzi mechanicznych. Na przykład, wykorzystanie narzędzia do profilowania przewodów sugeruje, że szczypce te mogą służyć do kształtowania lub przystosowywania przewodów elektrycznych. W rzeczywistości, profilowanie przewodów wymaga narzędzi bardziej precyzyjnych, jak np. szczypce do zaciskania, które są dostosowane do pracy z izolacją i przewodami, a nie z pierścieniami. Z kolei wciskanie łożysk to proces, który wymaga zastosowania narzędzi takich jak ściągacze lub prasy, które są zaprojektowane do wywierania odpowiedniego nacisku na elementy, a nie do manipulacji pierścieniami zabezpieczającymi. Ponadto, zaciskanie złączek Wago wymaga narzędzi do zaciskania, które zapewniają odpowiednią siłę i precyzję, a ich zastosowanie nie ma żadnego związku z narzędziem używanym do pierścieni Segera. Błędem jest również przyjmowanie, iż jedno narzędzie może spełniać wiele funkcji, co w praktyce prowadzi do nieefektywności i ryzyka uszkodzenia elementów. Dlatego kluczowe jest dobranie odpowiednich narzędzi do specyficznych zadań, co jest zgodne z zasadami ergonomii i efektywności w pracy z mechaniką.

Pytanie 2

Na którym rysunku przedstawiono przewód elektroenergetyczny stosowany do wykonywania napowietrznych przyłączy budynków mieszkalnych?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór odpowiedzi C jest poprawny, ponieważ przedstawiony na rysunku przewód czterordzeniowy jest typowym rozwiązaniem stosowanym do tworzenia napowietrznych przyłączy elektroenergetycznych do budynków mieszkalnych. Tego typu przewody składają się z trzech przewodów fazowych oraz jednego przewodu neutralnego (N), co pozwala na właściwe zasilanie budynków w energię elektryczną. W praktyce, przewody te charakteryzują się odpowiednią izolacją oraz wytrzymałością mechaniczną, co jest niezbędne w trudnych warunkach atmosferycznych. W Polsce, zgodnie z normami PN-EN 60502-1, przewody te powinny być projektowane w sposób zapewniający ich długotrwałą i bezpieczną eksploatację. Zastosowanie przewodów czterordzeniowych w instalacjach napowietrznych jest zgodne z najlepszymi praktykami branżowymi, ponieważ umożliwia nie tylko efektywne przesyłanie energii, ale także odpowiednie zabezpieczenie instalacji przed przeciążeniem i zwarciem. Warto również dodać, że ich montaż często wiąże się z określonymi wymaganiami dotyczącymi odległości od przeszkód oraz maksymalnych wysokości usytuowania, co wpływa na bezpieczeństwo oraz niezawodność całego systemu zasilania.

Pytanie 3

Określ w kolejności od lewej strony nazwy narzędzi przedstawionych na rysunku.

Ilustracja do pytania
A. Szczypce uniwersalne, przyrząd do ściągania izolacji, obcinaczki boczne, szczypce do zaciskania końcówek, wkrętak izolowany, wskaźnik napięcia.
B. Szczypce do zaciskania końcówek, szczypce uniwersalne, wskaźnik napięcia, obcinaczki czołowe, szczypce do ściągania izolacji, wkrętak izolowany płaski.
C. Obcinaczki czołowe, przyrząd do ściągania izolacji, szczypce uniwersalne, wskaźnik napięcia, szczypce do zaciskania końcówek, wkrętak izolowany płaski.
D. Obcinaczki boczne, przyrząd do ściągania izolacji, szczypce do zaciskania końcówek, szczypce uniwersalne, wkrętak izolowany, wskaźnik napięcia.
Obcinaczki boczne to pierwsze narzędzie na zdjęciu. Mają ostrza skierowane ku sobie, co fajnie ułatwia precyzyjne cięcie drutów i kabli. W branży elektrycznej i podczas domowych napraw to naprawdę przydatne narzędzie. Potem mamy przyrząd do ściągania izolacji, który jest bardzo ważny, kiedy przygotowujemy przewody do połączeń elektrycznych. Dzięki niemu można łatwo usunąć izolację, nie uszkadzając rdzenia przewodu, co jest kluczowe. Dalej są szczypce do zaciskania końcówek, które są super przydatne, bo mocują końcówki kablowe na stałe. To bardzo ważne, żeby połączenia były niezawodne. Słyszałeś o szczypcach uniwersalnych? Te zajmują czwarte miejsce. Są mega wszechstronne i można ich używać do różnych zadań – od cięcia po chwytanie rzeczy. I nie zapomnijmy o wkrętaku izolowanym, bo to ważne narzędzie do pracy przy elektryce. Jest odporny na przebicie prądu. Na końcu mamy wskaźnik napięcia, który jest kluczowy dla bezpieczeństwa. Pozwala sprawdzić, czy jest napięcie, zanim zaczniemy jakąkolwiek robotę.

Pytanie 4

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na pół roku
B. raz na rok
C. co najmniej raz na 5 lat
D. co najmniej raz na 10 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 5

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Transformator.
B. Elektromagnes.
C. Dławik magnetyczny.
D. Wzbudnik indukcyjny.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 6

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Schematy montażowe A., B. i D. zawierają istotne błędy w podłączeniu przewodów, co może prowadzić do poważnych zagrożeń dla użytkowników oraz do awarii systemu oświetleniowego. W schemacie A. przewody fazowe są podłączone w sposób, który nie zapewnia prawidłowego działania przełącznika bistabilnego, co może skutkować sytuacją, w której lampa nie włącza się lub włącza, ale nie ma możliwości jej wyłączenia. W przypadku schematu B., podłączenie neutralne do przełącznika zamiast do lamp jest błędne i może doprowadzić do sytuacji, w której urządzenie pozostaje pod napięciem nawet po wyłączeniu, co stwarza ryzyko porażenia prądem. Z kolei schemat D. sugeruje nieprawidłowe podłączenie przewodów fazowych do lamp, co może prowadzić do nieefektywności systemu oraz skrócenia żywotności źródeł światła. Te błędy mogą wynikać z nieprawidłowej interpretacji zasady działania instalacji elektrycznych oraz braku zrozumienia roli przełączników w systemach oświetleniowych. Właściwe podejście do projektowania instalacji powinno opierać się na standardach takich jak PN-IEC 60364 oraz na znajomości zasad dobrego montażu, co zapewnia zarówno bezpieczeństwo, jak i efektywność energetyczną systemu.

Pytanie 7

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie V
B. Zwarcie międzyzwojowe w fazie W
C. Przerwa w uzwojeniu fazy W
D. Przerwa w uzwojeniu fazy V
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 8

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 6 szt.
B. 12 szt.
C. 10 szt.
D. 2 szt.
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.

Pytanie 9

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Stycznik.
C. Rozłącznik instalacyjny.
D. Wyłącznik nadmiarowoprądowy.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ to urządzenie jest kluczowym elementem ochrony instalacji elektrycznej przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych lub nagłych zmian w sieci zasilającej. Ograniczniki przepięć mają za zadanie zredukować napięcie do poziomu, który nie zagraża sprzętowi elektrycznemu. W praktyce stosuje się je w mieszkaniach, biurach oraz w obiektach przemysłowych, aby zabezpieczyć wrażliwe urządzenia, takie jak komputery czy systemy automatyki. Zgodnie z normami, takimi jak PN-EN 61643-11, ograniczniki te powinny być instalowane w bliskim sąsiedztwie chronionych urządzeń, co zapewnia ich skuteczność. Warto również wspomnieć, że ograniczniki przepięć są dostępne w różnych klasach, co pozwala na ich dobór zgodnie z charakterystyką instalacji oraz potrzebami użytkownika, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 10

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
B. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
C. Po załączeniu wyłącznika w obwodzie łazienki.
D. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
Zrozumienie zasad działania wyłączników różnicowoprądowych jest kluczowe dla bezpieczeństwa użytkowników instalacji elektrycznych. Odpowiedzi, które nie uwzględniają podłączenia odbiornika lub odnoszą się tylko do samego załączenia wyłącznika, nie uwzględniają rzeczywistych warunków, w jakich wyłącznik różnicowoprądowy zadziała. Wyłącznik różnicowoprądowy jest zaprojektowany do wykrywania różnicy prądów między przewodami fazowym a neutralnym. Kiedy obwód jest załączony, ale nie ma podłączonego odbiornika, nie występuje żaden przepływ prądu przez urządzenie, co oznacza, że nie ma też ryzyka upływu prądu. Ta sytuacja prowadzi do błędnych wniosków, sugerujących, że sama aktywacja wyłącznika w obwodzie gniazd pokoi wystarczy do zadziałania RCD. W rzeczywistości, by wyłącznik mógł zadziałać, muszą być spełnione określone warunki, w tym obecność odbiornika, który może generować upływ prądu. Innym częstym błędem myślowym jest mylenie działania RCD z innymi zabezpieczeniami, takimi jak bezpieczniki, które działają na zasadzie przeciążenia prądowego. Zrozumienie tych różnic jest kluczowe dla bezpiecznego korzystania z instalacji elektrycznych, zgodnie z normami, takimi jak PN-EN 61008, które szczegółowo opisują wymagania dla wyłączników różnicowoprądowych. W związku z tym, odpowiedzi, które ignorują te fundamentalne zasady, mogą prowadzić do niebezpiecznych sytuacji w rzeczywistych instalacjach elektrycznych.

Pytanie 11

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Poprawna odpowiedź to B, ponieważ przewód instalacyjny wtynkowy typu YDYt jest miedzianym przewodem jednodrutowym, który ma charakterystyczną izolację z PVC. Takie przewody są projektowane do stosowania w instalacjach elektrycznych, w miejscach, gdzie można je przybijać do ścian bez ryzyka uszkodzenia izolacji. Na zdjęciu B widzimy przewód, w którym żyły są oddzielone, co rzeczywiście odpowiada normom dla przewodów tego typu. Przewody YDYt są często wykorzystywane w instalacjach wewnętrznych, gdzie ich układ nie wymaga dodatkowej ochrony mechanicznej. Dzięki swojej konstrukcji, przewody te pozwalają na łatwy montaż i estetyczne wykończenie, co jest szczególnie ważne w budynkach mieszkalnych i biurowych. W praktyce oznacza to, że instalatorzy mogą je stosować w różnych konfiguracjach, co wpływa na elastyczność projektowania instalacji elektrycznych. Zgodność z normami PN-EN 60228 oraz PN-EN 50525-2-21 potwierdza ich jakość oraz bezpieczeństwo użytkowania.

Pytanie 12

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K2, K7
B. K1, K2, K3, K4, K5, K6, K7
C. K1, K5, K4, K6, K3, K7, K2
D. K7, K2, K3, K6, K4, K5, K1
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 13

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. rozdzielnica główna
B. przyłącze
C. wewnętrzna linia zasilająca
D. złącze
Przyłącze jest końcowym elementem sieci zasilającej, który zapewnia połączenie między siecią elektroenergetyczną a instalacją elektryczną obiektu budowlanego. To właśnie przyłącze dostarcza energię elektryczną do budynku, co czyni je kluczowym elementem całej infrastruktury zasilającej. W ramach przyłącza odbywa się nie tylko wprowadzenie energii, ale także realizacja podstawowych funkcji zabezpieczających, takich jak wyłączniki nadprądowe, które chronią instalację przed przeciążeniem. Przykładowo, w budynkach jednorodzinnych przyłącze zazwyczaj składa się z kabla przyłączeniowego, złącza oraz rozdzielnicy, która odpowiada za dalsze rozdzielenie energii do poszczególnych obwodów. W kontekście przepisów, przyłącze musi spełniać normy określone w dokumentach takich jak PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Zrozumienie roli przyłącza jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i wykonywaniem instalacji elektrycznych.

Pytanie 14

Który skutek dla organizmu pracownika może spowodować utrzymywanie się mgły olejowej w słabo wentylowanym pomieszczeniu?

A. Zakłócenia w układzie kostno-stawowym.
B. Zaburzenia w układzie krążenia.
C. Podrażnienie skóry, oczu, gardła i płuc.
D. Zmęczenie i obciążenie wzroku.
Prawidłowo wskazana odpowiedź „podrażnienie skóry, oczu, gardła i płuc” bardzo dobrze oddaje realne skutki zdrowotne długotrwałego przebywania w pomieszczeniu z mgłą olejową i słabą wentylacją. Mgła olejowa to drobne aerozole, czyli mikroskopijne kropelki oleju unoszące się w powietrzu. Powstają np. przy obróbce skrawaniem, smarowaniu, chłodzeniu narzędzi, w sprężarkach, niektórych układach pneumatycznych. Te drobinki osiadają na skórze, błonach śluzowych oczu i dróg oddechowych, co prowadzi do mechanicznego i chemicznego podrażnienia. W praktyce pracownik odczuwa pieczenie oczu, łzawienie, swędzenie skóry, kaszel, drapanie w gardle, czasem ucisk w klatce piersiowej. Przy dłuższej ekspozycji może dojść do stanów zapalnych skóry (dermatozy), przewlekłego zapalenia oskrzeli czy pogorszenia wydolności oddechowej. Zgodnie z zasadami BHP i wymaganiami norm (np. ogólne przepisy bezpieczeństwa i higieny pracy, rozporządzenia w sprawie NDS/NDN dla czynników szkodliwych) mgła olejowa jest traktowana jako szkodliwy czynnik chemiczny i należy ograniczać jej stężenie w powietrzu. Stosuje się wentylację mechaniczną, wyciągi miejscowe przy maszynach, osłony, a także środki ochrony indywidualnej – okulary ochronne, półmaski filtrujące, rękawice i odzież roboczą. Moim zdaniem kluczowe w praktyce jest to, żeby nie bagatelizować pierwszych objawów podrażnienia, bo ludzie często myślą „przyzwyczaję się”, a organizm się nie przyzwyczaja, tylko stopniowo uszkadza. W dobrze zarządzonym zakładzie utrzymywanie mgły olejowej powyżej dopuszczalnych stężeń jest traktowane jako poważne naruszenie zasad bezpieczeństwa i wymaga natychmiastowej reakcji: przeglądu instalacji, poprawy wentylacji, czasem nawet chwilowego wstrzymania pracy maszyn.

Pytanie 15

W jaki sposób zwarcie międzyzwojowe w uzwojeniu D1 – D2 wpłynie na pracę silnika, którego schemat przedstawiono na ilustracji?

Ilustracja do pytania
A. Zwiększy się wartość prędkości obrotowej wirnika.
B. Zwiększy się wartość strumienia magnetycznego wzbudzenia.
C. Zmniejszy się wartość prędkości obrotowej wirnika.
D. Zmniejszy się wartość prądu pobieranego przez silnik.
Wybór odpowiedzi dotyczących zmniejszenia wartości prądu pobieranego przez silnik lub zwiększenia wartości strumienia magnetycznego wzbudzenia jest błędny, ponieważ nie uwzględnia fundamentalnych zasad działania silników elektrycznych. W przypadku zwarcia międzyzwojowego, rezystancja uzwojenia D1 – D2 maleje, co nie tylko prowadzi do wzrostu prądu, ale także do zmniejszenia strumienia magnetycznego Φ. Wzrost wartości prądu jest spowodowany zmniejszeniem rezystancji, co z kolei może skutkować zwiększeniem prędkości obrotowej wirnika, a nie jej zmniejszeniem. Ponadto, nieprawidłowe jest myślenie, że wzrost strumienia magnetycznego wzbudzenia poprawi wydajność silnika w przypadku zwarcia. W rzeczywistości, zwarcie prowadzi do destabilizacji pracy silnika, a nie do jego poprawy. Wiele osób myli zjawisko zwarcia z poprawną regulacją parametrów silnika, co prowadzi do błędnych wniosków, że zmniejszenie prędkości obrotowej jest korzystne. W praktyce, zbyt niski strumień magnetyczny prowadzi do wzrostu prędkości, co może skutkować uszkodzeniami mechanicznymi i przegrzewaniem się silnika. Zrozumienie tych zależności jest kluczowe dla prawidłowego projektowania i eksploatacji silników elektrycznych.

Pytanie 16

Zamontowanie gniazda wtyczkowego bez styku ochronnego i dołączenie do niego urządzenia elektrycznego I klasy ochronności spowoduje

A. przeciążenie instalacji elektrycznej.
B. zwarcie w instalacji elektrycznej.
C. uszkodzenie urządzenia elektrycznego.
D. zagrożenie porażeniem prądem elektrycznym.
Prawidłowo – kluczowy problem w tym pytaniu to ochrona przeciwporażeniowa urządzeń I klasy ochronności. Urządzenia tej klasy mają obudowę metalową połączoną ze stykiem ochronnym (bolcem) w gnieździe. Ten styk musi być połączony z przewodem ochronnym PE w instalacji. Dzięki temu, jeśli nastąpi uszkodzenie izolacji i przewód fazowy dotknie obudowy, prąd popłynie przez PE, a zabezpieczenie (wyłącznik nadprądowy, bezpiecznik, wyłącznik różnicowoprądowy) szybko zadziała i odłączy zasilanie. Jeżeli zamontujemy gniazdo bez styku ochronnego i podłączymy do niego urządzenie I klasy, to obudowa zostaje „zawieszona w powietrzu” – nie ma połączenia ochronnego. W razie przebicia fazy na obudowę, metalowe części mogą znaleźć się pod napięciem 230 V względem ziemi. Użytkownik, który dotknie obudowy i jednocześnie np. kaloryfera, zlewu, podłogi betonowej, może stać się ścieżką przepływu prądu. To właśnie jest typowe zagrożenie porażeniem prądem elektrycznym. Z punktu widzenia norm (PN-HD 60364 i ogólne zasady SEP) stosowanie gniazd bez styku ochronnego w nowych instalacjach jest niedopuszczalne, jeżeli mają być tam podłączane urządzenia I klasy. W praktyce oznacza to, że w mieszkaniach, warsztatach, biurach powinny być montowane gniazda ze stykiem ochronnym, a przewód ochronny musi być poprawnie podłączony. Moim zdaniem każdy elektryk powinien mieć odruch: urządzenie z wtyczką z bolcem → tylko do gniazda ze stykiem ochronnym. Stare „płaskie” gniazdka bez bolca to relikt, który w zastosowaniach ogólnych jest po prostu niebezpieczny.

Pytanie 17

Na którym rysunku przedstawiono przewód który należy zastosować do wykonywania instalacji podtynkowej oświetlenia klatki schodowej?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Przewód z literą B super nadaje się do oświetlenia klatki schodowej, bo jest wielożyłowy. Dzięki temu można go podłączyć do różnych rzeczy, jak łączniki schodowe albo krzyżowe. W klatkach schodowych często trzeba sterować światłem z różnych miejsc, więc musimy mieć odpowiednie przewody. Ten wielożyłowy to fajna opcja, bo można podpiąć dodatkowe żyły, co daje nam większą elastyczność. I pamiętaj, że zgodnie z normą PN-IEC 60364, dobrze jest zaprojektować te instalacje tak, żeby zmniejszyć ryzyko zwarcia i mieć odpowiednie zabezpieczenia. Moim zdaniem, wybierając ten przewód B, ułatwiasz sobie życie, bo można łatwo dostosować oświetlenie w przyszłości, zmienić coś bez konieczności całkowitej wymiany systemu. Pamiętaj też, żeby zawsze sprawdzić specyfikacje techniczne oraz wymagania dotyczące zabezpieczeń elektrycznych w Twoim kraju.

Pytanie 18

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. przyłącza kablowego
B. instalacji wewnętrznej
C. wewnętrznej linii zasilającej
D. przyłącza napowietrznego
Odpowiedzi takie jak "instalacja wnętrzowa", "przyłącze kablowe" oraz "przyłącze napowietrzne" odnoszą się do innych aspektów systemu elektrycznego, które są mylone z wewnętrzną linią zasilającą. Instalacja wnętrzowa dotyczy ogółu elementów zainstalowanych wewnątrz budynku, takich jak gniazdka, włączniki czy oświetlenie, ale nie wskazuje na konkretne połączenie zasilające. Przyłącze kablowe odnosi się do połączenia między siecią dystrybucyjną a budynkiem, które ma na celu dostarczenie energii do budynku, ale nie jest to już linia zasilająca wewnętrzna. Natomiast przyłącze napowietrzne to forma dostarczenia energii elektrycznej, która wykorzystuje przewody zawieszone na słupach, co również nie dotyczy przesyłu energii wewnątrz budynku. Pojęcia te mogą prowadzić do nieporozumień, zwłaszcza u osób, które nie mają doświadczenia w dziedzinie elektryki. Poprawne zrozumienie różnicy między tymi terminami jest kluczowe dla projektowania i realizacji efektywnych oraz bezpiecznych systemów zasilania w obiektach budowlanych.

Pytanie 19

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. FE
B. FB
C. PE
D. PEN
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 20

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 2.
B. Wyłącznik 1.
C. Wyłącznik 4.
D. Wyłącznik 3.
Wybierając inne odpowiedzi niż wyłącznik 2, istnieje ryzyko zrozumienia, które nie uwzględnia rzeczywistych parametrów zadziałania wyłączników różnicowoprądowych. W przypadku wyłączników, kluczowe jest zrozumienie, że ich działanie opiera się na prawidłowym wykrywaniu różnic prądowych. Wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów zadziałania, zazwyczaj między 15 mA a 30 mA. Wybór wyłącznika 1, 3 lub 4 może wynikać z błędnego założenia, że wszystkie wymienione urządzenia działają poprawnie, co jest sprzeczne z zasadami bezpieczeństwa. Często popełnianym błędem jest ignorowanie wyników pomiarów, które wskazują na rzeczywisty prąd zadziałania. W praktyce, błędna interpretacja danych pomiarowych może prowadzić do sytuacji, w których wyłącznik nie zadziała w przypadku wystąpienia awarii, co stwarza poważne zagrożenie. Aby uniknąć takich problemów, zaleca się regularne testowanie wyłączników różnicowoprądowych oraz ich wymianę w przypadku stwierdzenia niesprawności. Warto również zaznajomić się z normami i parametrami technicznymi, które regulują działanie wyłączników, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 21

Która z wielkości elektrycznych jest mierzona w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Rezystancja uziemienia.
B. Rezystancja przewodu ochronnego.
C. Impedancja pętli zwarcia.
D. Impedancja przewodu neutralnego.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących różnych rodzajów rezystancji i impedancji w instalacjach elektrycznych. Impedancja pętli zwarcia odnosi się do całkowitego oporu w obwodzie w przypadku zwarcia, a jej pomiar jest istotny, by zapewnić odpowiednie działanie zabezpieczeń, ale nie jest to to samo, co rezystancja przewodu ochronnego. Odpowiedź dotycząca rezystancji uziemienia również może być mylnie utożsamiana z pomiarem rezystancji przewodu ochronnego. Uziemienie ma na celu ochronę przed niebezpiecznymi napięciami, natomiast przewód ochronny pełni rolę zabezpieczającą w kontekście porażenia prądem. Impedancja przewodu neutralnego również nie jest związana z pomiarem rezystancji przewodu ochronnego; w zasadzie odnosi się do oporu, który występuje w przewodzie neutralnym w trakcie normalnej pracy instalacji. Typowym błędem myślowym jest mylenie tych pojęć i branie pod uwagę nieodpowiednich parametrów podczas pomiarów. Kluczowe jest zrozumienie specyfikacji oraz funkcji poszczególnych przewodów w systemach elektrycznych, co jest niezbędne do prawidłowego diagnozowania i konserwacji instalacji. Znajomość różnic między tymi wielkościami jest fundamentalna dla bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 22

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Wyłącznik
B. Stycznik
C. Odłącznik
D. Rozłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 23

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Natychmiastowe odłączenie zasilania i wymiana przewodu.
B. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
C. Kontynuowanie użytkowania do czasu planowanej konserwacji.
D. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 24

Na podstawie ilustracji przedstawiającej fragment instalacji elektrycznej, określ technikę wykonania instalacji.

Ilustracja do pytania
A. Podtynkowa.
B. Wtynkowa.
C. Natynkowa na uchwytach.
D. Natynkowa prowadzona w rurkach.
Prawidłowo – na zdjęciu widać instalację wykonaną w technice wtynkowej. Przewody prowadzone są po powierzchni surowej ściany z cegły, mocowane uchwytami, puszki i osprzęt są osadzone w bruzdach lub otworach, ale całość jest przygotowana w taki sposób, żeby później została całkowicie przykryta tynkiem. W praktyce wygląda to tak: elektryk najpierw wyznacza trasy, wykonuje bruzdy pod puszki i podejścia, rozkłada przewody bezpośrednio na murze, mocuje je kołkami, klipsami lub klejem, a dopiero potem wchodzi tynkarz i wszystko zakrywa warstwą tynku cementowo‑wapiennego lub gipsowego. Po otynkowaniu nie widać ani przewodów, ani większości puszek – pozostają jedynie otwory pod gniazda i łączniki. Moim zdaniem to jedna z najbardziej typowych technik w budownictwie mieszkaniowym, zgodna z dobrymi praktykami opisanymi chociażby w PN‑HD 60364 i zaleceniami producentów przewodów instalacyjnych typu YDYp. Ważne jest tu prowadzenie tras pionowo i poziomo, w strefach instalacyjnych, tak aby później podczas wiercenia w ścianie nie naruszyć przewodów. Wtynkowa instalacja różni się od podtynkowej tym, że przewody nie są prowadzone w rurkach lub peszlach na całej długości, tylko bezpośrednio po podłożu, a ochronę mechaniczną zapewnia im właśnie warstwa tynku. Z mojego doświadczenia dobrze wykonana instalacja wtynkowa jest szybka w montażu, estetyczna po wykończeniu i całkowicie wystarczająca w typowych ścianach murowanych, o ile zachowa się odpowiednią głębokość bruzd, prawidłowe mocowanie i dobór przekrojów przewodów.

Pytanie 25

Które z przedstawionych narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. Narzędzie 2.
B. Narzędzie 3.
C. Narzędzie 1.
D. Narzędzie 4.
Prawidłowo wskazane zostało narzędzie 2, czyli poziomica laserowa (projektor linii). To właśnie ten typ przyrządu najlepiej sprawdza się przy wyznaczaniu tras przewodów w pomieszczeniach o dużej powierzchni. Kluczowa jest tu możliwość rzutowania wyraźnej, długiej linii laserowej na ścianę, sufit lub podłogę, bez konieczności przykładania poziomnicy punkt po punkcie. W praktyce instalacyjnej, szczególnie przy dużych halach, korytarzach, biurach typu open space, klasyczna poziomica bańkowa staje się po prostu za krótka i mało wygodna. Laser pozwala jednym ustawieniem wyznaczyć ciągłą trasę pod koryta kablowe, peszle, listwy instalacyjne czy linie podtynkowych bruzd. Z mojego doświadczenia wynika, że przy dobrze ustawionym statywie i samopoziomowaniu można bardzo szybko i precyzyjnie zaznaczyć wysokości gniazd, łączników i tras kablowych w całym pomieszczeniu, trzymając się wymagań normowych dotyczących rozmieszczenia osprzętu. Jest to zgodne z dobrą praktyką branżową – przed kuciem bruzd i rozwijaniem przewodów wykonuje się dokładny plan tras i oznaczenia na ścianach. Poziomica laserowa pozwala też łatwo utrzymać równoległość tras względem podłogi i sufitu, co potem ułatwia serwis i modernizacje. W nowoczesnych realizacjach instalacji elektrycznych taki laser to w zasadzie podstawowe narzędzie montera, zwłaszcza przy pracy w zespołach i na większych inwestycjach, gdzie liczy się i dokładność, i czas wykonania robót.

Pytanie 26

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Wyłącznika nadprądowego
B. Elektronicznego przekaźnika czasowego
C. Ochronnika przepięć
D. Wyłącznika różnicowoprądowego
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 27

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 3, N z 2, 1 z 4
B. L z 4, N z 1, 2 z 3
C. L z 1, N z 4, 2 z 3
D. L z 1, N z 3, 2 z 4
Poprawna odpowiedź, czyli połączenie L z 1, N z 4 oraz 2 z 3, jest zgodna z zasadami sztuki monterskiej i zapewnia prawidłowe funkcjonowanie obwodu oświetleniowego. W tej konfiguracji przewód fazowy (L) łączy się z przełącznikiem (1), co pozwala na załączanie i wyłączanie oświetlenia w sposób kontrolowany. Przewód neutralny (N), który jest kluczowy dla pełnego obiegu prądu, łączy się z oświetleniem (4), co zapewnia jego poprawne działanie. Połączenie przewodów w puszce rozgałęźnej (2 z 3) jest również istotne, gdyż umożliwia efektywne zarządzanie obwodem oraz minimalizuje straty energii. Warto zauważyć, że zgodność z normami, takimi jak PN-IEC 60364, które dotyczą instalacji elektrycznych, zapewnia bezpieczeństwo i efektywność energetyczną. Takie połączenie jest również stosowane w praktyce podczas montażu instalacji oświetleniowych w budynkach mieszkalnych i komercyjnych, co potwierdza jego praktyczną użyteczność.

Pytanie 28

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu
B. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
C. Wymienić uszkodzony przewód na nowy o takim samym przekroju
D. Wymienić wszystkie przewody na nowe o większym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 29

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Światłość.
B. Natężenie oświetlenia.
C. Luminancję.
D. Temperaturę barwową światła.
Wybór odpowiedzi dotyczącej temperatury barwowej światła, luminancji lub światłości jest błędny, ponieważ każda z tych wielkości odnosi się do różnych aspektów światła, które nie są mierzone przez luksomierz. Temperatura barwowa, na przykład, to parametr określający kolor światła, który jest wyrażany w kelwinach (K). Jest ona kluczowa w kontekście oświetlenia, ponieważ wpływa na percepcję kolorów i atmosferę we wnętrzach, jednak nie jest to wartość, którą luksomierz może określić. Luminancja, z kolei, odnosi się do jasności źródła światła w danym kierunku i jest mierzona w kandela na metr kwadratowy (cd/m²). Luksomierz nie jest przystosowany do takich pomiarów, ponieważ jego głównym celem jest określenie intensywności oświetlenia bez uwzględniania kierunku. Światłość również nie jest mierzona przez luksomierz; jest to strumień świetlny przypadający na określoną powierzchnię, wyrażany w lumenach. Główną przyczyną błędów wynikających z wyboru błędnych odpowiedzi jest nieznajomość właściwych definicji i zastosowania poszczególnych wielkości fizycznych związanych ze światłem. Wiedza o różnicy między natężeniem oświetlenia a innymi formami pomiaru jest kluczowa w zakresie właściwego wykorzystania przyrządów pomiarowych w praktyce.

Pytanie 30

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
B. weryfikacja oznaczeń obwodów oraz zabezpieczeń
C. pomiar rezystancji uziemienia
D. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
W kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów pełni kluczową rolę w zapewnieniu jej prawidłowego funkcjonowania oraz bezpieczeństwa. Sprawdzanie oznaczeń obwodów i zabezpieczeń jest niezwykle istotne, ponieważ umożliwia właściwe zidentyfikowanie obwodów zasilających. Niewłaściwe oznaczenia mogą prowadzić do poważnych błędów w eksploatacji, takich jak przypadkowe wyłączenie zasilania czy trudności w identyfikacji obwodów w sytuacjach awaryjnych. Również ocena dostępu do urządzeń jest kluczowa, ponieważ instalacje elektryczne muszą być łatwo dostępne dla personelu serwisowego oraz użytkowników. Zbyt mała przestrzeń lub trudności w dostępie mogą uniemożliwić prawidłową konserwację, co zwiększa ryzyko awarii. Sprawdzanie poprawności oznaczenia przewodów neutralnych i ochronnych jest kolejnym elementem, który jest niezbędny w celu zapewnienia prawidłowego działania instalacji oraz ochrony przed porażeniem elektrycznym. Normy, takie jak PN-IEC 60364, kładą nacisk na znaczenie poprawnego oznakowania przewodów, co jest kluczowe dla prawidłowej identyfikacji ich funkcji oraz zapewnienia bezpieczeństwa użytkowników. Dlatego w kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów jest niezbędny i nie można ich pomijać.

Pytanie 31

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. napięcia sieciowego oraz prądu różnicowego
B. prądu różnicowego oraz czasu jego działania
C. napięcia sieciowego oraz prądu obciążenia
D. prądu obciążenia oraz czasu jego działania
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 32

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. DC 500 V i AC 100 V
B. DC 500 V i AC 50 V
C. AC 500 V i DC 10 V
D. AC 500 V i DC 50 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 33

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. aR 16 A
B. gG 16 A
C. aM 20 A
D. gB 20 A
Wybór wkładki topikowej gG 16 A jest poprawny, ponieważ wkładki te są przeznaczone do ochrony obwodów przed przeciążeniem oraz zwarciem. W przypadku bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V, obliczamy maksymalny prąd znamionowy przy użyciu wzoru I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A zapewnia odpowiednią ochronę, gdyż jej wartość prądu znamionowego jest większa niż obliczona wartość prądu roboczego, co oznacza, że nie będzie zbyt szybko przerywała pracy urządzenia podczas normalnego użytkowania. Dodatkowo, wkładki gG charakteryzują się dobrą zdolnością do łapania zwarć, co jest kluczowe w przypadku bojlerów, które mogą doświadczać nagłych skoków prądu. Zastosowanie odpowiedniej wkładki topikowej jest ważne dla zapewnienia bezpieczeństwa instalacji oraz długowieczności urządzeń. W normach IEC 60269 podano, że wkładki gG są odpowiednie do ochrony przed przeciążeniami oraz zwarciami w obwodach instalacji elektrycznych, co czyni je dobrym wyborem w tym przypadku.

Pytanie 34

Ile wynosi wartość międzyszczytowa przedstawionego przebiegu napięcia?

Ilustracja do pytania
A. 1,5 V
B. 6,0 V
C. 5,0 V
D. 2,5 V
Poprawnie – na przedstawionym wykresie napięcie zmienia się między poziomem bliskim 0 V a poziomem 5 V, więc wartość międzyszczytowa wynosi 5,0 V. Wartość międzyszczytowa (często oznaczana jako Upp, Uppk lub Upk-pk) to po prostu różnica między wartością maksymalną a minimalną sygnału: Upp = Umax − Umin. Na rysunku widać, że dolny poziom przebiegu praktycznie dotyka osi 0 V, a górny poziom jest na wysokości 5 V, więc: Upp = 5 V − 0 V = 5 V. W praktyce pomiarowej, szczególnie przy przebiegach prostokątnych, trójkątnych czy dowolnych niestandardowych, wartość międzyszczytowa jest jednym z podstawowych parametrów opisu sygnału, obok wartości skutecznej i wartości średniej. Oscyloskopy cyfrowe mają nawet dedykowaną funkcję pomiaru Vpp, którą w serwisie i w laboratorium stosuje się praktycznie non stop. Moim zdaniem dobrze jest odruchowo patrzeć na przebieg i automatycznie oceniać, czy podane napięcie jest amplitudą, wartością międzyszczytową, czy może wartością skuteczną. W układach z elektroniką cyfrową, np. z mikrokontrolerami, ten konkretny poziom 5 V jest typowy dla zasilania logiki TTL/CMOS, więc taki prostokąt 0–5 V to typowy sygnał sterujący. Z kolei przy badaniu zasilaczy impulsowych albo generatorów funkcji na oscyloskopie projektant często sprawdza właśnie, czy napięcie międzyszczytowe zgadza się z założeniami katalogowymi i czy nie dochodzi do przesterowania wejść urządzeń. Warto też pamiętać, że dla przebiegów symetrycznych sinusoidalnych wartości międzyszczytowej nie mylimy z amplitudą: dla sinusa Upp = 2·Um, a tutaj prostokąt jest niesymetryczny względem zera, więc sprawa jest prostsza – liczymy zwykłą różnicę między górą i dołem.

Pytanie 35

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
B. pomiar rezystancji uziemienia
C. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
Ocena dostępu do urządzeń, sprawdzenie oznaczenia obwodów i zabezpieczeń oraz sprawdzenie poprawności oznaczenia przewodów neutralnych i ochronnych to istotne elementy oględzin instalacji elektrycznej, które powinny być wykonywane regularnie. Ocena dostępu do urządzeń jest kluczowa, ponieważ zapewnia, że personel może wygodnie i bezpiecznie pracować z instalacją, a także szybko reagować w przypadku awarii. Sprawdzanie oznaczenia obwodów i zabezpieczeń oraz przewodów neutralnych i ochronnych pozwala na identyfikację potencjalnych problemów oraz zrozumienie struktury instalacji, co jest niezbędne do skutecznego zarządzania nią. Problemy takie jak niewłaściwe oznaczenie mogą prowadzić do poważnych zagrożeń, w tym do niebezpieczeństwa porażenia prądem lub uszkodzenia sprzętu. Powszechnym błędem jest mylenie tych elementów z pomiarem rezystancji uziemienia. Wiedza o różnicy między tymi czynnościami jest kluczowa, ponieważ każde z nich ma swoje unikalne cele i metody, a ich pomylenie może prowadzić do niewłaściwych wniosków co do stanu instalacji. Istotne jest, aby każda z tych czynności była przeprowadzana zgodnie z obowiązującymi normami i standardami, co gwarantuje bezpieczeństwo i efektywność systemu elektrycznego.

Pytanie 36

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Najwyższy czas zadziałania
B. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
C. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
D. Maksymalny prąd zwarciowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 37

Symbol graficzny przedstawiony na rysunku oznacza w instalacjach elektrycznych

Ilustracja do pytania
A. przewód ochronny nieuziemiony.
B. przewód ochronny uziemiony.
C. połączenie elektryczne z korpusem, obudową (masą).
D. skrzyżowanie przewodów bez połączenia elektrycznego.
Ten symbol na rysunku to naprawdę ważna rzecz, jeśli chodzi o instalacje elektryczne. Oznacza on połączenie elektryczne z korpusem, czyli masą. Takie połączenia są niezbędne dla bezpieczeństwa, bo dobrze uziemione urządzenia chronią nas przed porażeniem prądem, zwłaszcza jak coś pójdzie nie tak. W Polsce mamy konkretne normy, które mówią, że takie połączenia trzeba stosować, a zwłaszcza w urządzeniach, które mogą być niebezpieczne. Przykład? Urządzenia przemysłowe! Każde z nich musi być uziemione, żeby było bezpiecznie w trakcie pracy. Jak coś jest źle podłączone, to mogą się zdarzyć naprawdę groźne sytuacje, jak przepięcia czy porażenia prądem. Dlatego tak ważne jest, żeby wiedzieć, co oznaczają te symbole i stosować je w każdym projekcie elektrycznym. To nie tylko dobrze, to wręcz konieczność w tej branży.

Pytanie 38

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA
A. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
B. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
C. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
D. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
Analizując dostępne odpowiedzi, można zauważyć szereg błędnych wniosków dotyczących stanu wyłączników różnicowoprądowych. Pierwsza z błędnych koncepcji mówi o tym, że żaden z wyłączników nie nadaje się do dalszej eksploatacji. Takie sformułowanie wprowadza w błąd, ponieważ na podstawie przedstawionych danych można zauważyć, że nie wszystkie wyłączniki miały problemy z zadziałaniem. Kolejnym błędnym podejściem jest stwierdzenie, że wyłącznik nr II nie nadaje się do dalszej eksploatacji. Bez analizy konkretnej wartości prądu różnicowego dla tego wyłącznika, nie można wnioskować o jego stanie. Koncentracja na jednym wyłączniku, bez uwzględnienia reszty, prowadzi do mylnych konkluzji. W przypadku wyłącznika nr III, kluczowe jest zrozumienie, że nie zadziałał on przy prądzie 12 mA, co jest poniżej wymaganych 15 mA. W praktyce, przy ocenie stanu technicznego wyłączników różnicowoprądowych, niezbędne jest uwzględnienie norm oraz wartości nominalnych zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Błędem jest również zakładanie, że wystarczy jedynie pomiar prądu różnicowego, aby ocenić stan wyłącznika. Każdy z wyłączników powinien być analizowany indywidualnie, w kontekście jego specyfikacji i wymagań bezpieczeństwa, zgodnie z obowiązującymi normami branżowymi.

Pytanie 39

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
C. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 40

Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?

A. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
B. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)
C. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
D. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
W tym zadaniu łatwo się pomylić, bo na pierwszy rzut oka wszystkie oznaczenia wyglądają podobnie, a diabeł siedzi w szczegółach. Kluczowe są tu trzy rzeczy: rodzaj przewodu (materiał, izolacja), liczba żył i ich przeznaczenie oraz przekrój znamionowy dobrany do obwodu gniazd w instalacji wtynkowej w sieci TN-S. Wiele osób odruchowo sięga po przewód dwużyłowy, na przykład 2 × 2,5 mm² albo 2 × 1,5 mm², bo kojarzy, że „jednofazowe gniazdo to faza i neutralny”. I tu pojawia się typowy błąd: w układzie TN-S przewód ochronny PE musi być osobną żyłą, a gniazda wtyczkowe ogólnego przeznaczenia wymagają podłączenia przewodu ochronnego. Dlatego przewód dwużyłowy w ogóle odpada – brakuje trzeciej żyły ochronnej, co jest niezgodne z zasadami ochrony przeciwporażeniowej i warunkami technicznymi. Innym częstym potknięciem jest sięganie po przekrój 1,5 mm² do gniazd. Ten przekrój używa się raczej do obwodów oświetleniowych, gdzie prądy są mniejsze. Dla obwodów gniazd przy zabezpieczeniu 16 A i typowych długościach obwodów przyjmuje się 2,5 mm², aby zapewnić odpowiednią obciążalność prądową, ograniczyć spadek napięcia i zyskać rozsądny zapas bezpieczeństwa eksploatacyjnego. Kolejna sprawa to rodzaj powłoki i przeznaczenie przewodu. W instalacji wtynkowej stosuje się przewody przystosowane do układania pod tynkiem, najczęściej typu YDYt. Przewody płaskie lub o innym przeznaczeniu, jak na przykład YLY stosowane raczej jako przewody elastyczne, nie są typowym wyborem do stałej instalacji w ścianie. Dochodzi jeszcze oznaczenie „żo”, które informuje, że jedna z żył jest żółto-zielona, czyli przeznaczona jako PE. Brak tego oznaczenia w przewodzie wielożyłowym sygnalizuje, że w środku nie ma żyły ochronnej w standardowym kolorze, co znowu kłóci się z wymaganiami dla sieci TN-S. Podsumowując, błędne odpowiedzi wynikają zwykle z pomylenia obwodów gniazd z obwodami oświetleniowymi, nieuwzględnienia osobnej żyły PE albo zignorowania faktu, że przewód ma być typowo instalacyjny pod tynk, a nie jakikolwiek przewód o zbliżonym przekroju.