Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 18:27
  • Data zakończenia: 17 grudnia 2025 18:56

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
B. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
C. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
D. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
Poprawna odpowiedź wskazuje na prawidłowy układ elementów w hydraulice, gdzie najpierw umieszczamy zawory reagujące na sygnały obiektowe, a następnie zawory sterujące, robocze i na końcu elementy wykonawcze. Taki układ jest zgodny z zasadami projektowania systemów hydraulicznych, które zalecają, aby sygnały były przekazywane w kierunku od źródła zasilania do elementów wykonawczych. Przykładem praktycznym może być układ hydrauliczny w maszynach budowlanych, gdzie precyzyjne sterowanie ruchem siłowników jest kluczowe dla efektywności pracy. Dobrze zaprojektowany układ hydrauliczny nie tylko zwiększa wydajność, ale także poprawia bezpieczeństwo operacji, ponieważ odpowiednie sterowanie pozwala na szybsze i bardziej precyzyjne reakcje na zmiany w otoczeniu. W branży hydraulicznej, zgodność z normami ISO oraz PN EN jest istotna, ponieważ przyczynia się do zwiększenia niezawodności i trwałości systemów. Zastosowanie takiej kolejności elementów pozwala również na łatwiejsze diagnozowanie usterek oraz optymalizację procesu serwisowego.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Który z wymienionych fragmentów kodu assemblera wskazuje na realizację operacji dodawania przez procesor?

A. MUL
B. SUB
C. ADD
D. DIV
Kod 'ADD' jest skrótem od angielskiego słowa 'addition', co w kontekście programowania assemblerowego oznacza operację dodawania. W zasadzie instrukcja ta instruuje procesor, aby dodał wartości znajdujące się w dwóch rejestrach lub pomiędzy rejestrami a pamięcią. Przykładowo, jeśli mamy rejestry R1 i R2, używając instrukcji 'ADD R1, R2', procesor doda wartość z R2 do wartości w R1 i zapisze wynik z powrotem w R1. To podejście jest kluczowe w obliczeniach arytmetycznych i w wielu algorytmach przetwarzania danych. Dodatkowo, stosowanie instrukcji 'ADD' w kodzie assemblera jest zgodne z najlepszymi praktykami w programowaniu niskopoziomowym, gdzie precyzyjne zarządzanie operacjami arytmetycznymi jest niezbędne dla wydajności aplikacji. Użycie tej instrukcji jest również powszechne w kontekście optymalizacji kodu, gdzie reducowanie liczby operacji arytmetycznych przekłada się na szybsze działanie programów.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaka jest minimalna liczba bitów przetwornika A/C, która powinna być użyta w układzie, aby dla zakresu pomiarowego 0 mA ÷ 20 mA uzyskać rozdzielczość równą 0,01 mA?

A. 12 bitowy
B. 10 bitowy
C. 16 bitowy
D. 11 bitowy
Odpowiedź 11-bitowa jest poprawna, ponieważ aby osiągnąć wymaganą rozdzielczość 0,01 mA w zakresie 0-20 mA, musimy najpierw obliczyć liczbę poziomów kwantyzacji. Zakres pomiarowy wynoszący 20 mA podzielony przez rozdzielczość 0,01 mA daje nam 2000 poziomów. Następnie, aby określić wymaganą liczbę bitów w przetworniku A/C, stosujemy wzór 2^n ≥ 2000. Logarytm z podstawą 2 z 2000 wynosi około 10,97, co po zaokrągleniu w górę daje 11. Przetwornik 11-bitowy, oferując 2048 poziomów, spełnia wymogi co do rozdzielczości, ponieważ zapewnia wystarczającą ilość poziomów do uchwycenia zmian w sygnale. W praktyce przetworniki o takiej rozdzielczości są powszechnie stosowane w systemach automatyki przemysłowej, gdzie precyzyjny pomiar prądu jest kluczowy dla monitorowania i kontrolowania procesów. Dobrą praktyką jest również użycie przetworników A/C zgodnych z normami IEC 61000, które zapewniają wysoką jakość pomiarów w trudnych warunkach przemysłowych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
B. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
C. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
D. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
Wybór odpowiedzi "zabezpieczyć je przed włączeniem i sprawdzić brak napięcia" jest kluczowy dla zapewnienia bezpieczeństwa podczas konserwacji silników elektrycznych. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 60204-1, przed przystąpieniem do jakichkolwiek prac konserwacyjnych należy zawsze odłączyć zasilanie. Zabezpieczenie obwodów przed włączeniem jest podstawowym krokiem, który minimalizuje ryzyko przypadkowego uruchomienia maszyny. Proces sprawdzania braku napięcia, na przykład za pomocą wskaźnika napięcia, jest niezbędny, aby upewnić się, że obwód jest całkowicie bezpieczny do pracy. Tego rodzaju procedury są standardowymi praktykami w przemyśle, które zapewniają nie tylko bezpieczeństwo technika, ale także zapobiegają uszkodzeniu sprzętu. Oprócz tego, stosowanie odpowiednich osłon i oznakowań ostrzegawczych jest również ważne, aby informować innych pracowników o prowadzonych pracach konserwacyjnych, co dodatkowo zwiększa poziom bezpieczeństwa w miejscu pracy.

Pytanie 18

Jaki parametr siłownika zainstalowanego w prasie pneumatycznej ma wpływ na maksymalną wartość wysunięcia stempla?

A. Średnica cylindra
B. Średnica tłoczyska
C. Maksymalne ciśnienia zasilania
D. Skok siłownika
Skok siłownika jest kluczowym parametrem, który bezpośrednio wpływa na maksymalny wysuw stempla w prasie pneumatycznej. Oznacza on maksymalną odległość, jaką tłoczysko siłownika może przebyć od pozycji spoczynkowej do końca swojego ruchu. W praktyce oznacza to, że im większy skok siłownika, tym większy zakres ruchu stempla, co jest niezbędne w wielu zastosowaniach, takich jak formowanie, prasowanie czy tłoczenie. Zrozumienie tego parametru jest szczególnie istotne w kontekście projektowania urządzeń przemysłowych, gdzie optymalizacja wydajności jest kluczowa. W branży stosuje się różne normy dotyczące projektowania siłowników, takie jak ISO 15552, które definiują standardy dotyczące wymiarów i wydajności siłowników pneumatycznych. Dzięki tym standardom inżynierowie mogą dobierać odpowiednie komponenty, zapewniając efektywność i bezpieczeństwo urządzeń. Właściwy dobór skoku siłownika ma również wpływ na efektywność energetyczną całego systemu, co przekłada się na niższe koszty eksploatacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Na tabliczce znamionowej silnika indukcyjnego symbol "S1" wskazuje na

A. kategorię izolacji uzwojenia
B. tryb pracy ciągłej
C. maksymalną temperaturę otoczenia
D. typ chłodzenia silnika
Symbol "S1" na tabliczce znamionowej silnika indukcyjnego rzeczywiście oznacza pracę ciągłą. W kontekście silników elektrycznych, oznaczenie to sugeruje, że konstrukcja silnika pozwala na jego nieprzerwaną pracę przez dłuższy czas bez ryzyka przegrzania. Silniki oznaczone jako "S1" są projektowane z myślą o osiąganiu nominalnych parametrów, takich jak moc, prąd czy moment obrotowy, w sposób stabilny i efektywny. W praktyce oznacza to, że silniki te można stosować w aplikacjach, gdzie wymagana jest ciągła praca, jak na przykład w wentylatorach, pompach czy kompresorach. Zgodnie z normą IEC 60034-1 tryby pracy silników elektrycznych są precyzyjnie zdefiniowane, co pozwala inżynierom i projektantom na wybór odpowiednich urządzeń do konkretnych zastosowań, minimalizując ryzyko awarii oraz utrzymując wysoką efektywność energetyczną.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaki program służy do gromadzenia informacji o procesie przemysłowym, ich przedstawiania oraz archiwizacji?

A. Linker
B. CAD/CAM
C. SCADA
D. Kompilator
SCADA, czyli System Control and Data Acquisition, to kluczowy program używany w przemyśle do zbierania, monitorowania oraz archiwizacji danych procesowych. Dzięki SCADA operatorzy mogą uzyskiwać w czasie rzeczywistym informacje na temat pracy maszyn oraz efektywności procesów przemysłowych. System ten umożliwia wizualizację danych w formie graficznych interfejsów, co ułatwia identyfikację problemów i szybką reakcję na nie. Przykładem zastosowania SCADA może być zarządzanie systemem wodociągowym, gdzie program monitoruje ciśnienie, przepływ wody oraz stan zbiorników. Standardy takie jak ISA-95 czy ISA-88 definiują ramy, w których SCADA operuje, co zapewnia interoperacyjność z innymi systemami automatyki przemysłowej. Wiele nowoczesnych instalacji przemysłowych korzysta z SCADA, aby zwiększyć efektywność operacyjną, poprawić jakość produkcji oraz zminimalizować przestoje, co przekłada się na oszczędności finansowe i lepszą jakość produktów.

Pytanie 23

Do zobrazowania relacji między elementami i zespołami projektowanej maszyny wykorzystuje się rysunek

A. złożeniowy
B. częściowy
C. rzutowy
D. zespołowy
Rysunek złożeniowy jest kluczowym elementem dokumentacji technicznej projektowanej maszyny, ponieważ przedstawia wszystkie komponenty oraz ich wzajemne usytuowanie w jednym, kompleksowym widoku. Dzięki temu inżynierowie i technicy mogą łatwo zrozumieć, jak poszczególne elementy współpracują ze sobą, co jest niezwykle istotne podczas procesu montażu oraz serwisowania maszyny. Na etapie projektowania, rysunki złożeniowe pozwalają na szybkie identyfikowanie potencjalnych problemów związanych z kolizjami elementów oraz optymalizację przestrzenną. Zgodnie z normami ISO dotyczącymi rysunku technicznego, rysunki złożeniowe powinny być jasne, czytelne i zawierać wszystkie niezbędne informacje, takie jak numery katalogowe części, materiały i wymiary. Przykładem zastosowania rysunku złożeniowego może być projektowanie skomplikowanych maszyn, takich jak obrabiarki czy urządzenia automatyki przemysłowej, gdzie zrozumienie interakcji pomiędzy komponentami jest kluczowe dla efektywności i bezpieczeństwa całego systemu.

Pytanie 24

W jednofazowym silniku indukcyjnym napędzającym urządzenie mechatroniczne uszkodzeniu uległ kondensator pracy o parametrach znamionowych 2,5 uF / 450 V. Którym z wymienionych kondensatorów należy zastąpić uszkodzony, aby naprawić urządzenie?

Dane techniczne:
Napięcie znamionowe450 V
Częstotliwość znamionowa50 ÷ 60 Hz
Tolerancja pojemności±5%
Oczekiwana żywotność10 000 h (HPFNT)
Stopień ochronyIP00
ModelPojemność [μF]Wymiary D x H [mm]
MK 450-1130 x 57
MK 450-1,51,530 x 57
MK 450-2230 x 57
MK 450-2,52,530 x 57
MK 450-101035 x 57
MK 450-12,512,535 x 70
MK 450-202040 x 70
MK 450-252540 x 70
MK 450-505040 x 70
A. MK 450-2
B. MK 450-25
C. MK 450-2,5
D. MK 450-20
Kondensator oznaczony jako 'MK 450-2,5' jest poprawnym zamiennikiem uszkodzonego kondensatora o parametrach 2,5 uF / 450 V. Kluczowym czynnikiem przy doborze kondensatora jest zgodność zarówno z pojemnością, jak i napięciem znamionowym. W przypadku silników indukcyjnych, kondensatory są niezbędne do poprawnego rozruchu i funkcjonowania silnika, dlatego ich wybór ma fundamentalne znaczenie. Zastosowanie kondensatora o niewłaściwej pojemności może prowadzić do obniżenia wydajności silnika lub jego uszkodzenia. W praktyce, zastosowanie kondensatora MK 450-2,5, który spełnia te wymagania, zapewnia optymalną pracę silnika oraz minimalizuje ryzyko awarii. Warto również pamiętać, że stosowanie kondensatorów o wyższej pojemności lub napięciu może nie być zalecane, gdyż może to prowadzić do nieprawidłowego działania systemu. Zgodnie z normami branżowymi, należy zawsze dobierać komponenty zgodnie z ich specyfikacją techniczną. W przypadku wątpliwości, warto konsultować się z dokumentacją producenta lub specjalistą.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jak należy przeprowadzić pomiar ciągłości przewodów w instalacji elektrycznej?

A. przy podłączonych odbiornikach oraz wyłączonym napięciu zasilania
B. przy podłączonych odbiornikach oraz włączonym napięciu zasilania
C. przy odłączonych odbiornikach oraz włączonym napięciu zasilania
D. przy odłączonych odbiornikach oraz wyłączonym napięciu zasilania
Przeprowadzanie pomiarów ciągłości przewodów w instalacji elektrycznej w obecności napięcia zasilania oraz przy podłączonych odbiornikach jest niebezpieczne i niezgodne z obowiązującymi normami bezpieczeństwa. Użytkownicy często myślą, że można przeprowadzać pomiary pod napięciem, jednak takie podejście zwiększa ryzyko porażenia prądem oraz uszkodzenia przyrządów pomiarowych. Włączenie napięcia zasilania w trakcie badania ciągłości może prowadzić do zakłóceń w odczytach, ponieważ przyrządy pomiarowe mogą być wrażliwe na napięcie, co skutkuje fałszywymi wynikami. Dodatkowo, nieodłączone odbiorniki mogą wprowadzać dodatkowe obciążenie, przez co odczyt może być zafałszowany. Inną powszechną pomyłką jest przekonanie, że brak napięcia nie jest wystarczającym zabezpieczeniem. W rzeczywistości, wyłączenie napięcia oraz odłączenie odbiorników to kluczowe kroki, które powinny być zawsze stosowane przed przystąpieniem do jakichkolwiek prac serwisowych w instalacjach elektrycznych. To podejście nie tylko sprzyja bezpieczeństwu, ale również zapewnia dokładniejsze i bardziej wiarygodne wyniki pomiarów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Która z podanych zasad musi być przestrzegana przed przystąpieniem do konserwacji lub naprawy urządzenia mechatronicznego posiadającego oznaczenie przedstawione na rysunku?

Ilustracja do pytania
A. Zapisz czynności wykonane podczas eksploatacji.
B. Odczytaj informacje o producencie i skontaktuj się z nim przed realizacją działań.
C. Zanotuj wyniki pomiarów podczas diagnostyki.
D. Przeczytaj instrukcję dla większego bezpieczeństwa.
Poprawna odpowiedź "Przeczytaj instrukcję dla większego bezpieczeństwa" odzwierciedla istotę bezpieczeństwa w pracy z urządzeniami mechatronicznymi. Oznaczenie na rysunku to piktogram, który zwraca uwagę na obowiązek zapoznania się z instrukcją obsługi przed przystąpieniem do jakichkolwiek działań konserwacyjnych lub naprawczych. Instrukcja obsługi dostarcza istotnych informacji na temat poprawnej obsługi urządzenia, procedur bezpieczeństwa oraz wskazówek dotyczących konserwacji. Ignorowanie tych informacji może prowadzić do poważnych uszkodzeń sprzętu lub nawet zagrożeń dla zdrowia użytkownika. Przykładowo, w branży motoryzacyjnej, zaleca się zawsze czytać instrukcje dotyczące wymiany oleju lub filtrów, aby uniknąć błędów, które mogą zagrażać bezpieczeństwu pojazdu. Standardy ISO oraz normy branżowe, takie jak ISO 12100, podkreślają znaczenie oceny ryzyka oraz przestrzegania instrukcji obsługi jako kluczowych elementów bezpiecznej eksploatacji maszyn. W związku z tym, zapoznanie się z instrukcją jest kluczowym krokiem przed każdą interwencją serwisową.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 630 000 Pa
B. 600 kPa
C. 650 kPa
D. 0,58 MPa
Odpowiedź '650 kPa' jest właściwa, ponieważ znajduje się poza dopuszczalnym zakresem ciśnienia zasilania dla prasy pneumatycznej. Zgodnie z dokumentacją, wartość ciśnienia nominalnego wynosi 0,6 MPa, a dopuszczalne odchylenie wynosi ± 5%. Oznacza to, że ciśnienie powinno mieścić się w przedziale od 0,57 MPa do 0,63 MPa. Wartość 650 kPa, co odpowiada 0,65 MPa, przekracza górną granicę tego zakresu, co może prowadzić do niebezpiecznych sytuacji podczas pracy urządzenia. Przykładowo, w przypadku nadmiernego ciśnienia dochodzi do zwiększonego ryzyka uszkodzenia elementów prasy, co może skutkować awarią maszyny oraz zagrożeniem dla operatorów. W praktyce, kontrola i monitorowanie ciśnienia zasilania jest kluczowe dla zapewnienia prawidłowej pracy i bezpieczeństwa urządzeń pneumatycznych. Przestrzeganie tych norm jest zgodne z wytycznymi branżowymi, które zalecają regularne kalibracje oraz audyty systemów ciśnieniowych.

Pytanie 31

Wskaż właściwy sposób adresacji zmiennej 32-bitowej w obszarze pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 102

A. MD102.
B. MW102.
C. ML102.
D. MB102
Wybór odpowiedzi MB102, MW102 lub ML102 jest wynikiem niepełnego zrozumienia zasad adresowania w systemach PLC. Oznaczenie MB odnosi się do markerów bajtowych, które są jedynie 8-bitowymi zmiennymi, co jest niewłaściwe w kontekście pytania, które wymaga wskazania zmiennej 32-bitowej. Zastosowanie MB102 prowadziłoby do błędnych odczytów i zapisu, ponieważ system odczytuje tylko pierwszy bajt, co w przypadku zmiennej 32-bitowej może skutkować utratą danych. Podobnie, MW102 oznacza marker słowny, czyli zmienną 16-bitową; takie podejście również nie zapewnia pełnego dostępu do wszystkich czterech bajtów zmiennej 32-bitowej. Ostatecznie, ML102 nie jest standardowym oznaczeniem w kontekście adresowania pamięci w PLC i nie jest powszechnie używane w tej branży. Te pomyłki mogą wynikać z braku znajomości różnych typów zmiennych w programowaniu PLC, co jest kluczowe dla poprawnej implementacji systemów automatyki. W praktyce, niewłaściwe adresowanie zmiennych może prowadzić do poważnych błędów w działaniu systemu, co naraża na szwank efektywność oraz bezpieczeństwo procesów przemysłowych.

Pytanie 32

Do precyzyjnego pomiaru natężenia prądu elektrycznego w układach mechatronicznych zaleca się wykorzystanie amperomierza o

A. jak największej rezystancji wewnętrznej
B. jak najmniejszej rezystancji wewnętrznej
C. rezystancji wewnętrznej równej rezystancji odbiornika
D. dowolnej wartości rezystancji wewnętrznej, ponieważ nie wpływa ona na uzyskany wynik
Użycie amperomierza z jak najmniejszą rezystancją wewnętrzną jest kluczowe dla uzyskania dokładnych pomiarów natężenia prądu elektrycznego w układach mechatronicznych. Amperomierz, będąc elementem pomiarowym, powinien mieć minimalny wpływ na obwód, w którym jest włączony. Im mniejsza rezystancja wewnętrzna, tym mniej energii z obwodu odbierze amperomierz, co przekłada się na dokładniejsze odczyty. W praktyce, jeśli użyjemy amperomierza o dużej rezystancji, może to prowadzić do znacznego spadku natężenia prądu w obwodzie, co skutkuje błędnym pomiarem. Przykładem zastosowania wysokiej jakości amperomierzy o niskiej rezystancji wewnętrznej są aplikacje w elektronice, w których precyzyjne pomiary prądu są niezbędne do właściwego funkcjonowania urządzeń. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie używania urządzeń pomiarowych, które minimalizują wpływ na badany obwód.

Pytanie 33

Jaki parametr oraz na jaką wartość powinien zostać ustawiony, aby regulator PD funkcjonował jako regulator P? (Kp – wzmocnienie części proporcjonalnej, Td - czas różniczkowania)

A. Td ustawić na maksymalną wartość
B. Kp ustawić na maksymalną wartość
C. Kp ustawić na minimalną wartość
D. Td ustawić na minimalną wartość
Ustawienie parametru Td na minimalną wartość eliminuję wpływ części różniczkującej w regulacji, co skutkuje przekształceniem regulatora typu PD w regulator typu P. Regulator proporcjonalny (P) reaguje wyłącznie na błąd regulacji, co oznacza, że wartość wyjściowa jest proporcjonalna do różnicy między wartością zadaną a wartością mierzoną. W praktyce, takie podejście jest wykorzystywane w systemach, gdzie szybkość reakcji jest kluczowa, a skomplikowane obliczenia związane z różniczkowaniem nie są konieczne. Przykładem może być regulacja temperatury w piecu przemysłowym, gdzie kluczowe jest szybkie osiągnięcie i utrzymanie zadanej temperatury, a minimalizacja opóźnień związanych z różniczkowaniem może zapobiec przegrzaniu lub niedogrzaniu. W kontekście standardów regulatorów, podejście to jest zgodne z zasadami klasycznych metod regulacji, które zalecają stosowanie prostych, lecz skutecznych rozwiązań w systemach automatyki.

Pytanie 34

Jakiego rodzaju silnik elektryczny powinno się wykorzystać do zasilania taśmociągu, jeśli dostępne jest tylko napięcie 400 V, 50 Hz?

A. Szeregowy
B. Obcowzbudny
C. Bocznikowy
D. Klatkowy
Silniki obcowzbudne, szeregowe i bocznikowe mają swoje specyficzne zastosowania, ale nie są odpowiednie do napędu taśmociągu przy zasilaniu 400 V, 50 Hz. Silniki obcowzbudne, w których pole magnetyczne jest wytwarzane przez osobne uzwojenie, często wymagają skomplikowanego sterowania i są bardziej podatne na przeciążenia, co w przypadku taśmociągów może prowadzić do nieefektywnej pracy oraz uszkodzeń. Silniki szeregowe, charakteryzujące się dużym momentem startowym, są używane głównie tam, gdzie wymagana jest duża moc na początku, co w przypadku taśmociągów może skutkować niestabilnością oraz niewłaściwą regulacją prędkości. Z kolei silniki bocznikowe, gdzie wirnik i pole są zasilane z tych samych źródeł, oferują pewną stabilizację prędkości, jednak ich zastosowanie w aplikacjach o stałym obciążeniu, jak taśmociągi, jest nieoptymalne, ponieważ ich wydajność spada w przypadku zmieniających się warunków pracy. Oba te typy silników są bardziej skomplikowane w użytkowaniu i wymagają większej uwagi w zakresie konserwacji, co zwiększa całkowite koszty operacyjne. Te błędne wybory mogą wynikać z niepełnego zrozumienia charakterystyki działania silników elektrycznych i ich przystosowania do konkretnych aplikacji, co jest kluczowe w inżynierii elektrycznej.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. zmiany maksymalnej siły wytwarzanej przez siłownik
B. zmiany maksymalnej prędkości siłownika
C. spadku ciśnienia w systemie w ustalonym czasie
D. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
Szczelność układu pneumatycznego sprawdza się poprzez pomiar spadku ciśnienia w określonym czasie, co jest kluczowym aspektem diagnostyki i konserwacji systemów pneumatycznych. W przypadku, gdy układ jest szczelny, ciśnienie powinno pozostawać na stałym poziomie. Jeżeli jednak ciśnienie zaczyna spadać, oznacza to, że gdzieś w układzie występuje wyciek lub nieszczelność. W praktyce, technicy często wykorzystują manometry oraz różne czujniki ciśnienia do monitorowania tego parametru. Standardy branżowe, takie jak ISO 8573, podkreślają znaczenie dokładnego pomiaru ciśnienia i jego stabilności w zachowaniu właściwych warunków pracy układów pneumatycznych. Dodatkowo, regularne testowanie szczelności jest zalecane w celu minimalizacji strat energii oraz zwiększenia efektywności operacyjnej systemów, co przekłada się na redukcję kosztów eksploatacji. Warto również pamiętać, że nieszczelności mogą prowadzić do uszkodzenia komponentów systemu, co podkreśla znaczenie precyzyjnego i regularnego monitorowania ciśnienia.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Wskaż właściwy sposób odniesienia do zmiennej 64-bitowej w pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 14?

A. MB14
B. MD14
C. ML14
D. MW14
Podczas analizy niepoprawnych odpowiedzi, warto zwrócić uwagę na różnice między typami zmiennych oraz ich odpowiednimi prefiksami. MD14, oznaczające zmienną 32-bitową, jest błędne, ponieważ zmienna 64-bitowa wymaga innego adresowania. Programowanie w środowisku PLC wymaga zrozumienia, że zmienne 32-bitowe są stosowane do przechowywania danych mniejszych niż długość 64 bitów. Wybierając MD14, użytkownik sugeruje, że zmienna zajmuje jedynie połowę dostępnej przestrzeni pamięci, co prowadzi do niewłaściwego wykorzystania zasobów. Z kolei MW14, odnoszące się do zmiennych 16-bitowych, również nie pasuje do kontekstu 64-bitowego przechowywania. Przyjęcie takiego oznaczenia zafałszowuje rzeczywistość pamięci, ponieważ 16 bity to zdecydowanie za mało dla zmiennej, która potrzebuje 64 bitów pamięci. MB14, z kolei, wiąże się z 8-bitowymi zmiennymi i jest zupełnie nieadekwatne dla złożoności zmiennej 64-bitowej. Zrozumienie, jakie prefiksy są używane dla różnych typów zmiennych, jest podstawą programowania w PLC. Stosowanie niewłaściwych prefiksów może prowadzić nie tylko do błędów w adresowaniu, ale także do poważnych problemów z wydajnością i stabilnością całego systemu. Dlatego kluczowe jest, aby programiści PLC byli dobrze zaznajomieni z tymi zasadami oraz ich praktycznym zastosowaniem w codziennej pracy.