Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 15:53
  • Data zakończenia: 18 grudnia 2025 16:33

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono żarówkę halogenową?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
W przypadku odpowiedzi A, C oraz D, można zauważyć, że błędnie klasyfikują one rodzaje żarówek, co może prowadzić do dezinformacji na temat ich właściwości i zastosowań. Żarówka A, stanowiąca tradycyjną żarówkę żarnikową, wykorzystuje włókno wolframowe i charakteryzuje się dużą ilością emitowanego ciepła, co skutkuje niższą efektywnością energetyczną. W związku z tym, w wielu krajach wprowadzono ograniczenia dotyczące ich produkcji i sprzedaży. Żarówka C to żarówka energooszczędna, która działa na zasadzie fluorescencji, a jej kształt i konstrukcja różnią się od klasycznych żarówek halogenowych. Mimo że oferuje znacznie niższe zużycie energii, ma tendencję do generowania zimnego, nieprzyjemnego światła, co może nie być odpowiednie w wielu zastosowaniach. Żarówka D, oznaczająca źródło LED, jest nowoczesnym rozwiązaniem, które łączy w sobie wiele zalet, takich jak długa żywotność i niskie zużycie energii, ale jej konstrukcja i działanie różnią się od halogenów. Osoby udzielające odpowiedzi mogą mylić te różnice ze względu na podobieństwo w zastosowaniach oświetleniowych, jednakże każdy z tych typów żarówek ma swoje unikalne cechy oraz ograniczenia, które warto znać przed dokonaniem wyboru.

Pytanie 2

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Żarowych.
B. Elektroluminescencyjnych.
C. Indukcyjnych.
D. Rtęciowych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 3

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 3.
B. Symbol 2.
C. Symbol 4.
D. Symbol 1.
Wybór innego symbolu zamiast symbolu 1 może wynikać z nieporozumienia dotyczącego rodzaju łącznika oraz jego funkcji. Monostabilne łączniki przyciskowe z zestykiem NO mają specyficzną konstrukcję, która różni się od innych typów łączników, takich jak bistabilne lub normalnie zamknięte (NC). Symbol, który przedstawia zamek lub inny rodzaj styku, jest mylący, ponieważ nie odzwierciedla funkcji chwilowego włączania obwodu. W kontekście automatyki przemysłowej istotne jest rozumienie różnic między tymi symbolami, gdyż niewłaściwe ich użycie prowadzi do błędnych instalacji i potencjalnych awarii w systemach. Na przykład, użycie symbolu przedstawiającego łącznik bistabilny może sugerować, że przycisk pozostaje w stanie włączonym po zwolnieniu, co jest sprzeczne z funkcją monostabilnego przycisku NO. W praktyce, to może prowadzić do sytuacji, gdzie obsługa urządzenia jest nieintuicyjna, a użytkownicy mogą być zdezorientowani, nie wiedząc, jak właściwie korzystać z systemu. Dodatkowo, błędne zrozumienie symboli może prowadzić do niezgodności z normami branżowymi, co w konsekwencji wpływa na bezpieczeństwo operacji oraz zgodność instalacji z obowiązującymi standardami.

Pytanie 4

Którego z elektronarzędzi należy użyć do wycinania bruzd pod przewody instalacji podtynkowej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Frezerka do bruzd, czyli narzędzie oznaczone jako D, jest najbardziej odpowiednim elektronarzędziem do wycinania bruzd pod przewody instalacji podtynkowej. Dzięki swojej konstrukcji umożliwia precyzyjne cięcie w twardych materiałach, takich jak beton czy cegła, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych. Narzędzie to posiada regulację głębokości cięcia, co pozwala na dostosowanie do różnych grubości przewodów oraz zapewnia estetyczne i schludne wykonanie rowków. W praktyce, operatorzy frezerek do bruzd często wykorzystują je do tworzenia kanałów, w których umieszczane są przewody, co pozwala na estetyczne ukrycie instalacji. Zgodnie z najlepszymi praktykami branżowymi, stosowanie tego narzędzia zapewnia nie tylko efektywność pracy, ale także bezpieczeństwo, eliminując ryzyko uszkodzenia instalacji oraz minimalizując ilość pyłów i odpadów materiałowych.

Pytanie 5

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. watomierza oraz woltomierza
B. omomierza i amperomierza
C. omomierza oraz woltomierza
D. woltomierza i amperomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 6

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Wykonując kontrolne doziemienie
B. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
C. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
D. Naciskając przycisk "TEST"
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 7

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. instalacje odbiorcze
B. przyłącze
C. złącze
D. rozdzielnicę główną
Złącze jest kluczowym elementem w instalacjach elektrycznych, gdyż umożliwia efektywne połączenie różnych linii zasilających w jednym punkcie. W przypadku, gdy jedna linia zasilająca rozdziela się na co najmniej dwie, złącze pozwala na zorganizowane i bezpieczne zarządzanie tymi połączeniami. Przykładowo, w budynkach mieszkalnych złącze jest często wykorzystywane do podłączenia linii zasilających do różnych sekcji obwodów, takich jak oświetlenie i gniazdka. Stosowanie złącz zgodnych z normami PN-IEC 60947-1, zapewnia, że instalacja będzie bezpieczna i zgodna z dobrymi praktykami branżowymi. Złącza powinny być również odpowiednio oznakowane i dostosowane do przewodów, co zwiększa bezpieczeństwo oraz ułatwia ewentualną konserwację lub modernizację instalacji. Warto podkreślić, że dobór odpowiednich złącz zgodnych z wymaganiami technicznymi znacznie redukuje ryzyko awarii oraz poprawia efektywność energetyczną całego systemu.

Pytanie 8

Który element instalacji, montowany w rozdzielnicy, przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik nadprądowy.
B. Lampkę kontrolną.
C. Sygnalizator dzwonkowy.
D. Ogranicznik przepięć.
W przypadku lampki kontrolnej, sygnalizatora dzwonkowego oraz wyłącznika nadprądowego, istnieje wiele mylnych przekonań dotyczących ich funkcji i zastosowania. Lampka kontrolna jest używana do sygnalizacji stanu działania obwodu, jednak nie ma zdolności do ochrony przed przepięciami. Jej obecność w rozdzielnicy pełni funkcję informacyjną, ale nie zabezpiecza instalacji, co czyni ją nieodpowiednim wyborem w kontekście ochrony przed nagłymi wzrostami napięcia. Sygnalizator dzwonkowy, z kolei, służy do emitowania dźwięku przy aktywacji jakiegoś urządzenia, ale również nie ma zastosowania w kwestiach zabezpieczeń elektrycznych. Wyłącznik nadprądowy, choć jest kluczowym elementem zabezpieczeń w instalacjach, działa na zasadzie przerywania obwodu w przypadku przeciążenia lub zwarcia, a nie w reakcji na przepięcia. To powszechne nieporozumienie dotyczy różnicy pomiędzy ochroną przed przeciążeniem a ochroną przed przepięciami, co może prowadzić do nieprawidłowych decyzji w zakresie projektowania i eksploatacji instalacji elektrycznych. Zrozumienie tych różnic jest kluczowe, aby unikać potencjalnych zagrożeń i zapewnić odpowiednie zabezpieczenia zgodne z normami branżowymi.

Pytanie 9

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 2,3 Ω
B. 8,0 Ω
C. 7,7 Ω
D. 4,6 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.

Pytanie 10

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-PE
B. Z L-L
C. Z L-PE(RCD)
D. Z L-N
W kontekście pomiarów impedancji pętli zwarcia, wybór odpowiedniej funkcji pomiarowej ma kluczowe znaczenie. Odpowiedzi takie jak "Z L-PE", "Z L-N" oraz "Z L-L" nie są prawidłowe, ponieważ nie uwzględniają obecności wyłącznika różnicowoprądowego (RCD) w układzie. Pomiar "Z L-PE" zazwyczaj odnosi się do uziemienia bez uwzględnienia specyfiki RCD, co może prowadzić do niepełnych lub nieprawidłowych danych. W przypadku "Z L-N" pomiar koncentruje się na napięciu między linią a neutralnym przewodem, co również nie odzwierciedla rzeczywistego stanu impedancji pętli zwarcia, szczególnie w kontekście ochrony przed porażeniem. Z kolei pomiar "Z L-L" dotyczy wyłącznie połączenia między przewodami fazowymi i nie dostarcza informacji o uziemieniu, co jest istotne w analizie bezpieczeństwa. Często błędem myślowym jest zakładanie, że bezpośrednie połączenia między przewodami wystarczą do oceny bezpieczeństwa instalacji. Należy pamiętać, że prawidłowa ocena wymaga uwzględnienia wszystkich komponentów, w tym urządzeń ochronnych, jakimi są RCD. Zaniedbanie tego aspektu może prowadzić do poważnych konsekwencji, dlatego tak istotne jest stosowanie odpowiednich metod pomiarowych, zgodnych z normami, aby zapewnić pełne bezpieczeństwo instalacji elektrycznych.

Pytanie 11

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
B. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 12

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć obszar roboczy
B. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
C. rozłożyć dywanik izolacyjny w rejonie pracy
D. poinformować dostawcę energii
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 13

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 450W
B. 350W
C. 800W
D. 1150W
Wybór odpowiedzi 350W, 800W lub 1150W może wynikać z błędnych założeń dotyczących interpretacji wskazań watomierzy. Pierwsza z tych wartości, 350W, odpowiada jedynie odczytowi watomierza W1 po zamianie zacisków, co nie odzwierciedla rzeczywistego całkowitego poboru energii przez odbiornik. Ignorowanie wskazań W2, które są kluczowe dla pełnej analizy mocy, prowadzi do niekompletnego obrazu sytuacji. Kolejna wartość – 800W, będąca wskazaniem watomierza W2, również jest myląca, ponieważ wskazuje na moc dostarczoną przez źródło, a nie na moc pobraną przez odbiornik. Ostatnia opcja, 1150W, jest sumą mocy wskazywanych przez oba watomierze bez uwzględniania ich charakterystyki, co prowadzi do fałszywego wniosku, że całkowita moc pobierana przez odbiornik wynosi tyle, ile suma odczytów, co jest błędne. W praktyce, przy pomiarach energii elektrycznej, konieczne jest rozumienie zasadów działania watomierzy, gdzie pomiar może wskazywać moc ujemną w przypadku niewłaściwego podłączenia. Ważne jest, aby zrozumieć, że moc dostarczana przez źródło i moc pobierana przez odbiorniki muszą być traktowane w kontekście całego układu, co pozwala na dokładne obliczenia i unikanie nieporozumień w analizie mocy w systemach elektrycznych.

Pytanie 14

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
W analizowanych schematach A, B oraz D występują poważne błędy konstrukcyjne, które mogą prowadzić do nieprawidłowego działania systemu oświetleniowego. W schemacie A oraz B przewód neutralny (N) jest połączony w łącznikach, co jest sprzeczne z zasadami dobrego montażu. Połączenie przewodu neutralnego z łącznikami zwiększa potencjalne ryzyko porażenia prądem, ponieważ w przypadku awarii może dojść do sytuacji, gdzie łącznik, który ma za zadanie włączać i wyłączać oświetlenie, będzie pod napięciem. Schemat D, z kolei, ilustruje sytuację, w której przewód fazowy rozgałęzia się na dwa włączniki, co jest niedopuszczalne w kontekście systemów oświetleniowych. Tego typu rozwiązanie nie tylko narusza zasady bezpieczeństwa, ale także może powodować problemy z równomiernym rozdzieleniem energii, co prowadzi do niestabilności w działaniu oświetlenia. Kluczowe jest, aby przy projektowaniu instalacji elektrycznych opierać się na uznawanych standardach, takich jak PN-IEC 60364, które nakładają obowiązek prawidłowego podłączenia przewodów, aby zapewnić zarówno efektywność, jak i bezpieczeństwo użytkowania systemów oświetleniowych.

Pytanie 15

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. przeważnie pośredniego.
B. przeważnie bezpośredniego.
C. pośredniego.
D. bezpośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 16

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-4, II-3, III-2, IV-1
B. I-1, II-2, III-3, IV-4
C. I-1, II-4, III-2, IV-3
D. I-2, II-4, III-1, IV-3
Analizując zastosowane podejścia w niepoprawnych odpowiedziach, widać, że błędnie interpretują one zasady dotyczące podłączenia łącznika krzyżowego. Wiele osób może mylnie sądzić, że wystarczy zamienić miejscami wejścia i wyjścia bez zrozumienia ich funkcji. Na przykład, konfiguracja I-2, II-4, III-1, IV-3 sugeruje, że wejście 2 pełni rolę głównego źródła sygnału, co jest niezgodne z funkcją łącznika krzyżowego. Tego typu błędne myślenie można przypisać braku zrozumienia, jak sygnały elektryczne przepływają przez system, co prowadzi do nieprawidłowego sterowania oświetleniem. Kolejnym typowym błędem jest nieodróżnianie między funkcją wejść a wyjść łącznika. Wejścia 1 i 4 mają za zadanie przyjmować sygnały sterujące, a wyjścia 2 i 3 są odpowiedzialne za przekazywanie energii do oświetlenia. Niezrozumienie tej struktury może prowadzić do nieefektywnego działania całego układu oraz problemów z instalacją. Ważne jest, aby zrozumieć, że każdy element ma swoją określoną rolę w systemie elektrycznym i nie można dowolnie zmieniać ich funkcji bez konsekwencji dla bezpieczeństwa i wydajności instalacji.

Pytanie 17

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. miernika izolacji
B. wskaźnika kolejności faz
C. mostka LC
D. omomierza
Wybór wskaźnika kolejności faz do sprawdzania ciągłości żył w przewodzie YDY 4x2,5 mm2 wskazuje na pewne nieporozumienie dotyczące przeznaczenia tego urządzenia. Wskaźniki kolejności faz służą do identyfikacji i potwierdzania poprawnego ustawienia faz w układzie trójfazowym. Ich główną funkcją jest ocena kolejności przychodzących faz w instalacji, a nie mierzenie oporu elektrycznego czy ciągłości przewodów. Dlatego stosowanie ich w kontekście sprawdzania ciągłości żył może prowadzić do błędnych wniosków. Mostek LC, który jest używany do pomiarów impedancji w obwodach, również nie jest odpowiednim narzędziem w tej sytuacji, ponieważ tak samo jak wskaźnik kolejności faz, nie jest przystosowany do pomiaru oporu w przewodach. Miernik izolacji, z kolei, ma swoje zastosowanie w testach odporności izolacji przewodów, ale nie służy do bezpośredniego pomiaru ciągłości żył. Zastosowanie niewłaściwych narzędzi do specyficznych zadań technicznych może prowadzić do zaniedbań w ocenie stanu instalacji, co z kolei stwarza ryzyko bezpieczeństwa. Zrozumienie funkcji i ograniczeń różnych narzędzi pomiarowych jest kluczowe w pracy elektryka, aby unikać błędów, które mogą mieć poważne konsekwencje.

Pytanie 18

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Świecznikowy
B. Dwubiegunowy
C. Schodowy
D. Krzyżowy
Odpowiedzi takie jak 'Dwubiegunowy', 'Schodowy' czy 'Krzyżowy' nie są odpowiednie w kontekście pytania o sterowanie dwoma sekcjami źródeł światła w żyrandolu. Łącznik dwubiegunowy, choć umożliwia włączanie i wyłączanie obwodów, nie jest przeznaczony do niezależnego sterowania różnymi sekcjami tego samego źródła światła. Zazwyczaj stosuje się go do prostych obwodów, gdzie jedynie kontroluje zasilanie jednego obwodu. Łącznik schodowy jest używany głównie w instalacjach, gdzie potrzebne jest kontrolowanie jednego źródła światła z dwóch różnych miejsc, co z kolei nie ma zastosowania w przypadku żyrandola z wieloma sekcjami. Łącznik krzyżowy służy do rozszerzenia możliwości już istniejącego układu schodowego, umożliwiając sterowanie jednym źródłem światła z więcej niż dwóch miejsc, ale także nie jest odpowiedni dla żyrandola, gdzie potrzebne jest niezależne włączanie poszczególnych sekcji. Typowe błędy myślowe mogą obejmować założenie, że każdy rodzaj łącznika posiada uniwersalne zastosowanie, co nie jest zgodne z rzeczywistością instalacyjną i wymaga szczególnej uwagi przy wyborze odpowiedniego typu łącznika do konkretnej aplikacji oświetleniowej.

Pytanie 19

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Sprawdzenie kolejności faz sieci zasilającej
B. Weryfikacja działania przycisku testowego
C. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
D. Weryfikacja poprawności podłączenia do sieci
Analizując pozostałe odpowiedzi, można zauważyć, że niektóre z nich dotyczą istotnych aspektów badania wyłączników różnicowoprądowych. Sprawdzenie zadziałania przycisku testującego jest kluczowym elementem, ponieważ pozwala na symulację warunków, w których wyłącznik powinien zareagować na upływność prądu. Użytkownicy często mylą rolę tego przycisku, sądząc, że jego obecność jest jedynie formalnością. Jednak w praktyce, regularne testowanie tej funkcji jest niezbędne, aby zapewnić, że urządzenie będzie działać w sytuacjach krytycznych. Kolejnym aspektem jest pomiar czasu i różnicowego prądu zadziałania, które są kluczowe dla określenia, czy wyłącznik spełnia normy bezpieczeństwa. Warto zaznaczyć, że normy te, m.in. PN-EN 61008-1, precyzują wymagania dotyczące czasów reakcji oraz wartości prądów, co jest zatem kluczowe dla oceny ich skuteczności. Nieprawidłowe podejście do tych czynności może prowadzić do błędów w diagnozowaniu stanu technicznego wyłączników, co z kolei może zagrażać bezpieczeństwu użytkowników. Wiele osób lekceważy również sprawdzenie poprawności podłączenia do sieci, co jest istotnym krokiem w zapewnieniu, że wyłącznik będzie działać zgodnie z przeznaczeniem. Często w praktyce zapominają o tym etapie, co może prowadzić do fałszywych alarmów lub braku reakcji w momencie rzeczywistego zagrożenia. Dlatego kluczowe jest, aby wszystkie wymienione czynności były regularnie przeprowadzane przez wykwalifikowanych specjalistów, aby zapewnić odpowiedni poziom bezpieczeństwa w obiektach korzystających z wyłączników różnicowoprądowych.

Pytanie 20

Na zdjęciu przedstawiono puszkę elektroinstalacyjną

Ilustracja do pytania
A. PU.PP-F3X60GŁ-N
B. PK-3x60/43 MS
C. PU.PP-F2X60PŁ-N
D. PK-2x60/43 MS
Wybór puszki elektroinstalacyjnej z innymi oznaczeniami opiera się na nieprawidłowym zrozumieniu specyfikacji i zastosowań. Odpowiedzi takie jak "PK-2x60/43 MS" i "PU.PP-F2X60PŁ-N" sugerują, że osoba udzielająca odpowiedzi mogła nie zauważyć istotnych cech puszki z trzema przegródkami. Puszki z dwiema przegródkami nie spełniają tego samego celu, co puszki z trzema, szczególnie w kontekście instalacji wymagających większej ilości przewodów lub złożonych połączeń. Oznaczenie "PU.PP-F3X60GŁ-N" również wskazuje na nieprawidłowy wybór, gdyż odnosi się do innego rodzaju puszki, która może nie być zgodna z normami i praktykami w budownictwie elektrycznym. Wybierając puszkę elektroinstalacyjną, należy wziąć pod uwagę zarówno ilość niezbędnych przegródek, jak i ich wymiary, tak aby zapewnić odpowiednią przestrzeń dla przewodów oraz ich bezpieczne prowadzenie. Ignorowanie tych aspektów prowadzi do nieefektywności w instalacji oraz zwiększa ryzyko związane z bezpieczeństwem elektrycznym, co jest kluczowe w kontekście przepisów budowlanych oraz norm branżowych. Właściwy dobór puszki kablowej nie tylko wpływa na funkcjonalność, ale także na trwałość całej instalacji.

Pytanie 21

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. IT
B. TN-C
C. TT
D. TN-S
Układ sieciowy IT jest charakterystyczny tym, że punkt neutralny transformatora nie jest połączony metalicznie z ziemią. W systemie tym, w przypadku awarii, nie występuje bezpośredni kontakt z ziemią, co minimalizuje ryzyko porażenia prądem. Zastosowanie układu IT ma istotne znaczenie w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale czy obiekty przemysłowe. Dzięki temu, w przypadku uszkodzenia izolacji, prąd płynący do ziemi jest ograniczony, co pozwala na kontynuację pracy urządzeń. Praktyczne zastosowanie tego typu układu można zauważyć w sieciach niskiego napięcia, gdzie większy poziom bezpieczeństwa i ciągłość zasilania są priorytetem. Zgodnie z normami IEC 60364, system IT jest zalecany w środowiskach, gdzie awarie mogą prowadzić do poważnych konsekwencji, ponieważ zapewnia on możliwość pracy w warunkach awarii bez ryzyka porażenia."

Pytanie 22

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 23

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie D
B. W punkcie A
C. W punkcie B
D. W punkcie C
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.

Pytanie 24

Na rysunku przedstawiono symbol graficzny przewodu

Ilustracja do pytania
A. L
B. PEN
C. N
D. PE
Wybierając odpowiedzi "L", "PE" lub "PEN", można zaplątać się w zrozumieniu podstawowych funkcji przewodów w instalacji elektrycznej. Oznaczenie "L" odnosi się do przewodu fazowego, który jest odpowiedzialny za dostarczanie prądu do urządzeń elektrycznych. Zrozumienie tej roli jest kluczowe, ponieważ przewód fazowy ma potencjał elektryczny i jest niezbędny do zasilania obwodów. W przypadku przewodu ochronnego oznaczonego jako "PE", jego funkcją jest zapewnienie bezpieczeństwa poprzez odprowadzanie prądu do ziemi w przypadku awarii, co zapobiega porażeniom elektrycznym. Ostatecznie "PEN" to przewód, który pełni dwie funkcje jednocześnie - łączy przewód neutralny z przewodem ochronnym, ale jego zastosowanie jest typowe dla określonych instalacji, takich jak sieci niskiego napięcia. Zrozumienie tych różnic i ról przewodów jest kluczowe dla projektowania i użytkowania instalacji elektrycznych. Typowym błędem jest mylenie funkcji przewodu neutralnego z innymi przewodami, co może prowadzić do nieprawidłowego podłączenia i potencjalnych zagrożeń dla bezpieczeństwa. Wiedza o tym, jak prawidłowo identyfikować i stosować różne przewody, jest niezbędna w pracy każdego elektryka, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 25

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
D. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
Analiza pozostałych odpowiedzi ujawnia pewne nieporozumienia dotyczące klasyfikacji i zastosowania różnych typów kabli. W odpowiedzi, która wskazuje na kabel sygnalizacyjny z żyłami jednodrutowymi, istotnym błędem jest założenie, że kabel kontrolny nie może mieć wielodrutowych żył. W praktyce, żyły wielodrutowe są często stosowane w kablach kontrolnych, ponieważ oferują większą elastyczność i odporność na uszkodzenia. W kontekście napięcia, klasyfikacja na 0,6/1 kV jest typowa dla kabli elektroenergetycznych, a nie kontrolnych, które są z reguły projektowane z myślą o niższych napięciach, takich jak 300/500 V. Odpowiedź mówiąca o kablu sygnalizacyjnym z żyłami wielodrutowymi o wiązkach parowych także nie bierze pod uwagę ekranowania, które jest kluczowe dla kabli kontrolnych. Ekranowanie zapobiega zakłóceniom i zapewnia integralność sygnału, co jest niezbędne w aplikacjach, gdzie precyzyjne przesyłanie danych jest kluczowe. Niezrozumienie różnicy między zastosowaniem kabli sygnalizacyjnych a kontrolnych prowadzi do błędnych wniosków, co może skutkować niewłaściwym doborem materiałów w projektach instalacyjnych, obniżając ich efektywność i bezpieczeństwo.

Pytanie 26

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Ledowy.
B. Rtęciowy.
C. Halogenowy.
D. Wolframowy.
Wybór żarówki wolframowej, rtęciowej lub halogenowej jako odpowiedzi sugeruje pewne nieporozumienia dotyczące technologii oświetleniowej. Żarówki wolframowe, choć kiedyś były powszechnie stosowane, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością, wynoszącą średnio około 1000 godzin. Emitują one dużą ilość ciepła, co sprawia, że są mniej praktyczne w zastosowaniach wymagających długotrwałego użytkowania. Z kolei żarówki rtęciowe, wykorzystywane głównie w oświetleniu przemysłowym i ulicznym, mają swoje ograniczenia związane z zawartością rtęci, co czyni je zagrożeniem dla środowiska. Ich zastosowanie w domach jest nie tylko niepraktyczne, ale także niebezpieczne. Halogenowe żarówki, będące rozwinięciem technologii wolframowej, oferują nieco lepszą efektywność, ale nadal nie dorównują żarówkom LED pod względem oszczędności energii oraz żywotności. Typowe błędy myślowe, które mogą prowadzić do wyboru tych opcji, to przekonanie, że tradycyjne źródła światła są wystarczające do zaspokojenia potrzeb oświetleniowych, ignorując przy tym ich negatywny wpływ na rachunki za energię oraz środowisko. W praktyce, na podstawie badań i analiz branżowych, zaleca się stosowanie żarówek LED jako najbardziej efektywnej i ekologicznej opcji oświetleniowej, dostosowanej do współczesnych standardów.

Pytanie 27

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 1-20 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Pytanie dotyczące zakresu działania wyzwalaczy elektromagnetycznych wyłączników instalacyjnych nadprądowych dla charakterystyki C jest istotne dla zrozumienia właściwości tych urządzeń. Odpowiedzi, które sugerują zakresy takie jak "20-30 krotności prądu znamionowego", "3-5 krotności prądu znamionowego" oraz "1-20 krotności prądu znamionowego", nie są zgodne z rzeczywistymi charakterystykami tych wyłączników. Wyłączniki nadprądowe charakteryzujące się charakterystyką C są stworzone do ochrony przed krótkimi spięciami oraz przeciążeniami, które mogą wystąpić w typowych aplikacjach, takich jak silniki elektryczne. Zakres 20-30 krotności jest zbyt wysoki i nieodpowiedni dla standardowych aplikacji, co może prowadzić do niepożądanych skutków, takich jak opóźniona reakcja na rzeczywiste zagrożenia. Odpowiedzi 3-5 krotności oraz 1-20 krotności również nie są właściwe, gdyż wyłączniki C są zaprojektowane do działania w bardziej specyficznym zakresie, który gwarantuje zarówno odpowiednią ochronę, jak i możliwość pracy w warunkach normalnych. W praktyce, wybór niewłaściwego zakresu może skutkować nieefektywną ochroną instalacji, co w skrajnych przypadkach prowadzi do uszkodzenia urządzeń lub nawet pożaru. Dlatego kluczowe jest, aby przy wyborze wyłączników nadprądowych kierować się dokładnymi danymi technicznymi oraz standardami branżowymi, takimi jak PN-EN 60898, które określają wymagania i klasyfikacje dla sprzętu ochronnego w instalacjach elektrycznych.

Pytanie 28

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
B. Wymienić wszystkie przewody na nowe o większym przekroju
C. Polakierować uszkodzoną izolację przewodu
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 29

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
B. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
C. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
D. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 30

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy A
B. Klasy C
C. Klasy B
D. Klasy D
Wybór odpowiedzi z klas A, B, C niestety nie odpowiada rzeczywistym potrzebom ochrony przed przepięciami, jeśli mówimy o ogranicznikach klasy D. Klasa A jest do ochrony sprzętu przed przepięciami z atmosfery, ale to działa przy średnio niskich energiach, więc przy silnych przepięciach to może być za mało. Klasa B, która jest stworzona do ochrony przed przepięciami z zewnątrz, też nie bardzo sobie poradzi w aplikacjach, które mogą dostać nagłe, wysokie przepięcia. Klasa C, mimo że daje jakąś formę ochrony, nie nadaje się do intensywnej ochrony przed przepięciami, jak w przypadku systemów komputerowych czy telekomunikacyjnych. Ważne jest, żeby znać różnice między tymi klasami i ich zastosowania, bo źle dobrane rozwiązanie może skutkować poważnymi uszkodzeniami sprzętu i kosztownymi naprawami. Często ludzie błędnie myślą, że te klasy są równoważne, co prowadzi do zaniżania ryzyka, a to jest naprawdę powszechna pułapka przy projektowaniu systemów ochrony przeciwprzepięciowej.

Pytanie 31

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 1.
C. Narzędzie 2.
D. Narzędzie 4.
Wybór innych narzędzi niż ściągacz do demontażu przewietrznika z wału silnika elektrycznego może wynikać z nieodpowiedniego zrozumienia funkcji poszczególnych narzędzi. Narzędzie 1, na przykład, może być korzystne w innych zastosowaniach, ale nie jest zaprojektowane do precyzyjnego ściągania elementów, co jest kluczowe podczas demontażu przewietrznika. Korzystanie z narzędzi, które nie są odpowiednie do danego zadania, może prowadzić do ich uszkodzenia lub, jeszcze gorzej, do uszkodzenia przewietrznika lub wału silnika. Narzędzie 3 oraz 4 także nie spełniają wymogów dotyczących delikatnego podejścia do demontażu, co jest niezbędne w przypadku precyzyjnych elementów maszynowych. Typowym błędem myślowym jest zakładanie, że każde narzędzie nadaje się do wykonania każdego zadania. W rzeczywistości, wybór narzędzia powinien opierać się na specyfikacji zadania oraz na zrozumieniu, jak konkretne narzędzie działa i jakie ma zastosowanie. Niewłaściwe podejście do wyboru narzędzi nie tylko zwiększa ryzyko uszkodzeń, ale również może zagrażać bezpieczeństwu operatora. Użycie dedykowanego narzędzia, takiego jak ściągacz, jest zawsze najlepszym rozwiązaniem, co podkreśla znaczenie edukacji w zakresie doboru narzędzi w przemyśle elektrycznym.

Pytanie 32

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka dystansowa
B. Podkładka sprężysta
C. Tuleja redukcyjna
D. Tuleja kołnierzowa
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 33

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Reflektometru
C. Watomierza
D. Waromierza
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 34

Aby prawidłowo wykonać otwór w twardym betonie pod gniazdo sieciowe, konieczne jest użycie wiertarki oraz

A. młotka z przecinakiem
B. otwornicy z nasypem wolframowym
C. otwornicy z segmentami diamentowymi
D. wyrzynarki do głębokich cięć
Otwornice z diamentowymi segmentami to naprawdę najlepsze narzędzie, jeśli chodzi o wiercenie w twardym betonie. Dzięki swojej konstrukcji świetnie radzą sobie z usuwaniem materiału w bardzo precyzyjny sposób. Diamentowe segmenty są super twarde i odporne na ścieranie, co czyni je idealnym wyborem, zwłaszcza w trudnych warunkach. Na przykład, gdy instalujesz gniazda sieciowe w betonowych murach, to otwornica diamentowa daje czyste krawędzie, co wygląda lepiej i bardziej profesjonalnie. Z mojej perspektywy, korzystanie z takich narzędzi pomaga uniknąć uszkodzenia otaczających materiałów i naprawdę przyspiesza cały proces pracy. I fajnie, że otwornice są w różnych rozmiarach, więc można dobrać coś odpowiedniego do konkretnego projektu.

Pytanie 35

Który aparat obwodu głównego będzie włączony zgodnie z przedstawionym schematem między wyłącznik różnicowoprądowy a stycznik?

Ilustracja do pytania
A. Ochronnik przeciwprzepięciowy.
B. Wyłącznik silnikowy.
C. Przekaźnik przeciążeniowy.
D. Rozłącznik bezpiecznikowy.
Wyłącznik silnikowy to naprawdę ważne urządzenie, które chroni silniki elektryczne przed różnymi problemami, jak przeciążenie czy zwarcie. Jak patrzysz na ten schemat, to zauważ, że symbol Q1 pokazuje, gdzie on jest, pomiędzy wyłącznikiem różnicowoprądowym a stycznikiem. Ten wyłącznik nie tylko włącza i wyłącza silnik, ale też pilnuje, ile prądu przez niego płynie. Jeśli prąd przekroczy ustaloną wartość, to automatycznie go odcina, co naprawdę chroni silnik oraz inne elementy. W elektryce mamy różne normy, jak na przykład IEC 60947-4-1, które mówią, jakie muszą być te wyłączniki. Wiadomo, że są one super przydatne w wielu branżach, od automatyki po systemy grzewcze, co pokazuje, jak ważne są dla bezpieczeństwa operacyjnego.

Pytanie 36

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Lokalizacja przewodów pod tynkiem.
B. Badanie kolejności faz.
C. Pomiar rezystancji uziemienia.
D. Sprawdzanie wyłączników różnicowoprądowych.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 37

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. Wykonana przewodami szynowymi
B. W kanałach podłogowych
C. Prowadzona na drabinkach
D. W listwach przypodłogowych
Pomimo że inne metody instalacji elektrycznej mogą być stosowane w różnych kontekstach, nie są one optymalnymi rozwiązaniami dla pomieszczeń mieszkalnych. Kanały podłogowe, mimo swojej funkcjonalności, często wymagają skomplikowanego montażu i mogą ograniczać elastyczność przestrzenną. Zainstalowanie kabli w kanałach podłogowych może prowadzić do problemów z dostępem do przewodów w przypadku awarii, co jest niepraktyczne w domowych warunkach. Prowadzenie instalacji na drabinkach zazwyczaj zarezerwowane jest dla zastosowań przemysłowych lub w obiektach o dużych wymaganiach przestrzennych, a nie dla pomieszczeń mieszkalnych, gdzie estetyka oraz funkcjonalność odgrywają kluczową rolę. Instalacje wykonane przewodami szynowymi są stosowane głównie w obiektach komercyjnych i przemysłowych, gdzie wymagane są zmiany i rozbudowy sieci elektrycznej. Takie podejście nie jest dostosowane do standardów domowych, w których przewody powinny być zakryte i zabezpieczone. Typowy błąd myślowy polega na myleniu funkcjonalności instalacji elektrycznych w różnych kontekstach, co może prowadzić do niewłaściwych wyborów w zakresie ich wykonania. Wniosek jest taki, że w kontekście pomieszczeń mieszkalnych preferowane są instalacje, które łączą estetykę z bezpieczeństwem oraz łatwością dostępu.

Pytanie 38

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Wymiana uszkodzonych gniazd wtyczkowych
B. Przesunięcie miejsc montażu opraw oświetleniowych
C. Instalacja nowych punktów świetlnych
D. Zamiana zużytych urządzeń na nowe
Zmiana miejsc zamontowania opraw oświetleniowych, montaż nowych wypustów oświetleniowych oraz wymiana odbiorników energii elektrycznej na nowe to czynności, które nie należą do prac konserwacyjnych, lecz do prac instalacyjnych i modernizacyjnych. Prace konserwacyjne koncentrują się na utrzymaniu istniejącej instalacji w dobrym stanie, co obejmuje m.in. naprawy, wymianę uszkodzonych elementów czy przeglądy techniczne. Zmiana lokalizacji opraw oświetleniowych czy montaż nowych wypustów wiąże się z modyfikacją struktury instalacji, co wymaga zupełnie innego podejścia i często jest związane z koniecznością uzyskania odpowiednich zezwoleń oraz wykonania projektu technicznego. Podobnie, wymiana odbiorników energii elektrycznej na nowe wiąże się z ich odpowiednim doborem oraz z zapewnieniem, że instalacja elektryczna jest przystosowana do nowych wymagań. Często mylnie przyjmuje się, że każda czynność związana z elektrycznością należy do prac konserwacyjnych, jednakże zgodnie z najlepszymi praktykami branżowymi należy dbać o wyraźne rozgraniczenie tych dwóch rodzajów aktywności, aby zapewnić bezpieczeństwo oraz prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 39

Rysunek przedstawia schemat

Ilustracja do pytania
A. łącznika wielofunkcyjnego.
B. przekaźnika.
C. stycznika.
D. wyłącznika różnicowoprądowego.
Niepoprawne odpowiedzi opierają się na błędnym zrozumieniu funkcji oraz konstrukcji elementów elektroinstalacyjnych. Wyłącznik różnicowoprądowy, którego opis sugeruje, ma na celu wykrywanie różnicy prądu pomiędzy przewodem fazowym a neutralnym i odcinanie obwodu w przypadku wystąpienia prądu upływowego. Jego schemat różni się znacznie od przedstawionego, ponieważ nie zawiera cewek ani styków pomocniczych. Przekaźnik, z kolei, jest urządzeniem służącym do zdalnego włączania i wyłączania obwodów, ale jego zasada działania i konstrukcja różni się od stycznika, polegając głównie na mechanicznym przełączaniu w odpowiedzi na sygnał elektryczny, co również nie odzwierciedla schemat. Łącznik wielofunkcyjny, który jest bardziej zaawansowanym urządzeniem, łączy różne funkcje w jednym elemencie, ale nie jest to typowy schemat dla stycznika, ponieważ nie skupia się na załączaniu obwodów mocy. Zrozumienie różnic między tymi urządzeniami jest kluczowe, ponieważ każdy z nich ma swoje specyficzne zastosowania oraz wymagania normatywne. Błędne odpowiedzi mogą wynikać z niepełnego zrozumienia układów elektrycznych i ich funkcji, co prowadzi do nieprawidłowego identyfikowania i stosowania tych elementów w praktyce.

Pytanie 40

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Zmiana rodzaju zastosowanych przewodów
B. Modernizacja rozdzielnicy instalacji elektrycznej
C. Wymiana uszkodzonych źródeł światła
D. Instalacja dodatkowego gniazda elektrycznego
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.