Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 stycznia 2026 22:27
  • Data zakończenia: 28 stycznia 2026 22:47

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przekładnia przedstawiona na rysunku składa się

Ilustracja do pytania
A. ze ślimaka i zębatki.
B. ze ślimaka i ślimacznicy.
C. z koła koronowego i ślimaka.
D. z wieńca zębatego i ślimaka.
Poprawna odpowiedź wskazuje na skład przekładni, która składa się z ślimaka oraz ślimacznicy. Ślimak jest elementem o spiralnym kształcie, który zazwyczaj pełni rolę elementu napędowego. Jego konstrukcja pozwala na wytwarzanie ruchu obrotowego, który jest następnie przenoszony na ślimacznicę – koło z zębami wewnętrznymi, które współpracuje z ślimakiem. Ta specyficzna kombinacja elementów mechanicznych jest szeroko stosowana w różnych aplikacjach inżynieryjnych, np. w przekładniach stosowanych w maszynach przemysłowych, w mechanizmach w windach czy w układach napędowych. Dzięki spiralnej geometrii, przekładnie ślimakowe charakteryzują się dużą zdolnością do przenoszenia momentu obrotowego oraz możliwością redukcji prędkości obrotowej. Tego rodzaju przekładnie są cenione za swoją kompaktowość oraz efektywność, co sprawia, że są zgodne z nowoczesnymi standardami projektowania inżynieryjnego, które kładą nacisk na wydajność oraz niezawodność.

Pytanie 2

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawanie
B. Zgrzewanie
C. Zaginanie
D. Klejenie
Zgrzewanie, spawanie i zaginanie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co może prowadzić do nieporozumień związanych z ich zastosowaniem. Zgrzewanie polega na podgrzewaniu miejsc styku dwóch elementów do momentu ich stopienia, a następnie ich łączeniu. Proces ten tworzy jednorodną strukturę materiału, co sprawia, że połączenie jest trwałe i wytrzymałe na obciążenia. W przypadku spawania, szczególnie w kontekście tworzyw sztucznych, można używać różnych metod, takich jak spawanie gorącym powietrzem czy spawanie w kąpieli cieczy. Oba te procesy również skutkują trwałym połączeniem, które jest często porównywalne z właściwościami mechanicznymi materiału bazowego. Zaginanie natomiast polega na deformacji materiału pod wpływem siły, co w przypadku tworzyw może prowadzić do trwałego kształtowania, ale nie do połączenia dwóch elementów w sensie ich zespolenia. Wiele osób może mylić te techniki, myśląc, że każda z nich może być użyta w każdej sytuacji, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że trwałe połączenia wymagają zastosowania odpowiednich metod, które działają w oparciu o fizykę i mechanikę materiałów, a nie tylko na zasadzie chemii powierzchni. Brak znajomości różnic między tymi technikami może prowadzić do nieodpowiednich wyborów w projektach inżynieryjnych, co z kolei może skutkować osłabieniem konstrukcji i problemami w eksploatacji.

Pytanie 3

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po poinformowaniu osoby przełożonej
B. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
C. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
D. po wezwaniu pomocy medycznej
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 4

Którą z przedstawionych na ilustracji nakrętek należy zastosować w połączeniach gwintowych, aby zapewnić ochronę przed zranieniem o powierzchnię gwintu oraz nadać im estetyczny wygląd?

Ilustracja do pytania
A. Nakrętkę 2.
B. Nakrętkę 1.
C. Nakrętkę 3.
D. Nakrętkę 4.
Nakrętka 2, znana jako nakrętka z zaślepką, jest idealnym rozwiązaniem w przypadku połączeń gwintowych wymagających zarówno estetyki, jak i bezpieczeństwa użytkowników. Dzięki swojej konstrukcji pokrywa całą powierzchnię gwintu, co minimalizuje ryzyko zranienia, które może wystąpić przy narażeniu na ostre krawędzie. Użycie takiej nakrętki jest szczególnie zalecane w aplikacjach, gdzie połączenia są narażone na kontakt z użytkownikami, na przykład w meblarstwie czy w branży motoryzacyjnej. W standardach ISO i ANSI można znaleźć wytyczne dotyczące stosowania nakrętek z osłoną, które podkreślają ich rolę w poprawie estetyki produktu oraz zwiększeniu bezpieczeństwa. Dobre praktyki nakazują również stosowanie odpowiednich materiałów do produkcji nakrętek, takich jak stal nierdzewna czy tworzywa sztuczne, które charakteryzują się odpornością na korozję i długowiecznością. Wybór nakrętki z zaślepką nie tylko podnosi jakość połączeń, ale również wpływa na ogólne postrzeganie produktu przez klienta.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W siłowniku zakwalifikowanym do naprawy z powodu obniżenia się jego sprawności należy w pierwszej kolejności wymienić

Ilustracja do pytania
A. uszczelnienie tłoka.
B. magnes.
C. pokrywę tylną.
D. tłoczysko.
Uszczelnienie tłoka jest kluczowym elementem w układzie siłownika hydraulicznego, którego zadaniem jest zapewnienie szczelności oraz prawidłowego ciśnienia w systemie. W przypadku obniżenia sprawności siłownika, często pierwszym krokiem diagnostycznym jest sprawdzenie stanu uszczelnień. Uszczelnienia tłoka mają na celu zapobieganie wyciekom medium roboczego, które w większości przypadków jest olejem hydraulicznym. Wycieki te mogą prowadzić do znacznego spadku efektywności siłownika, co z kolei może wpływać negatywnie na cały system hydrauliczny, prowadząc do jego awarii. Wymiana uszczelnienia tłoka powinna być przeprowadzana zgodnie z zaleceniami producenta oraz standardami branżowymi, aby zapewnić długotrwałą i niezawodną pracę siłownika. Dodatkowo, regularna konserwacja i kontrola uszczelnień mogą znacznie wydłużyć żywotność siłowników oraz zapobiec poważniejszym awariom, co jest zgodne z najlepszymi praktykami w zakresie utrzymania ruchu.

Pytanie 7

Do montażu zaworu przedstawionego na rysunku należy zastosować klucz

Ilustracja do pytania
A. nasadowy.
B. imbusowy.
C. oczkowy.
D. płaski.
Klucz płaski to narzędzie, które idealnie nadaje się do montażu zaworów z sześciokątnymi nakrętkami, co wynika z jego konstrukcji. Jego szczęki przylegają do krawędzi nakrętki, co zapewnia pewny chwyt i minimalizuje ryzyko jej uszkodzenia. Używając klucza płaskiego, możemy również precyzyjnie kontrolować moment obrotowy, co jest kluczowe podczas montażu zaworów, aby uniknąć ich zbyt mocnego dokręcenia, co mogłoby prowadzić do awarii uszczelek lub uszkodzenia gwintów. W praktyce, klucz płaski jest preferowany w wielu aplikacjach przemysłowych, gdzie precyzyjne połączenia są niezbędne. Warto również wspomnieć, że w odpowiednich standardach związanych z montażem zaworów, klucz płaski jest często rekomendowany jako najbardziej odpowiednie narzędzie do obsługi tego typu elementów złącznych. Przy odpowiednim doborze narzędzi zwiększamy efektywność pracy oraz bezpieczeństwo całego systemu. Zastosowanie kluczy innych typów, jak nasadowe czy oczkowe, może prowadzić do niepożądanych skutków, takich jak słabsze dokręcenie lub uszkodzenie nakrętki.

Pytanie 8

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Pompa hydrauliczna.
B. Silnik hydrauliczny.
C. Silnik pneumatyczny.
D. Sprężarka pneumatyczna.
Pompa hydrauliczna to takie urządzenie, które zamienia energię mechaniczną na hydrauliczną. To ważny element w wielu systemach hydraulicznych, więc warto o nim wiedzieć. Na rysunku można zobaczyć symbol graficzny, który pokazuje cechy pompy. Kształt koła to wirnik lub tłok, a trójkąt pokazuje, w którą stronę płynie medium. Pompy hydrauliczne znajdują zastosowanie w różnych dziedzinach, jak budownictwo, motoryzacja czy przemysł maszynowy. Jest nawet norma ISO 4413, która mówi, jakie powinny być wymagania dla systemów hydraulicznych. Dlatego znajomość tych symboli i ich zastosowania jest kluczowa, szczególnie dla inżynierów i techników, którzy projektują hydraulikę. Wybranie odpowiedniej pompy ma wpływ na efektywność i bezpieczeństwo całego systemu. Generalnie, zrozumienie, jak działają pompy hydrauliczne, pozwala na lepsze projektowanie i użytkowanie tych systemów, co w efekcie przynosi oszczędności i większą wydajność.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Wartość napięcia wskazana przez woltomierz wynosi

Ilustracja do pytania
A. 17 V
B. 4 V
C. 8 V
D. 40 V
Poprawna odpowiedź wynika z precyzyjnego odczytu wskazania woltomierza. Na zdjęciu możemy dostrzec, że wskazówka instrumentu znajduje się na poziomie 8 V, co jest zgodne z podziałką na skali. Wartości napięcia mierzonego woltomierzem muszą być odczytywane z dużą starannością, aby uniknąć błędów. W praktyce, prawidłowy odczyt napięcia jest kluczowy w wielu zastosowaniach, takich jak diagnostyka układów elektronicznych, testowanie baterii czy praca z instalacjami elektrycznymi. Ważne jest, aby znać zasady działania i kalibracji woltomierzy, aby zapewnić dokładność pomiarów. Standardy branżowe, takie jak IEC 61010, określają wymagania dotyczące bezpieczeństwa i dokładności urządzeń pomiarowych, co podkreśla znaczenie stosowania właściwych narzędzi w odpowiednich warunkach. Dobrze przeprowadzony pomiar nie tylko umożliwia zrozumienie działania obwodu, ale również przyczynia się do bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 11

Na rysunku przedstawiono pneumatyczne elementy

Ilustracja do pytania
A. wejściowe.
B. sterujące.
C. wytwarzające.
D. wykonawcze.
Właściwa odpowiedź to "wykonawcze". Pneumatyczne elementy wykonawcze, takie jak siłowniki, pełnią kluczową rolę w systemach automatyki i przemysłu. Ich zadaniem jest przekształcanie energii sprężonego powietrza na energię mechaniczną, co umożliwia wykonanie różnych rodzajów pracy, takich jak ruch liniowy, obrotowy czy podnoszenie ciężarów. Siłowniki pneumatyczne są szeroko stosowane w wielu aplikacjach, od prostych mechanizmów w maszynach po zaawansowane systemy automatyki przemysłowej. Przy projektowaniu układów pneumatycznych istotne jest przestrzeganie norm, takich jak ISO 1219, które definiują symbole i oznaczenia dla elementów pneumatycznych. Dobrze zaprojektowany system pneumatyczny zapewnia nie tylko efektywność operacyjną, ale również bezpieczeństwo, co jest niezbędne w aplikacjach przemysłowych. Właściwe zrozumienie oraz umiejętność identyfikacji elementów wykonawczych to kluczowe umiejętności w dziedzinie automatyki, które mają wpływ na wydajność i niezawodność całego systemu.

Pytanie 12

Na etykiecie rozdzielacza pneumatycznego MEH-5/2-1/8-B zaznaczono średnicę przyłącza

A. G5/2
B. G 1/8
C. 5 mm
D. 8 mm
Oznaczenie G 1/8 na obudowie rozdzielacza pneumatycznego MEH-5/2-1/8-B wskazuje na typ gwintu przyłączeniowego, który jest standardem w branży pneumatycznej. W tym przypadku 'G' oznacza gwint zewnętrzny typu metrycznego, a '1/8' odnosi się do nominalnej średnicy otworu, która wynosi 1/8 cala. Gwinty G są powszechnie stosowane w instalacjach pneumatycznych i hydraulicznych, a ich rozmiary są określane według normy BSP (British Standard Pipe). W praktyce oznacza to, że do tego typu rozdzielacza należy stosować złącza odpowiednie dla gwintu 1/8, co zapewnia kompatybilność i szczelność układu. Znajomość tych oznaczeń jest kluczowa dla inżynierów i techników zajmujących się instalacjami pneumatycznymi, ponieważ niewłaściwe dobieranie złączek może prowadzić do wycieków, awarii systemu oraz zwiększenia kosztów eksploatacyjnych. Przykładem zastosowania mogą być instalacje w automatyzacji przemysłowej, gdzie precyzyjne zarządzanie ciśnieniem i wydajnością jest kluczowe dla efektywności operacyjnej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Ilustracja przedstawia proces

Ilustracja do pytania
A. frezowania.
B. nitowania.
C. wiercenia.
D. gwintowania.
Odpowiedź "nitowania" to strzał w dziesiątkę! Ilustracja dobrze pokazuje, jak ten proces działa. Nitowanie jest naprawdę popularne w takich branżach jak lotnictwo, motoryzacja czy budownictwo, gdzie odporne połączenia są super ważne. Cała robota z nitowaniem zaczyna się od włożenia nitu w otwory elementów, które chcemy połączyć. Potem używamy odpowiedniego narzędzia, żeby uformować końcówkę nitu, co sprawia, że połączenie jest mocne. Na końcu zgniecione zostaje drugie końcówka nitu, co zapewnia trwałe złączenie. W praktyce często wybiera się nitowanie, bo spawanie czasem może osłabić materiał. Warto znać te techniki, żeby inżynierowie i technicy mogli zadbać o bezpieczeństwo i trwałość konstrukcji.

Pytanie 15

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Potencjometr obrotowy
B. Selsyn trygonometryczny
C. Prądnica tachometryczna
D. Mostek tensometryczny
Prądnica tachometryczna to fajne urządzenie, które służy do mierzenia prędkości obrotowej wału silnika. Działa na zasadzie indukcji elektromagnetycznej, co oznacza, że kiedy wał się kręci, w uzwojeniach prądnicy powstaje prąd, który jest proporcjonalny do prędkości tego obrotu. To bardzo ważne w automatyce i regulacji, bo precyzyjne pomiary prędkości są kluczowe, żeby maszyny działały stabilnie i efektywnie. Na przykład w autach, prądnice tachometryczne pomagają kontrolować prędkość silnika, co z kolei wpływa na zużycie paliwa i emisję spalin. Co więcej, te urządzenia są zgodne z normami europejskimi, jak IEC 60034, więc można na nie liczyć. W praktyce, wdrożenie prądnic tachometrycznych w systemach pomiarowych umożliwia uzyskanie wysokiej dokładności i szybkiej reakcji, co jest super ważne w nowoczesnym przemyśle.

Pytanie 16

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. K = 80/0,83 U
B. K = 12/0,83 U
C. K = 12/230 U
D. K = 230/12 U
Przekładnia napięciowa w transformatorze to po prostu relacja między napięciem na uzwojeniu pierwszym a tym na uzwojeniu drugim. Jeśli mamy transformator, który ma na tabliczce 230V dla napięcia pierwotnego i 12V dla wtórnego, to obliczamy przekładnię jako K = 230/12. Taki wybór parametrów pasuje do standardów w branży, gdzie transformator używa się do obniżania napięcia w aplikacjach niskonapięciowych. To jest naprawdę ważne w instalacjach elektrycznych, bo umożliwia korzystanie z urządzeń, które działają przy niższym napięciu, a przy tym dba o bezpieczeństwo i efektywność całego systemu. Zrozumienie tego zagadnienia to podstawa w projektowaniu i użytkowaniu systemów elektroenergetycznych. Ta wiedza jest też istotna w codziennej praktyce, a normy IEC dotyczące transformatorów podkreślają, jak ważne jest prawidłowe liczenie przekładni, szczególnie w kontekście efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Którą funkcję pełni w układzie element oznaczony na rysunku symbolem X?

Ilustracja do pytania
A. Filtruje olej powracający z układu do zbiornika.
B. Ogranicza ciśnienie oleju w układzie.
C. Chłodzi olej w układzie.
D. Odpowietrza układ.
Element oznaczony na rysunku symbolem X pełni rolę zaworu bezpieczeństwa, który ma fundamentalne znaczenie dla zabezpieczenia układów hydraulicznych. Jego główną funkcją jest ograniczenie ciśnienia oleju w systemie, co jest kluczowe dla zapobiegania uszkodzeniom komponentów hydraulicznych, takich jak pompy czy siłowniki. W momencie, gdy ciśnienie oleju przekracza wartość ustaloną dla danego zaworu, otwiera się on, umożliwiając nadmiarowemu olejowi powrót do zbiornika. To działanie nie tylko chroni układ przed awariami, ale także zapewnia jego efektywność. Przykładowo, w maszynach budowlanych, takich jak koparki, zawory bezpieczeństwa są niezbędne, aby podnieść poziom bezpieczeństwa operatora oraz urządzenia. Dobrą praktyką w projektowaniu układów hydraulicznych jest stosowanie zaworów nadmiarowych zgodnie z normą ISO 4413, co zapewnia, że układ będzie działał w sposób niezawodny, a ryzyko awarii zostanie zminimalizowane.

Pytanie 20

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik różnicowoprądowy
B. Przekaźnik termobimetalowy
C. Wyłącznik nadmiarowy
D. Stycznik elektromagnetyczny
Przekaźnik termobimetalowy jest urządzeniem, które działa na zasadzie różnicy temperatur pomiędzy dwoma metalami o różnych współczynnikach rozszerzalności. Jego głównym zastosowaniem jest ochrona silników indukcyjnych przed przeciążeniem i przegrzaniem. W momencie, gdy prąd płynący przez silnik przekracza ustaloną wartość, przekaźnik odcina zasilanie, co zapobiega uszkodzeniu silnika. Przekaźniki termobimetalowe są często stosowane w obwodach napędowych, gdzie silniki są narażone na zmienne warunki pracy. Dobrą praktyką jest ich instalacja w połączeniu z wyłącznikami automatycznymi, co zapewnia dodatkową ochronę. Zgodnie z normami IEC 60947-4-1, przekaźniki te muszą spełniać określone wymagania zabezpieczeń przeciążeniowych, co czyni je wiarygodnym rozwiązaniem w aplikacjach przemysłowych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 5 V
B. 15 V
C. 6 V
D. 3 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 24

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. termoelement
B. sensor ultradźwiękowy
C. resolver
D. tachometr
Resolver jest precyzyjnym urządzeniem stosowanym do pomiaru położenia kątowego w różnych aplikacjach inżynieryjnych, takich jak robotyka, automatyka przemysłowa oraz w systemach kontroli ruchu. Działa na zasadzie pomiaru kątów za pomocą dwóch sygnałów elektrycznych, które są proporcjonalne do aktualnego kąta obrotu. Dzięki temu, resolver zapewnia wysoką dokładność oraz możliwość pracy w trudnych warunkach, takich jak wysokie temperatury czy wibracje. Znalezienie zastosowania w systemach sterowania serwonapędami to jeden z przykładów efektywnego wykorzystania resolvera, gdzie precyzja pomiaru jest kluczowa dla prawidłowego działania układów napędowych. W praktyce, stosowanie resolverów przyczynia się do poprawy efektywności operacyjnej oraz minimalizacji błędów w systemach automatyki, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Maksymalne natężenie przepływu dla pompy hydraulicznej, której dane katalogowe zamieszczono w ramce, wynosi

Dane techniczne pompy hydraulicznej
Objętość geometryczna:60 cm3
Maksymalne natężenie przepływu Q:120 dm3/min
Natężenie przepływu przy 1000 obr./min:80 dm3/min
Maksymalna prędkość obrotowa:5000 obr/min
Maksymalne ciśnienie ciągłe:600 barów
Zakres temperatury pracy:-5 ÷ 60 °C
Lepkość oleju hydraulicznego:10 ÷ 400 cSt
A. 40 dm3/min
B. 120 dm3/min
C. 80 dm3/min
D. 200 dm3/min
Maksymalne natężenie przepływu dla pompy hydraulicznej wynoszące 120 dm3/min jest kluczowym parametrem, który określa zdolność pompy do transportu cieczy. Wartość ta została określona na podstawie danych katalogowych, które są istotne przy doborze pompy do konkretnego zastosowania. Pompy hydrauliczne stosowane są w różnych aplikacjach, takich jak zasilanie systemów hydraulicznych w maszynach przemysłowych czy konstrukcjach budowlanych. Zrozumienie maksymalnego natężenia przepływu pozwala inżynierom i technikom na odpowiednie dimensionowanie systemów hydraulicznych, zapewniając ich efektywność oraz bezpieczeństwo operacyjne. W praktyce, wybierając pompę, należy uwzględnić również inne parametry, takie jak ciśnienie, moc oraz charakterystyka cieczy, co pozwala na osiągnięcie optymalnych wyników pracy w danej aplikacji. W branży hydraulicznej standardy, takie jak ISO 4413, podkreślają znaczenie doboru odpowiednich elementów hydraulicznych, co ma kluczowe znaczenie dla wydajności i trwałości systemów.

Pytanie 27

Jaką wartość znamionową ma natężenie prądu wzbudzenia silnika prądu stałego, którego dane techniczne zamieszczono w ramce?

- MotorNr 20026 976
230 V2,2 A
0,3 WS1cos φ
2000 min-1– Hz
ERR.230 V0,45 A
I. KLFIP23
VDE 0530
A. 2,65 A
B. 2,20 A
C. 1,75 A
D. 0,45 A
Wybór innej wartości natężenia prądu wzbudzenia niż 0,45 A może prowadzić do kilku nieporozumień i błędnych założeń technicznych. Na przykład, odpowiadając 1,75 A, można myśleć, że jest to wartość, która zapewni silnikowi lepszą wydajność. W rzeczywistości, zbyt wysoki prąd wzbudzenia może skutkować przegrzewaniem się uzwojeń oraz obniżeniem sprawności silnika. Podobnie, odpowiedź 2,20 A, chociaż również wydaje się logiczna, nie ma pokrycia w danych technicznych i może prowadzić do poważnych problemów eksploatacyjnych. Taka sytuacja może wystąpić, gdy osoba odpowiadająca na pytanie nie zwraca uwagi na konkretne wartości przedstawione w dokumentacji technicznej. Ponadto, wybierając 2,65 A, można fałszywie założyć, że duża wartość prądu wzbudzenia zawsze przynosi lepsze rezultaty. Jest to typowy błąd myślowy, który może prowadzić do nieefektywnego wykorzystania zasobów energetycznych i zwiększenia kosztów eksploatacji. Kluczowe jest, aby zawsze odnosić się do oficjalnych danych technicznych i stosować się do standardów branżowych, takich jak normy IEC, które precyzują, jakie wartości prądu wzbudzenia są odpowiednie dla różnych zastosowań, aby uniknąć nieprawidłowych obliczeń i potencjalnych uszkodzeń sprzętu.

Pytanie 28

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Wpustowe
B. Nitowane
C. Wciskowe
D. Sworzniowe
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 29

Zależność między ciśnieniem p, temperaturą T i objętością V powietrza opisuje zależność poniżej. Obniżenie temperatury powietrza przy jego stałej objętości

p · V
T
= const
A. zmniejsza ciśnienie powietrza.
B. zwiększa ciśnienie powietrza dla temperatur mniejszych od 0 stop.C
C. zwiększa ciśnienie powietrza.
D. nie ma wpływu na ciśnienie powietrza.
Obniżenie temperatury powietrza przy stałej objętości rzeczywiście prowadzi do zmniejszenia ciśnienia powietrza. Zgodnie z prawem Boyle'a-Mariotte'a, dla danej masy gazu, iloczyn ciśnienia (p) i objętości (V) jest wprost proporcjonalny do temperatury (T) wyrażonej w kelwinach. Przy stałej objętości zmiana temperatury wpływa bezpośrednio na ciśnienie. Na przykład, w zastosowaniach inżynieryjnych, w układach pneumatycznych, obniżenie temperatury powietrza może prowadzić do spadku efektywności systemu, co jest kluczowe w kontekście chłodzenia, gdzie kontrola temperatury jest niezbędna dla zapewnienia odpowiednich parametrów pracy. W praktyce, w systemach klimatyzacyjnych, obniżenie temperatury powietrza zewnętrznego skutkuje zmniejszeniem ciśnienia wewnętrznego, co może wpływać na wydajność całego układu. Zrozumienie tej zależności jest niezbędne dla projektantów systemów klimatyzacyjnych oraz inżynierów zajmujących się aerodynamiką.

Pytanie 30

Na podstawie przedstawionej tabliczki znamionowej przemiennika częstotliwości określ jego maksymalną częstotliwość wyjściową.

Ilustracja do pytania
A. 650 Hz
B. 0 Hz
C. 50 Hz
D. 60 Hz
Odpowiedź "650 Hz" jest poprawna, ponieważ wynika bezpośrednio z danych zawartych na tabliczce znamionowej przemiennika częstotliwości model E1000-0007S2. W sekcji OUTPUT producent jasno wskazuje maksymalną częstotliwość wyjściową wynoszącą 650.0 Hz. To ważna informacja, ponieważ maksymalna częstotliwość wyjściowa wpływa na możliwości zastosowania przemiennika w różnych aplikacjach, takich jak napęd elektryczny silników czy regulacja prędkości. W kontekście przemysłowym, znajomość maksymalnej częstotliwości wyjściowej pozwala na odpowiednie dopasowanie parametrów pracy, co jest kluczowe dla zapewnienia optymalnej wydajności. W praktyce, zbyt niska częstotliwość wyjściowa może ograniczać osiągi silników, podczas gdy zbyt wysoka może prowadzić do ich uszkodzenia. Dlatego istotne jest, aby użytkownicy przemienników częstotliwości dobrze rozumieli te specyfikacje, aby móc skutecznie wykorzystać ten sprzęt zgodnie z jego przeznaczeniem oraz normami branżowymi.

Pytanie 31

Ile minimalnie 8 bitowych portów we/wy powinien posiadać mikrokontroler PIC wyposażony w szeregowy
8-bitowy przetwornik analogowo-cyfrowy oznaczony ADC0831, aby można było zrealizować układ mechatroniczny przedstawiony na rysunku?

Ilustracja do pytania
A. 3 porty.
B. 5 portów.
C. 4 porty.
D. 2 porty.
Odpowiedź, że mikrokontroler PIC powinien mieć minimum 2 porty we/wy, jest prawidłowa z uwagi na sposób komunikacji z przetwornikiem analogowo-cyfrowym ADC0831 oraz wymagania dotyczące sterowania silnikiem krokowym. Przetwornik ADC0831 wykorzystuje szeregowy interfejs komunikacyjny, co pozwala na przesyłanie danych za pomocą jednego portu. Dokładniej, jeden port wejściowy jest wymagany do odbioru 8-bitowej informacji analogowej przetworzonej na sygnał cyfrowy. Z drugiej strony, do sterowania silnikiem krokowym EDE1200 potrzebny jest przynajmniej jeden port wyjściowy, który będzie odpowiedzialny za przekazywanie sygnałów sterujących, takich jak kierunek oraz impulsy krokowe. W praktyce, wiele systemów mechatronicznych stosuje minimalizację liczby portów, co jest zgodne z dobrą praktyką inżynieryjną, aby uprościć projekt oraz zmniejszyć koszty produkcji. Dzięki temu, odpowiedź sugerująca 2 porty we/wy stanowi optymalne rozwiązanie, które spełnia wymagania funkcjonalne układu, jednocześnie pozwalając na efektywne zarządzanie zasobami mikrokontrolera.

Pytanie 32

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Adware
B. Freeware
C. Trial
D. GNU GPL
Odpowiedź 'Trial' jest poprawna, ponieważ odnosi się do rodzaju licencji oprogramowania, która pozwala użytkownikom na korzystanie z programu przez określony czas, zazwyczaj od kilku dni do kilku miesięcy. Po upływie tego czasu użytkownik jest zobowiązany do zakupu licencji lub usunięcia oprogramowania z urządzenia. Licencje trial są powszechnie stosowane w branży oprogramowania, aby umożliwić użytkownikom przetestowanie produktu przed podjęciem decyzji o zakupie. Przykłady takich programów to popularne aplikacje biurowe, programy graficzne czy oprogramowanie antywirusowe. Dzięki modelowi trial, dostawcy mogą zwiększyć zainteresowanie ich produktami oraz umożliwić użytkownikom dokonanie świadomego wyboru, co jest zgodne z zasadami transparentności i uczciwości w marketingu oprogramowania. Warto zauważyć, że niektóre wersje trial mogą mieć ograniczone funkcje lub mogą wymuszać dodatkowe rejestracje, co również jest stosowane jako element strategii sprzedażowej.

Pytanie 33

Po wymianie łożysk należy przykręcić pokrywę łożyska śrubami metrycznymi M6x80. Wskaż na podstawie tabeli, jaka powinna być wartość momentu dociągającego.

Nazwa elementuMoment dociągający dla śrub [Nm]
M5M6M8M10M12M16M20
Tabliczka łożyska--254575170275
Pokrywa łożyska58152020--
Skrzynka zaciskowa-47,512,5-20-
A. 4 Nm
B. 15 Nm
C. 8 Nm
D. 25 Nm
Wybór momentu dociągającego, który jest różny od 8 Nm, może wynikać z niepełnego zrozumienia zasad działania łożysk oraz ich wymagań montażowych. Moment dociągający śrub jest kluczowym parametrem, który wpływa na prawidłowe funkcjonowanie połączeń śrubowych. Stosowanie zbyt niskiego momentu, jak na przykład 4 Nm, może prowadzić do luzów w połączeniu, co skutkuje niewłaściwą pracą łożysk. Luz powoduje wibracje i może prowadzić do szybszego zużycia komponentów. Z kolei zbyt wysoki moment, jak 25 Nm czy 15 Nm, może zniszczyć gwinty, co nie tylko obniża jakość połączenia, ale również powoduje ryzyko awarii podczas pracy maszyny. Kluczowe jest zrozumienie, że każdy typ śruby ma określone wymagania dotyczące momentu dociągającego, które powinny być przestrzegane, aby zapewnić trwałość i niezawodność. W praktyce, warto zwracać uwagę na specyfikacje producenta oraz stosować sprawdzone metody pomiaru momentu, aby uniknąć błędów w montażu, które mogą prowadzić do kosztownych napraw lub wymiany części. Właściwe dociąganie śrub jest nie tylko kwestią techniczną, ale także zasadą dobrych praktyk inżynieryjnych, które mają na celu zapewnienie bezpieczeństwa oraz efektywności urządzeń.

Pytanie 34

Oceń na podstawie przedstawionej na rysunku dokumentacji stan łożysk silnika napędowego o mocy 35 kW bez specjalnych fundamentów, jeżeli prędkość drgań łożysk zmierzona podczas przeglądu wynosi 1,9 mm/s.

UrządzenieKlasa IKlasa IIKlasa IIIKlasa IV
Prędkość
drgań RMS
mm/s
0.28
0.45
0.71
1.12
1.8
2.8
4.5
7.1
11.2
18
28
45.9

Legenda tabeli:

Stan dobry
Stan zadawalający
Stan przejściowo dopuszczalny
Stan niedopuszczalny

Klasa I: poszczególne podzespoły silników i urządzeń stanowią integralną część urządzenia podczas normalnej pracy. Przykładem urządzeń w tej kategorii są silniki elektryczne o maksymalnej mocy 15 kW.

Klasa II: średniej wielkości urządzenia (zwykle silniki elektryczne o mocy od 15 kW do 75 kW) bez specjalnych fundamentów, sztywno zamontowane silniki lub urządzenia (do 300 kW) na specjalnych fundamentach.

Klasa III: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na sztywnych i ciężkich podstawach, stosunkowo sztywne w kierunku pomiaru drgań.

Klasa IV: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na podstawach, stosunkowo podatnych w kierunku mierzonych drgań (np. turbo generatory i turbiny gazowych o mocy wyjściowej powyżej 10 MW).

A. Przejściowo dopuszczalny.
B. Dobry.
C. Zadawalający.
D. Niedopuszczalny.
Odpowiedź 'Zadawalający' jest w porządku, bo patrząc na tabelę, prędkość drgań 1,9 mm/s to stan, który nie wymaga od razu interwencji. Dla silników 35 kW bez specjalnych fundamentów wygląda na to, że jeśli mamy wartości RMS drgań w okolicy 1,5-2,5 mm/s, to wszystko gra. To znaczy, że łożyska pracują w miarę dobrze i nie ma co się martwić o poważne awarie. Z mojego doświadczenia, umiejętność rozpoznawania tych drgań jest super ważna w utrzymaniu ruchu, bo dzięki temu można wychwycić problemy na wczesnym etapie. Regularne pilnowanie tych parametrów w naszej pracy obniża koszty napraw, a efektywność produkcji rośnie.

Pytanie 35

Wartość napięcia wskazywana przez woltomierz wynosi

Ilustracja do pytania
A. 16 V
B. 40 V
C. 4 V
D. 8 V
Poprawna odpowiedź to 8 V. Odczytywanie wartości napięcia z woltomierza analogowego wymaga zrozumienia, jak działa zasada wskazania. W tym przypadku wskazówka znajduje się blisko oznaczenia 8 V, co jasno wskazuje, że wartość napięcia jest właśnie równa 8 V. W praktyce, aby zapewnić dokładność pomiaru, należy także uwzględnić tolerancję przyrządu oraz ich kalibrację, co jest kluczowe dla uzyskania wiarygodnych wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie pomiary napięcia są niezbędne do monitorowania systemów elektrycznych, konieczne jest stosowanie woltomierzy o wysokiej dokładności, aby uniknąć błędnych decyzji inżynieryjnych. Ponadto, zgodnie z międzynarodowymi standardami, woltomierze powinny być regularnie kalibrowane w celu zapewnienia ich dokładności i spójności wyników. W każdym przypadku, umiejętność prawidłowego odczytywania wyników z woltomierza jest niezbędna dla techników i inżynierów w wielu dziedzinach, w tym w energetyce i automatyce.

Pytanie 36

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. spadku rezystancji uzwojeń
C. zmniejszenia prędkości obrotowej
D. wzrostu rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 37

Prawidłowo wykonane połączenie lutowane przedstawiono

Ilustracja do pytania
A. tylko na rysunku 1
B. na rysunkach 2 i 3
C. na rysunkach 1 i 2
D. tylko na rysunku 2
Prawidłowo wykonane połączenie lutowane jest kluczowym elementem w elektronice, ponieważ zapewnia niezawodność i trwałość połączeń. W przypadku lutowania należy zawsze dążyć do uzyskania połączenia, które charakteryzuje się dobrą przyczepnością, brakiem nadmiaru cyny oraz brakiem zimnych lutów. Na rysunku 1 widoczny jest przewód, który został prawidłowo przylutowany: cyna równomiernie pokrywa miejsce lutowania, co zapewnia doskonałą przewodność. Rysunek 2 również ilustruje poprawne połączenie, gdzie cyna dobrze przylega do przewodu, co jest zgodne z najlepszymi praktykami w lutowaniu, takimi jak zachowanie odpowiednich temperatur i użycie właściwych materiałów. W przeciwieństwie do tego, na rysunku 3 możemy zauważyć nadmiar cyny, co może prowadzić do problemów z przewodnością oraz ryzyka uszkodzenia komponentów. W praktyce, stosowanie odpowiednich technik lutowania wpływa na jakość i niezawodność całego układu elektronicznego, co jest kluczowe w zastosowaniach przemysłowych oraz hobbystycznych.

Pytanie 38

Zestyk K1, oznaczony na schemacie czerwoną ramką, odpowiada za

Ilustracja do pytania
A. wyłączenie zasilania cewek przekaźników K1 i K2
B. blokowanie jednoczesnego załączenia cewek przekaźników K1 i K2
C. podtrzymanie zasilania cewek przekaźników K1 i K2
D. włączenie zasilania cewek przekaźników K1 i K2
Zestyk K1, oznaczony na schemacie czerwoną ramką, pełni funkcję samopodtrzymania, co oznacza, że po zamknięciu obwodu przez przycisk S1, jest w stanie podtrzymać zasilanie cewek przekaźników K1 i K2. Po zwolnieniu przycisku S1, zestyk K1 zapewnia, że obwód pozostaje zamknięty, co pozwala na kontynuowanie pracy przekaźników. Tego rodzaju rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie istotne jest, aby urządzenia mogły pracować autonomicznie po aktywacji przez operatora. Przykładem praktycznym mogą być systemy sterowania silnikami, gdzie samopodtrzymujące się obwody zapewniają, że silnik pozostanie włączony do momentu, gdy nie zostanie podjęta decyzja o wyłączeniu go. W kontekście standardów, takie podejście jest zgodne z zasadami projektowania systemów automatyki, które zalecają minimalizację punktów awarii oraz zapewnienie ciągłości działania. Wiedza o funkcji samopodtrzymania jest kluczowa dla zrozumienia działania bardziej skomplikowanych systemów sterujących oraz ich bezpieczeństwa.

Pytanie 39

Silnik bezszczotkowy (ang. BLDC Brushless Direct Current motor) jest zasilany napięciem

A. jednofazowym
B. stałym
C. trójfazowym
D. dwufazowym
Silnik bezszczotkowy (BLDC) zasilany jest napięciem stałym, co jest fundamentalną cechą jego konstrukcji. Ten typ silnika charakteryzuje się brakiem szczotek, co prowadzi do mniejszych strat energii i większej efektywności w porównaniu do tradycyjnych silników komutatorowych. W zastosowaniach przemysłowych, takich jak robotyka, drony czy napędy elektryczne w pojazdach, silniki BLDC zyskują na popularności dzięki swojej niezawodności i długowieczności. Przykładem zastosowania silników bezszczotkowych zasilanych napięciem stałym są napędy w elektrycznych hulajnogach, gdzie wymagane są wysoka wydajność oraz kontrola prędkości. W silnikach BLDC zastosowanie napięcia stałego pozwala na prostotę układów sterujących, które mogą być oparte na zaawansowanych systemach PWM (modulacja szerokości impulsu), co umożliwia precyzyjne dostosowanie momentu obrotowego i prędkości silnika. W praktyce, standardy takie jak IEC 60034 dotyczące maszyn elektrycznych podkreślają znaczenie efektywności energetycznej i niezawodności, które są kluczowe w projektowaniu systemów opartych na silnikach BLDC.

Pytanie 40

Cyfrą 1 oznaczono złącze

Ilustracja do pytania
A. IEE-488
B. IEEE 1294
C. D-Sub DE-9
D. BNC
Złącze D-Sub DE-9, oznaczone na zdjęciu cyfrą 1, odgrywa kluczową rolę w komunikacji komputerowej i elektronicznej. Jego charakterystyczna konstrukcja, z dziewięcioma pinami w układzie w kształcie litery 'D', sprawia, że jest ono powszechnie rozpoznawane w branży. To złącze jest często wykorzystywane w interfejsach RS-232 do komunikacji szeregowej, co czyni je bardzo istotnym w kontekście starszych urządzeń komputerowych oraz wielu obecnych aplikacji w automatyce przemysłowej. D-Sub DE-9 jest także często stosowane w kartach graficznych, skanerach, drukarkach oraz urządzeniach peryferyjnych. Wysoka niezawodność i łatwość podłączenia sprawiają, że złącze to pozostaje standardem do dziś. Aby lepiej zrozumieć jego zastosowanie, warto zaznaczyć, że w kontekście interfejsów komputerowych, D-Sub DE-9 umożliwia przesyłanie danych na odległość, co jest kluczowe w wielu aplikacjach przemysłowych oraz w telekomunikacji, gdzie niezawodność połączenia ma fundamentalne znaczenie.