Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 16:46
  • Data zakończenia: 17 grudnia 2025 16:52

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektromagnetycznym
B. ferrodynamicznym
C. elektrodynamicznym
D. magnetoelektrycznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.

Pytanie 2

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. Z-MS-16/3
B. Ex9BP-N 4P C10
C. FRCdM-63/4/03
D. SM 25-40
Pozostałe oznaczenia, takie jak SM 25-40, Ex9BP-N 4P C10 oraz FRCdM-63/4/03, nie odnoszą się do wyłączników silnikowych, co może prowadzić do nieporozumień w zakresie ich funkcji i zastosowania. Oznaczenie SM 25-40 zazwyczaj odnosi się do styczników, które służą do załączania i wyłączania obwodów elektrycznych, ale nie mają funkcji ochrony silnika przed przeciążeniem lub zwarciem. Styki w takich urządzeniach są zaprojektowane do pracy w określonych warunkach, lecz nie zrealizują funkcji zabezpieczenia, jaką oferuje wyłącznik silnikowy. Z kolei Ex9BP-N 4P C10 to oznaczenie wyłącznika automatycznego, który może być używany w obwodach elektrycznych, ale nie są one dedykowane do ochrony silników. Zastosowanie tego typu wyłącznika do zabezpieczenia silników może prowadzić do niewłaściwego działania i potencjalnych uszkodzeń. Natomiast oznaczenie FRCdM-63/4/03 wskazuje na urządzenie, które najprawdopodobniej jest wyłącznikiem różnicowoprądowym, stosowanym głównie do ochrony przed porażeniem prądem elektrycznym, a nie przed przeciążeniem silników. Tego typu wyłączniki mają zupełnie inne zastosowanie i nie spełniają wymogów ochrony silników. Właściwe rozróżnienie pomiędzy tymi urządzeniami jest kluczowe w kontekście bezpieczeństwa oraz efektywności pracy instalacji elektrycznych. Użytkownicy powinni być świadomi, że niewłaściwe dobranie urządzenia ochronnego może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i wydajności systemów elektrycznych.

Pytanie 3

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 1NO + 2NC
B. 3NC + 1NO + 2NC
C. 3NO + 2NO + 1NC
D. 3NC + 2NO + 1NC
Wybór niewłaściwej odpowiedzi często wynika z braku dokładnej analizy schematu elektrycznego oraz niepełnego zrozumienia funkcji zestyków w układzie. Istnieje kilka kluczowych błędów, które mogą prowadzić do nieprawidłowych wniosków. Po pierwsze, zestyk normalnie zamknięty (NC) nie powinien być nadużywany w układach, w których wymagane jest równoczesne włączenie kilku urządzeń; ich zadaniem jest raczej zapewnienie bezpieczeństwa poprzez odcięcie zasilania w przypadku awarii. W sytuacjach, gdzie pojawia się konieczność aktywacji kilku elementów, zestyk normalnie otwarty (NO) jest bardziej odpowiedni, ponieważ zapewnia ciągłość obwodu przy włączonym styczniku. Ponadto, niektóre odpowiedzi mogą sugerować nadmiar zestyków NC w układzie, co prowadzi do skomplikowania działania i może powodować problemy przy uruchamianiu urządzeń. Regularna analiza schematów i stosowanie się do dobrych praktyk, takich jak, na przykład, dobór elementów zgodnie z ich specyfikacją techniczną oraz normami bezpieczeństwa, jest niezbędne dla zapewnienia prawidłowego działania wszystkich komponentów układu. W każdym przypadku, kluczowe jest przemyślane podejście do projektowania i realizacji układów elektrycznych, które powinno łączyć teorię z praktyką, pozwalając na osiągnięcie optymalnych rezultatów.

Pytanie 4

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Wzbudnik indukcyjny.
B. Dławik magnetyczny.
C. Transformator.
D. Elektromagnes.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 5

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Szczypce boczne
B. Zagniatarka
C. Płaskoszczypce
D. Nóż monterski
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 6

Którego silnika elektrycznego dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Synchronizowanego.
B. Synchronicznego.
C. Szeregowego prądu stałego.
D. Bocznikowego prądu stałego.
Twoja odpowiedź jest poprawna, ponieważ schemat przedstawia silnik szeregowy prądu stałego, który charakteryzuje się szeregowym połączeniem uzwojenia wzbudzenia z uzwojeniem twornika. W silnikach tych prąd wzbudzenia jest taki sam jak prąd w uzwojeniu twornika, co prowadzi do proporcjonalnego wzrostu momentu obrotowego przy zwiększeniu obciążenia. Silniki te znajdują zastosowanie w aplikacjach wymagających dużego momentu startowego, takich jak wózki widłowe, pralki czy maszyny robocze. Dzięki prostocie konstrukcji i niskim kosztom produkcji, silniki szeregowe są powszechnie używane w różnych dziedzinach przemysłu. Dobrą praktyką przy projektowaniu układów z silnikami szeregowych prądu stałego jest uwzględnienie odpowiedniego zabezpieczenia przed przeciążeniem, aby uniknąć uszkodzeń wskutek nadmiernego wzrostu prędkości obrotowej. Dodatkowo, ze względu na ich charakterystykę, silniki te są często stosowane tam, gdzie wymagany jest szybki start i duży moment obrotowy.

Pytanie 7

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. trójfazowego licznika energii elektrycznej.
B. dławików w trójfazowej oprawie świetlówkowej.
C. przekładników prądowych w trzech fazach.
D. trójfazowego transformatora separacyjnego.
Wybór odpowiedzi dotyczącej trójfazowego transformatora separacyjnego jest błędny, ponieważ transformator ten jest urządzeniem służącym do izolacji galwanicznej między obwodami oraz do zmiany poziomów napięcia. W przeciwieństwie do licznika, transformator nie mierzy zużycia energii, lecz przetwarza ją, co nie jest zgodne z przedstawionym schematem. Natomiast odpowiedź dotycząca przekładników prądowych w trzech fazach również jest myląca, ponieważ te urządzenia mają na celu pomiar prądu w obwodach elektrycznych i nie są przedstawiane w taki sposób jak na schemacie. Przekładniki prądowe są używane w połączeniu z licznikami, ale nie stanowią ich samodzielnej funkcji, a ich symbolika graficzna różni się od symbolu licznika. Z kolei dławiki w trójfazowej oprawie świetlówkowej to elementy, które mają na celu ograniczenie prądu w obwodach świetlówkowych i nie są związane z pomiarem energii. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków mogą wynikać z pomieszania funkcji różnych urządzeń elektrycznych oraz braku znajomości ich symboliki. Właściwe rozpoznawanie urządzeń na podstawie schematów elektrycznych jest kluczowe w praktycznej pracy inżynieryjnej, dlatego ważne jest, aby zrozumieć różnice między tymi rodzajami urządzeń oraz ich zastosowanie w systemach elektrycznych.

Pytanie 8

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Uszkodzona izolacja przewodu fazowego
B. Zamieniony przewód ochronny z neutralnym
C. Odłączony przewód ochronny
D. Zamieniony przewód fazowy z neutralnym
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 9

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak klasy ochronności przed porażeniem.
B. Wykorzystanie separacji ochronnej.
C. Najwyższy poziom ochrony.
D. Brak ochrony przed wilgocią i pyłem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 10

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. L1 i L2 są przerwane.
B. N i PE są zwarte oraz L3 jest przerwana.
C. L1 i L2 są zwarte.
D. N i L3 są zwarte oraz PE jest przerwana.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 11

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. w korytku instalacyjnym.
B. pod tynkiem.
C. w tynku.
D. nad sufitem podwieszanym.
Wybór odpowiedzi dotyczącej przewodów prowadzonych nad sufitem podwieszanym, pod tynkiem lub w korytku instalacyjnym jest mylny i wynika z kilku nieporozumień związanych z oznaczeniami instalacji elektrycznych. Przewody prowadzone nad sufitem podwieszanym są zazwyczaj oznaczane innymi symbolami, które wskazują na ich lokalizację oraz sposób układania. W przypadku instalacji pod tynkiem, przewody również wymagają szczególnych oznaczeń, gdyż ich położenie jest często związane z różnorodnymi wytycznymi dotyczącymi ochrony przed uszkodzeniami. Korytka instalacyjne, w których przewody są prowadzone, również mają swoje własne symbole, które różnią się od tych stosowanych dla przewodów ukrytych w tynku. Niezrozumienie tych różnic może prowadzić do błędnych interpretacji schematów, co w konsekwencji może skutkować nieprawidłowym wykonaniem instalacji. Przykładem błędu myślowego jest założenie, że dowolne oznaczenie przewodu może odnosić się do jakiejkolwiek metody prowadzenia, co jest dalekie od rzeczywistości. Właściwa znajomość symboliki elektrycznej jest kluczowa dla poprawnego projektowania i wykonania instalacji, a każde nieporozumienie w tej kwestii może mieć poważne konsekwencje dla bezpieczeństwa użytkowników oraz funkcjonalności instalacji.

Pytanie 12

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (5÷10) · In
C. (2÷3) · In
D. (5÷20) · In
Wybrałeś wartość (5÷10) · In, czyli zakres krotności prądu znamionowego, w którym uruchamia się wyzwalacz elektromagnetyczny w wyłączniku instalacyjnym typu C. To jest właśnie zgodne z normą PN-EN 60898-1 – tzw. „eski” typu C mają za zadanie chronić instalację przed skutkami zwarć i większych przeciążeń. Moim zdaniem dobrze znać ten przedział, bo pozwala to dobrać charakterystykę zabezpieczeń do rodzaju obciążenia w instalacji. Typ C jest najbardziej uniwersalny – stosuje się go w mieszkaniach, biurach, czasem w niewielkich zakładach, czyli wszędzie tam, gdzie mogą się pojawić wyższe prądy rozruchowe, np. od silników czy transformatorów. Prąd wyzwalający elektromagnetycznie musi być wystarczająco wysoki, żeby nie rozłączać obwodu przy każdym chwilowym skoku, ale też na tyle niski, żeby chronić przed zwarciem. Z mojego doświadczenia, jeśli założy się wyłącznik o zbyt „czułej” charakterystyce, to potem są telefony od użytkowników, że „wywala korki” przy włączaniu odkurzacza czy wiertarki. Typ C ze swoim zakresem 5 do 10 razy prądu znamionowego naprawdę dobrze sprawdza się w praktyce, bo łączy szybkość reakcji na zwarcie z odpornością na krótkie impulsy prądowe.

Pytanie 13

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
B. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
C. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
D. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
Niestety, Twoje odpowiedzi nie trafiły w sedno. Czynniki jak zbyt niskie napięcie czy przerwa w fazie nie są bezpośrednio powiązane z wibracjami silnika indukcyjnego, chociaż mogą wpływać na jego działanie. Zbyt niskie napięcie może osłabić moment obrotowy silnika, co z czasem prowadzi do różnych problemów, ale nie powoduje samych wibracji. Przerwa w fazie też nie wywołuje wibracji, a jedynie daje nierównomierne zasilanie, co objawia się innymi problemami. Zatarcie łożysk to poważna sprawa, ale objawia się raczej hałasem niż wibracjami. W skrócie, wibracje najczęściej pochodzą z problemów mechanicznych, jak błędy w budowie czy montażu, a nie z kwestii elektrycznych. Warto zrozumieć, że to rozkład masy oraz wyważenie są kluczowe, a nie tylko elektryka czy stan łożysk.

Pytanie 14

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. pośredniego - klasy V.
B. przeważnie pośredniego - klasy IV.
C. bezpośredniego - klasy I.
D. przeważnie bezpośredniego - klasy II.
Wybrane odpowiedzi, które nie wskazują na pośrednie emitowanie światła, mogą prowadzić do mylnych wniosków dotyczących realnych właściwości opraw oświetleniowych. Na przykład, odpowiedź sugerująca, że oprawa emituje światło przeważnie bezpośrednio, zakłada, że źródło światła jest skierowane bezpośrednio na oświetlaną powierzchnię, co jest sprzeczne z przedstawionym rysunkiem. Oprawy oświetleniowe klasy I najczęściej wiążą się z bezpośrednim oświetleniem, które może powodować intensywne cienie oraz oślepienie, co negatywnie wpływa na komfort użytkowników. Podobnie, klasy IV i V, które z reguły dotyczą więcej pośredniego lub rozproszonego światła, nie są odpowiednie dla opraw, które mają emitować światło w sposób przeważnie bezpośredni. Kluczowym błędem w analizie tego pytania jest niezrozumienie różnicy między tymi dwoma typami oświetlenia oraz ich wpływem na środowisko pracy. Na rysunku powinno być zauważone, że emisja światła poprzez mleczne szkło wskazuje na zamierzenie projektanta, aby zminimalizować oślepienie, co nie jest zgodne z oprawami klasy I. Zrozumienie zasad projektowania systemów oświetleniowych oraz ich klasyfikacji jest niezbędne dla prawidłowego doboru rozwiązań w dziedzinie architektury i ergonomii oświetleniowej.

Pytanie 15

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. mufa rozgałęźna oraz odcinek kabla
B. dwie mufy kablowe i odcinek kabla
C. odcinek kabla oraz zgrzewarka
D. odcinek kabla zakończony głowicami
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 16

Który z przedstawionych na rysunkach przewodów należy użyć do montażu obwodów zasilających jednofazowej instalacji elektrycznej w układzie TN-S?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź C jest poprawna, ponieważ przewód, który przedstawia, spełnia wymogi dotyczące kolorów przewodów w instalacjach elektrycznych w układzie TN-S. Zgodnie z normą PN-HD 308 S2:2009, kolor brązowy jest przeznaczony dla przewodów fazowych (L), kolor niebieski dla przewodów neutralnych (N), a kolor żółto-zielony dla przewodów ochronnych (PE). Przewody te są stosowane w systemach zasilania jednofazowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowania i poprawności działania instalacji. W kontekście praktycznym, użycie przewodu zgodnego z tymi normami pozwala na uniknięcie błędów przy podłączaniu urządzeń elektrycznych, co może prowadzić do uszkodzeń sprzętu lub zagrożenia dla życia i zdrowia użytkowników. W przemyśle elektrycznym znajomość i stosowanie tych standardów jest kluczowe dla zapewnienia zgodności z przepisami oraz dla bezpieczeństwa instalacji.

Pytanie 17

Na którym rysunku przedstawiono prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Rysunek D przedstawia prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc, który jest kluczowym rozwiązaniem w systemach oświetleniowych w budynkach mieszkalnych oraz użyteczności publicznej. W tym schemacie zastosowano dwa przełączniki krzyżowe, co pozwala na kontrolowanie jednego źródła światła z różnych lokalizacji. Dzięki takiemu rozwiązaniu użytkownicy mogą włączać i wyłączać oświetlenie, na przykład z dwóch końców korytarza, co zwiększa komfort i funkcjonalność przestrzeni. Zastosowanie przełączników krzyżowych jest zgodne z normami instalacji elektrycznych, które zalecają takie podejście w celu zapewnienia łatwego dostępu do sterowania oświetleniem. W praktyce, stosowanie tego typu schematów nie tylko poprawia estetykę wnętrza, eliminując konieczność użycia długich kabli, ale także zwiększa bezpieczeństwo, minimalizując ryzyko potknięcia się o przewody. Warto również zaznaczyć, że oprócz wygody, takie rozwiązania przyczyniają się do oszczędności energii, gdyż umożliwiają wyłączanie świateł w miejscach, gdzie nie są potrzebne.

Pytanie 18

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 2,3 Ω
C. 4,0 Ω
D. 6,6 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 19

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,0 V
B. 12,0 V
C. 12,4 V
D. 11,3 V
No więc, odpowiedź 12,0 V jest jak najbardziej trafna. Można to zobaczyć, analizując wykres, który pokazuje, jak napięcie akumulatora zmienia się w zależności od prądu i czasu rozładowywania. Jak obciążamy akumulator prądem 60 A przez 30 minut, to napięcie wynosi właśnie 12,0 V, co jest zgodne z tym, co powinno być zgodnie z normami. Wartość ta pokazuje, że akumulator działa tak, jak się tego spodziewaliśmy. Moim zdaniem, zrozumienie tej zależności jest mega ważne, zwłaszcza przy projektowaniu systemów zasilania dla różnych urządzeń. No i w odnawialnej energii, gdzie pojemność akumulatora ma ogromny wpływ na wydajność. Fajnie też wiedzieć, że w praktyce, jak np. w systemach fotowoltaicznych czy zasilaniu awaryjnym, znajomość charakterystyki rozładowania akumulatorów pomaga w ich optymalnym wykorzystaniu oraz w wydłużeniu żywotności przez unikanie nadmiernego rozładowania.

Pytanie 20

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Imbusowym.
B. Oczkowym.
C. Nasadowym.
D. Płaskim.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 21

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Wyłączników różnicowoprądowych.
B. Wyłączników nadprądowych.
C. Styczników.
D. Transformatorów.
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 22

Który element stycznika elektromagnetycznego przedstawiono na ilustracji?

Ilustracja do pytania
A. Cewkę.
B. Zworę.
C. Komorę gaszeniową.
D. Sprężynę zwrotną.
Cewka jest kluczowym elementem stycznika elektromagnetycznego, który odgrywa fundamentalną rolę w jego działaniu. Gdy do cewki doprowadzony jest prąd, wytwarza ona pole magnetyczne, które przyciąga ruchomy rdzeń stycznika, powodując zamknięcie styków. Dzięki temu możliwy jest przepływ prądu przez obciążenie, co jest istotne w różnych aplikacjach elektrycznych, od automatyki przemysłowej po systemy oświetleniowe. Cewki stosowane w stycznikach są zazwyczaj projektowane zgodnie z normami IEC oraz DIN, co zapewnia ich niezawodność i efektywność. Przykładem zastosowania stycznika z cewką może być automatyczne włączenie pompy wody w systemach zarządzania budynkami, gdzie cewka aktywuje styki, kiedy poziom wody osiąga określoną wartość. Zrozumienie działania cewki oraz jej roli w stycznikach jest kluczowe dla profesjonalistów w dziedzinie elektrotechniki, co pozwala na poprawne zaprojektowanie oraz efektywne użytkowanie systemów elektrycznych.

Pytanie 23

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. kuchni i pokoju 2
B. łazience i pokoju 2
C. pokoju 1 i pokoju 2
D. łazience i pokoju 1
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.

Pytanie 24

Symbol graficzny urządzenia AGD - suszarki, przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedzi A, B i C odnoszą się do innych urządzeń AGD, co może prowadzić do nieporozumień przy identyfikacji symboli graficznych. Symbol A, przedstawiający zmywarkę do naczyń, jest często mylony z oznaczeniem suszarki, szczególnie przez osoby, które nie są zaznajomione z różnicami w symbolice. Zmywarka ma charakterystyczny symbol przedstawiający naczynia, co jest istotne w kontekście jej funkcji, ale nie ma nic wspólnego z obróbką tkanin. Symbol B, dotyczący kuchenki elektrycznej, również nie ma związku z suszarką, co może wynikać z niepoprawnego wnioskowania o podobieństwie kształtów czy form. Brak zrozumienia podstawowych różnic między tymi urządzeniami może prowadzić do błędnych wniosków. Przykładem może być mylenie funkcji kuchenki, która jest przeznaczona do gotowania, z suszarką, która służy do suszenia odzieży. Ostatecznie, symbol C przedstawia pralkę elektryczną, co także jest innym rodzajem urządzenia, które choć może mieć podobieństwo do suszarki, pełni zupełnie różne zadania w gospodarstwie domowym. Typowe błędy, które prowadzą do takich niepoprawnych wyborów, to ignorowanie kontekstu funkcjonalnego urządzenia, a także brak znajomości powszechnie stosowanych oznaczeń w branży AGD. Warto zapoznać się z tymi symbolami i ich znaczeniem, aby uniknąć nieporozumień w przyszłości.

Pytanie 25

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
B. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
C. Naciskając przycisk TEST na wyłączonym wyłączniku
D. Naciskając przycisk TEST na załączonym wyłączniku
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 26

Który z przyrządów służy do bezpośredniego pomiaru współczynnika mocy?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź C jest prawidłowa, ponieważ watomierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy czynnej w obwodach elektrycznych. W kontekście współczynnika mocy, który jest kluczowym parametrem w systemach prądu przemiennego, watomierz pozwala na precyzyjne określenie wartości mocy czynnej, co jest niezbędne do obliczenia współczynnika mocy (cosφ). W praktyce, stosując wzór: cosφ = P/S, gdzie P to moc czynna, a S to moc pozorna, można z łatwością ustalić współczynnik mocy. Użycie watomierza jest nieocenione w zastosowaniach takich jak optymalizacja zużycia energii w instalacjach elektrycznych, co pozwala na identyfikację strat energii i poprawę efektywności energetycznej. Współczesne standardy, takie jak IEC 61557, podkreślają znaczenie pomiarów współczynnika mocy dla zapewnienia efektywności systemów zasilania oraz jakości energii elektrycznej.

Pytanie 27

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do pracy zależnej dwóch styczników.
B. Do rozruchu silnika pierścieniowego.
C. Do pracy równoległej dwóch styczników.
D. Do załączenia silnika z opóźnieniem.
Odpowiedź "Do pracy zależnej dwóch styczników" jest poprawna, ponieważ schemat przedstawia układ, w którym odpowiednie połączenie styczników K1 i K2 pozwala na zależne działanie tych urządzeń. W praktyce, taki układ jest wykorzystywany w systemach automatyki przemysłowej, gdzie jeden proces wymaga aktywacji kolejnego urządzenia. Przykładem może być sytuacja, w której włączenie jednego silnika elektrycznego (K1) uruchamia system chłodzenia (K2). W standardach branżowych, takich jak normy IEC 60204 dotyczące bezpieczeństwa maszyn, kluczowe jest zapewnienie, aby sterowanie urządzeniami odbywało się w sposób przemyślany i bezpieczny, co jest realizowane poprzez zastosowanie układów zależnych. Takie podejście nie tylko zwiększa efektywność systemu, ale również minimalizuje ryzyko błędów w procesach przemysłowych oraz zapewnia wysoką niezawodność działania układów automatyki.

Pytanie 28

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie B
B. W punkcie A
C. W punkcie D
D. W punkcie C
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.

Pytanie 29

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
B. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
C. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
D. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 30

Którego aparatu należy użyć w celu zastąpienia bezpieczników topikowych w modernizowanej instalacji w obwodzie zasilającym silnik trójfazowy?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór niewłaściwego aparatu zabezpieczającego do modernizowanej instalacji zasilającej silnik trójfazowy może prowadzić do poważnych problemów, zarówno w kontekście bezpieczeństwa, jak i efektywności działania systemu. Aparaty, które nie są przystosowane do obsługi takiego obwodu, mogą nie posiadać odpowiedniej liczby wejść i wyjść, co skutkuje niewłaściwym zasilaniem silnika. W przypadku podejść, które ignorują normy dotyczące zabezpieczeń obwodowych, jak na przykład stosowanie aparatów jednofazowych, można łatwo doprowadzić do przegrzania lub uszkodzenia silnika na skutek braku odpowiedniego odcięcia zasilania w przypadku awarii. Ponadto, nieodpowiedni dobór prądu znamionowego, który nie będzie odpowiadał wymaganiom silnika, może prowadzić do fałszywego wyzwolenia zabezpieczeń, co w praktyce oznacza nieprawidłowe działanie całego systemu. Istotnym aspektem jest również zrozumienie charakterystyki wyzwalania. Aparaty, które nie posiadają odpowiednich charakterystyk, takich jak "C16", mogą reagować zbyt wolno na nagłe skoki prądu, co w przypadku silników trójfazowych jest szczególnie istotne. W ten sposób, niepoprawne koncepcje w doborze zabezpieczeń mogą wynikać z braku zrozumienia zasady działania instalacji trójfazowych i ich specyficznych wymagań. Dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych, co gwarantuje nie tylko bezpieczeństwo, ale również niezawodność działania zasilania silników trójfazowych.

Pytanie 31

Jakie uszkodzenie nastąpiło w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1 – L2L2 – L3L1 – L3L1 – PENL2 – PENL3 – PEN
2,101,051,101,401,300,991,00
A. Przeciążenie jednej z faz.
B. Pogorszenie izolacji jednej z faz.
C. Jednofazowe bezimpedancyjne zwarcie doziemne.
D. Zwarcie międzyfazowe.
Prawidłowa odpowiedź dotycząca pogorszenia izolacji jednej z faz jest oparta na wynikach pomiarów rezystancji izolacji, które jasno wskazują na problem z izolacją w fazie L3. Wartość rezystancji izolacji dla L3-PEN wynosi 0,99 MΩ, co jest poniżej minimalnej wymaganej wartości 1 MΩ w instalacjach elektrycznych zgodnie z normą PN-EN 60204-1. Oznacza to, że potencjalnie niebezpieczne napięcie może pojawić się na obudowach urządzeń podłączonych do tej fazy, co stwarza ryzyko porażenia prądem. W praktyce, regularne pomiary rezystancji izolacji są kluczowe dla utrzymania bezpieczeństwa instalacji elektrycznych. Przy wykrywaniu pogorszenia izolacji, należy podjąć działania naprawcze, takie jak wymiana uszkodzonego przewodu lub poprawa warunków izolacyjnych. Warto również pamiętać, że według normy IEC 60364-6, kontrola izolacji powinna być przeprowadzana cyklicznie, co pozwala na wczesne wykrywanie problemów i minimalizowanie ryzyka awarii.

Pytanie 32

Na rysunku przedstawiono symbol graficzny przewodu

Ilustracja do pytania
A. L
B. PEN
C. PE
D. N
Symbol przedstawiony na rysunku oznacza przewód neutralny, który w instalacjach elektrycznych jest kluczowym elementem systemu zasilania. Oznaczenie "N" wskazuje na przewód, który ma za zadanie prowadzić prąd powracający z obciążenia do źródła zasilania. Przewód neutralny jest niezbędny w układach jedno- i trójfazowych, gdzie zapewnia równowagę obciążenia w instalacji. W praktyce oznaczenie to jest stosowane zgodnie z normami IEC 60446, które definiują sposób oznaczania przewodów w instalacjach elektrycznych. Poprawne rozróżnianie między przewodami fazowymi a neutralnym jest kluczowe dla bezpieczeństwa eksploatacji instalacji. Przykładowo, w budynkach mieszkalnych przewód neutralny jest wykorzystywany w instalacjach oświetleniowych oraz gniazdach elektrycznych, gdzie zapewnia powrót prądu do źródła zasilania, co jest niezbędne do prawidłowego działania urządzeń elektrycznych. Bez przewodu neutralnego, obwody nie byłyby w stanie funkcjonować prawidłowo, co mogłoby prowadzić do niebezpiecznych sytuacji takich jak przegrzanie czy zwarcia.

Pytanie 33

W jakim celu należy użyć przyrządu przedstawionego na rysunku?

Ilustracja do pytania
A. Pomiaru prędkości obrotowej wałów.
B. Pomiaru natężenia oświetlenia.
C. Wykrywania przewodów pod tynkiem.
D. Punktowego przenoszenia wysokości.
Udzielenie odpowiedzi dotyczącej pomiaru prędkości obrotowej wałów, natężenia oświetlenia czy punktowego przenoszenia wysokości pokazuje nieporozumienie w zakresie zastosowania detektorów. Prędkość obrotowa wałów to parametr, który można mierzyć za pomocą tachometrów, a nie detektorów przewodów, które nie są przystosowane do tak specyficznych zadań. Z kolei pomiar natężenia oświetlenia wymaga użycia luksomierzy, które służą do oceny jasności w danym pomieszczeniu, a nie do lokalizacji obiektów w ścianach. Punktowe przenoszenie wysokości odnosi się do metod geodezyjnych, które również nie mają związku z funkcjonalnością detektorów przewodów. Użycie niewłaściwego przyrządu do konkretnego zadania może prowadzić do błędnych pomiarów oraz potencjalnych uszkodzeń sprzętu. W praktyce, wybór odpowiednich narzędzi do danego zadania jest kluczowy. Ignorowanie właściwych zastosowań detektorów i wybieranie ich z pomieszaniem terminologii może skutkować nie tylko nieefektywnością, ale także narażeniem na niebezpieczeństwo, co jest szczególnie istotne w kontekście prac budowlanych i remontowych. Dlatego znajomość przeznaczenia urządzeń oraz ich specyfikacji technicznych jest fundamentalna w każdym profesjonalnym środowisku.

Pytanie 34

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Jeden klawisz i trzy niezależne zaciski
B. Dwa klawisze i cztery niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Dwa klawisze i trzy niezależne zaciski
Wybierając inne odpowiedzi, można natknąć się na powszechne nieporozumienia dotyczące budowy i funkcji łączników świecznikowych. Na przykład, odpowiedzi sugerujące jeden klawisz i cztery zaciski mogą prowadzić do mylnego przekonania, że łącznik może obsługiwać więcej niż jedno źródło światła w niezależny sposób, co jest technicznie niemożliwe bez dodatkowych komponentów. Takie rozwiązanie nie tylko nie spełnia podstawowych założeń konstrukcyjnych, ale także może generować niebezpieczeństwo związane z przeciążeniem obwodu. Ponadto, odpowiedzi zawierające dwa klawisze i cztery zaciski wydają się logiczne na pierwszy rzut oka, jednak w rzeczywistości, w kontekście klasycznego pojedynczego łącznika, technologia wymaga tylko trzech zacisków dla właściwego podłączenia. W praktyce, mylenie liczby zacisków oraz klawiszy może skutkować błędnym doborem komponentów w instalacji elektrycznej, co może prowadzić do problemów z bezpieczeństwem oraz funkcjonalnością oświetlenia. Wiedza na temat standardowych rozwiązań w instalacjach elektrycznych jest kluczowa, aby uniknąć takich pułapek i zapewnić odpowiednią wydajność oraz bezpieczeństwo w użytkowaniu.

Pytanie 35

Jaki element przedstawiono na rysunku?

Ilustracja do pytania
A. Złączkę.
B. Wkrętkę dławikową.
C. Wkrętkę redukcyjną.
D. Tulejkę.
Wybór wkrętki redukcyjnej, złączki lub tulejki nie jest właściwy w kontekście przedstawionego elementu. Wkrętka redukcyjna, jak sama nazwa wskazuje, jest używana do zmiany średnicy gwintu, co nie ma zastosowania w przypadku uszczelniania przewodów. Ta koncepcja często prowadzi do mylenia funkcji złączek w instalacjach elektrycznych, gdzie kluczowym aspektem jest nie tylko łączenie, ale przede wszystkim zabezpieczenie przewodów. Złączki, które są bardziej uniwersalne, nie oferują specyficznego uszczelnienia, co jest istotne w kontekście ochrony przed kurzem, wilgocią czy uszkodzeniami mechanicznymi. Natomiast tulejki służą zazwyczaj do wzmocnienia połączeń, a nie do ich uszczelnienia, co również nie odpowiada funkcji wkrętki dławikowej. Właściwe zrozumienie różnic między tymi elementami ma kluczowe znaczenie, ponieważ stosowanie niewłaściwych rozwiązań w instalacjach elektrycznych może prowadzić do poważnych problemów, takich jak zwarcia czy uszkodzenia sprzętu. W procesie projektowania instalacji elektrycznych, znajomość właściwych komponentów oraz ich zastosowań jest niezbędna dla zapewnienia bezpieczeństwa oraz niezawodności systemu.

Pytanie 36

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Sprawdzenie kondycji wycinków komutatora
C. Weryfikacja braku zwarć międzyzwojowych
D. Pomiar rezystancji izolacji
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.

Pytanie 37

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. E14
B. GU10
C. MR11
D. G9
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 38

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDY 3x1,5 750 V
B. YDYp 3x1,5 750 V
C. YDYn 3x1,5 500 V
D. YLY 3x1,5 500 V
Przewód przedstawiony na zdjęciu to przewód typu YDYp 3x1,5 750 V, co można rozpoznać po zastosowaniu symboliki w oznaczeniach. Oznaczenie 'Y' wskazuje na materiał izolacji, w tym przypadku poliwinitowy. Druga litera 'D' oznacza, że przewód wykonany jest z drutu miedzianego, co zapewnia jego dużą przewodność elektryczną. Z kolei 'Y' ponownie odnosi się do dodatkowej warstwy izolacji, a 'p' oznacza, że przewód ma formę płaską. Taki typ przewodu jest często wykorzystywany w instalacjach elektrycznych w budynkach, gdzie występuje potrzeba oszczędności miejsca oraz estetyki. Przewody płaskie, jak YDYp, są idealne do układania w ścianach, podłogach, czy w innych przestrzeniach, gdzie ich rozmiar pozwala na łatwe ukrycie. Napięcie znamionowe 750 V czyni je odpowiednim rozwiązaniem do wielu standardowych aplikacji, co czyni je zgodnym z normami PN-EN 50525, dotyczącymi przewodów elektrycznych. Wybór właściwego przewodu ma kluczowe znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznej, dlatego znajomość ich właściwości jest niezbędna w pracy elektryka.

Pytanie 39

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana złączki.
B. Wymiana oprawki.
C. Czyszczenie obudowy i styków.
D. Wykonanie pomiarów natężenia oświetlenia.
Wybór odpowiedzi związanej z wymianą oprawki lub złączki wskazuje na pewne nieporozumienie w zakresie klasyfikacji czynności konserwacyjnych i naprawczych. Wymiana oprawki jest działaniem, które zazwyczaj następuje w momencie, gdy oprawka jest uszkodzona lub nie działa poprawnie, co klasyfikuje tę czynność jako naprawczą, a nie konserwacyjną. Podobnie, wymiana złączki dotyczy bardziej aspektów technicznych, które wymagają interwencji w przypadku awarii, a nie rutynowego utrzymania. Czynności te są niezbędne w sytuacjach kryzysowych, ale nie powinny być mylone z regularnym utrzymywaniem sprzętu w dobrym stanie. W kontekście wykonywania pomiarów natężenia oświetlenia, należy zauważyć, że jest to proces kontrolny, który służy do oceny jakości oświetlenia w danym obszarze, a nie do jego konserwacji. Mylne podejście do konserwacji opraw oświetleniowych oraz ich funkcjonalności często prowadzi do nieprawidłowego zarządzania zasobami i zwiększonych kosztów operacyjnych. Przykładem może być sytuacja, w której brak odpowiedniej konserwacji skutkuje koniecznością częstszych napraw, co znacząco podnosi wydatki związane z utrzymaniem systemu oświetleniowego. Dlatego istotne jest, aby zrozumieć różnicę między tymi pojęciami oraz zastosować odpowiednie praktyki konserwacyjne, które będą sprzyjały długotrwałemu i efektywnemu działaniu urządzeń.

Pytanie 40

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 10 szt.
B. 6 szt.
C. 2 szt.
D. 12 szt.
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.