Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 11:10
  • Data zakończenia: 9 grudnia 2025 11:50

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 4,2 m
B. 8,5 m
C. 6,4 m
D. 2,2 m
Analizując błędne odpowiedzi, warto zwrócić uwagę, jak ważne jest poprawne odczytanie wykresu charakterystyki pompy. Wysokość podnoszenia jest funkcją wydajności oraz prędkości obrotowej i często okazuje się, że zbyt pochopne wnioski mogą prowadzić do błędów. W przypadku 2,2 m oraz 6,4 m można zauważyć, że są to wartości niezgodne z krzywą dla n = 1850 1/min przy wydajności 550 m³/h. Takie odczyty mogłyby sugerować, że użytkownik nie uwzględnił poprawnego skalowania osi lub źle zinterpretował skrzyżowanie się krzywej z osią wysokości. Może to wynikać z braku doświadczenia w pracy z wykresami lub z błędnego założenia, że krzywe są liniowe, co w kontekście charakterystyk pomp rzadko bywa prawdą. Warto pamiętać, że w praktyce inżynierskiej, dobór pompy musi być precyzyjny, ponieważ nawet niewielkie błędy mogą skutkować nieefektywną pracą systemu czy nawet uszkodzeniem urządzeń. Dlatego zawsze należy dokładnie analizować dostępne dane i opierać decyzje na rzetelnych odczytach i obliczeniach.

Pytanie 2

Na podstawie tabeli wskaż jakie powinno być ustawienie sekcji przełącznika, by było możliwe sterowanie za pomocą sygnału prądowego o wartości z przedziału 0 ÷ 20 mA.

Sekcja przełącznika
1234
Sygnał sterujący0 ÷ 5 VOFFONOFFOFF
0 ÷ 10 VOFFOFFOFFOFF
0 ÷ 20 mAONOFFOFFOFF
4 ÷ 20 mAONONONON
Rodzaj odbiornikarezystancyjny----
rezystancyjno-indukcyjny
(0,7 ≤ cos φ ≤ 0,9)
----
A. 1 – ON, 2 – ON, 3 – ON, 4 – ON
B. 1 – OFF, 2 – ON, 3 – OFF, 4 – OFF
C. 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF
D. 1 – OFF, 2 – OFF, 3 – OFF, 4 – OFF
Odpowiedź 2 jest prawidłowa, ponieważ dla sygnału sterującego o zakresie 0 ÷ 20 mA ustawienie sekcji przełącznika powinno być w pozycji: 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF. Tabela jasno to wskazuje. Ta konkretna kombinacja ustawień przełącznika pozwala na poprawne odczytywanie i interpretację sygnału prądowego o podanym zakresie. W praktyce, sygnały 0–20 mA są szeroko stosowane w systemach automatyki przemysłowej, ponieważ są mniej podatne na zakłócenia i mogą być przesyłane na większe odległości bez znaczącej utraty jakości. Standard 0–20 mA, a także podobny 4–20 mA, jest jednym z najstarszych i najczęściej używanych protokołów w przemyśle. Przykładowo, w układach kontroli temperatury sygnał 0–20 mA może być użyty do sterowania zaworem regulacyjnym na podstawie odczytów z czujnika temperatury. Ważne jest również, aby pamiętać o odpowiednim kalibrowaniu czujników i urządzeń, aby zapewnić precyzyjne pomiary i sterowanie. Dobrą praktyką jest regularne sprawdzanie zgodności urządzeń z wymaganiami technicznymi i normami, co zapewnia niezawodność i bezpieczeństwo systemu.

Pytanie 3

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 4
B. 1
C. 3
D. 2
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.

Pytanie 4

Do pomiaru temperatury należy zastosować przyrząd pomiarowy przedstawiony na rysunku oznaczonym literą

A. Przyrząd 3.
Ilustracja do odpowiedzi A
B. Przyrząd 1.
Ilustracja do odpowiedzi B
C. Przyrząd 4.
Ilustracja do odpowiedzi C
D. Przyrząd 2.
Ilustracja do odpowiedzi D
Przyrząd przedstawiony na pierwszym zdjęciu to termometr bimetaliczny, służący do pomiaru temperatury. Zakres wskazań na skali podany jest w stopniach Celsjusza (°C), co jednoznacznie wskazuje na jego zastosowanie. Wewnątrz obudowy znajduje się spiralny element bimetaliczny złożony z dwóch metali o różnym współczynniku rozszerzalności cieplnej. Pod wpływem zmiany temperatury element ten wygina się, powodując obrót wskazówki. Tego typu termometry stosowane są w przemyśle, w instalacjach grzewczych, chłodniczych, a także w laboratoriach, ponieważ są proste w obsłudze i odporne na wstrząsy. Ich zaletą jest brak konieczności zasilania elektrycznego, a odczyt jest natychmiastowy. Moim zdaniem to klasyczny przykład niezawodnego przyrządu – prosty mechanicznie, a jednocześnie bardzo trwały. W codziennej praktyce warto pamiętać, że dokładność pomiaru zależy od właściwego montażu czujnika – końcówka pomiarowa musi znajdować się w pełnym kontakcie z medium, którego temperaturę mierzymy.

Pytanie 5

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nieprzekraczającym wartości 250 V AC?

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 005
B. 003
C. 004
D. 002
Wybór przekaźnika 002 to doskonała decyzja, ponieważ odpowiada on wymaganiom zadania. Zasilanie na poziomie 24 V DC to główna cecha tego przekaźnika, która idealnie pasuje do układu sterowania podanego w pytaniu. W przypadku automatyki, zgodność parametrów zasilania i obciążenia jest kluczowa. Przekaźnik 002 ma 4 wyjścia przekaźnikowe, które mogą dostarczyć obciążenie do 10 A przy napięciu do 250 V AC. To oznacza, że spełnia on wymagania, gdzie prądy obciążenia nie przekraczają 8 A. W praktyce, przekaźniki te są używane w wielu zastosowaniach automatyki przemysłowej, takich jak sterowanie silnikami czy systemami oświetleniowymi, gdzie wymagana jest wysoka niezawodność i precyzja. Dobór odpowiedniego przekaźnika jest istotny z punktu widzenia bezpieczeństwa i efektywności energetycznej, a przekaźnik 002, dzięki swoim parametrom, zapewnia obie te cechy. Wybierając taki przekaźnik, działamy zgodnie z najlepszymi praktykami w dziedzinie automatyki, gdzie kluczowe jest nie tylko odpowiednie napięcie zasilania, ale także dostosowanie obciążeń wyjściowych do realnych potrzeb systemu.

Pytanie 6

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. wyprzedzenia.
B. propagacji.
C. proporcjonalności.
D. zdwojenia.
Regulator PID to jedno z najczęściej stosowanych narzędzi w inżynierii procesowej i automatyce. Kiedy mówimy o współczynniki K_p, mamy na myśli współczynnik proporcjonalności. To właściwie kluczowy element, który odpowiada za natychmiastową reakcję systemu na błąd. W praktycznych zastosowaniach, K_p jest używany do zwiększenia reaktywności systemu na zmiany. Im wyższa wartość K_p, tym system jest bardziej czuły na różnice między wartością rzeczywistą a zadaną. Oczywiście, nie zawsze wyższe oznacza lepsze – zbyt duży K_p może powodować oscylacje, co jest zjawiskiem niekorzystnym. Praktyka pokazuje, że najlepiej jest znaleźć optymalną wartość, która zapewnia stabilność systemu. Dobre praktyki branżowe zalecają przeprowadzanie tuningu regulatora PID, aby uzyskać najlepsze wyniki w specyficznych warunkach pracy, co często odbywa się metodą Zieglera-Nicholsa. Warto pamiętać, że regulator PID jest centralnym elementem wielu systemów sterowania, od prostych kontrolerów temperatury po skomplikowane systemy sterowania w branży lotniczej czy chemicznej. Takie podejście pozwala na przewidywalne i stabilne zachowanie całego systemu sterowania, zwiększając jego efektywność i niezawodność.

Pytanie 7

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
B. Tłoczyska obu siłowników pozostaną wsunięte.
C. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
D. Tłoczyska obu siłowników wysuną się.
Siłownik 1A1 nie wysunie się z powodu braku zasilania cewki Y1, co pozostawia zawór 1V1 w pozycji, która odcina dopływ powietrza do siłownika 1A1. To jest zgodne z zasadą działania zaworów rozdzielających, które kierują przepływem medium w zależności od stanu cewek. W praktyce oznacza to, że siłownik pozostanie w pozycji wsuniętej, co jest często stosowane w sytuacjach, gdzie bezpieczeństwo wymaga, aby ruch nie został wykonany bez wyraźnego sygnału sterującego. Z kolei siłownik 2A1 wysunie się, ponieważ zawór 2V1, w stanie niewzbudzonym, umożliwia przepływ powietrza, co powoduje ruch tłoczyska. Taka konstrukcja jest używana w systemach, gdzie natychmiastowe działanie siłowników jest wymagane, np. do szybkiego uruchamiania procesów produkcyjnych. Standardy pneumatyki przemysłowej, takie jak ISO 1219, opisują właśnie takie układy jako podstawowe dla zrozumienia sterowania pneumatycznego. Dzięki temu możemy lepiej zaplanować i kontrolować procesy, minimalizując ryzyko błędów i zwiększając efektywność produkcji.

Pytanie 8

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 10001100, output SW2 - 0000.
B. input SW1 - 01001001, output SW2 - 0000.
C. input SW1 - 01011010, output SW2 - 1001.
D. input SW1 - 01011010, output SW2 - 0110.
Odpowiedź jest prawidłowa, ponieważ konfiguracja input SW1 - 01001001 i output SW2 - 0000 jest idealna dla toru pomiarowego czujnika 0-100 ºC/0-20 mA przy wejściu sterownika PLC 0-20 mA. Wybierając taką konfigurację, ustawiamy właściwe zakresy działania czujnika i sterownika, co jest kluczowe dla dokładności pomiarów. W praktyce oznacza to, że sygnał prądowy 0-20 mA odpowiada mierzonym temperaturom od 0 do 100 ºC. Jest to zgodne z dobrymi praktykami, gdzie precyzyjne dopasowanie zakresu pomiarowego do rzeczywistych warunków pracy minimalizuje błędy. Taka konfiguracja pozwala na pełne wykorzystanie rozdzielczości i dokładności przetwarzania sygnałów w systemach sterowania. Warto pamiętać, że poprawne ustawienie dip-switchy jest istotne, gdyż nawet mała niedokładność może prowadzić do dużych błędów w przetwarzaniu danych w PLC, co w przypadku przemysłowych aplikacji może mieć poważne konsekwencje.

Pytanie 9

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nie przekraczającym wartości 250 V AC.

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 005
B. 004
C. 003
D. 002
Wybór przekaźnika oznaczonego kodem 002 jest poprawny, ponieważ spełnia on zarówno wymagania dotyczące napięcia zasilania, jak i obciążenia wyjść. Przekaźnik ten pracuje przy zasilaniu 24 V DC, co jest zgodne z wymaganiem dla układu. Ponadto, znamionowe obciążenie wyjścia wynosi 10 A przy napięciu 250 V AC, co bez problemu pokrywa wymagane 8 A przy takim samym napięciu. W praktyce, wybór odpowiedniego przekaźnika programowalnego jest kluczowy, aby zapewnić niezawodność i bezpieczeństwo systemu automatyki. Należy zawsze uwzględniać nie tylko napięcie zasilania, ale także typ i wartość obciążenia. Przekaźniki programowalne są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających elastycznego sterowania procesami. Dobór odpowiednich parametrów technicznych jest zgodny z dobrymi praktykami projektowania systemów automatyki, które zakładają nie tylko spełnienie minimalnych wymagań, ale również uwzględnienie pewnego zapasu bezpieczeństwa. Warto również pamiętać, że przekaźniki programowalne, dzięki swojej elastyczności, mogą być konfigurowane do różnych zadań, co czyni je uniwersalnym narzędziem w wielu zastosowaniach przemysłowych.

Pytanie 10

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. podkładek dystansowych.
B. kołków rozprężnych.
C. pierścieni Segera.
D. zabezpieczeń E-ring.
Narzędzie przedstawione na ilustracjach to specjalna forma szczypiec do montażu zabezpieczeń E-ring. Te niewielkie zabezpieczenia są powszechnie stosowane w mechanice do utrzymywania elementów na osiach lub wałkach. Szczypce mają charakterystyczne końcówki, które umożliwiają zakleszczenie się w otworze E-ring i jego bezpieczne zamontowanie. W praktyce, zabezpieczenia te stosuje się w przekładniach, silnikach oraz innych mechanizmach, gdzie konieczne jest szybkie i bezpieczne mocowanie elementów. Przy stosowaniu tych narzędzi zaleca się przestrzeganie odpowiednich norm, takich jak DIN 471 lub ISO 10642, które definiują wymiary i wymagania dotyczące tego typu zabezpieczeń. Dzięki temu mamy pewność, że montujemy elementy zgodnie z wymogami technicznymi. E-ringi są cenione za prostotę montażu oraz demontażu, co znacząco przyspiesza procesy serwisowe. Często można je spotkać w urządzeniach codziennego użytku, co świadczy o ich uniwersalności i niezawodności. Samo narzędzie jest ergonomicznie zaprojektowane, aby zapewnić komfort pracy i precyzję, co jest kluczowe w zastosowaniach technicznych.

Pytanie 11

W sterowniku PLC wejścia analogowe oznaczane są symbolem literowym

A. Q
B. AQ
C. AI
D. I
W sterownikach PLC wejścia analogowe oznacza się symbolem AI, co jest skrótem od 'Analog Input'. To standard w branży, który ułatwia jednoznaczną identyfikację typu sygnału na wejściu. Wejścia analogowe są niezwykle ważne, ponieważ umożliwiają przetwarzanie sygnałów zmieniających się w czasie – na przykład sygnałów z czujników temperatury, ciśnienia czy poziomu cieczy. W praktyce spotkasz się z różnymi typami wejść, które mogą odbierać sygnały prądowe (np. 4-20 mA) lub napięciowe (np. 0-10 V), co daje dużą elastyczność w łączeniu różnych urządzeń pomiarowych. Branża automatyki przemysłowej często wykorzystuje te standardy, aby uprościć integrację systemów od różnych producentów. Ważne jest, aby prawidłowo skonfigurować wejścia analogowe, biorąc pod uwagę parametry sygnału i jego źródło, co pozwala uniknąć błędów w odczycie danych. Z mojego doświadczenia, dobrze działające wejścia analogowe mogą znacznie poprawić efektywność całego systemu, a co za tym idzie – wpływać na optymalizację procesów produkcyjnych.

Pytanie 12

Który przyrząd pomiarowy należy wykorzystać do przygotowania korytek montażowych o wskazanej długości?

A. Czujnik zegarowy.
B. Przymiar kreskowy.
C. Średnicówkę.
D. Mikrometr.
Czujnik zegarowy, choć precyzyjny, jest narzędziem używanym do pomiaru małych odchyłek i nie ma bezpośredniego zastosowania w mierzeniu długości korytek montażowych. Jest to narzędzie stosowane przede wszystkim w obróbce skrawaniem do kontroli wymiarowej elementów mechanicznych. Działa na zasadzie wskazówki przesuwającej się na tarczy, co umożliwia zbadanie nawet niewielkich zmian w geometrii przedmiotu. Jednakże, jego konstrukcja i sposób działania nie są przystosowane do mierzenia długości na większych powierzchniach, co czyni go niepraktycznym w kontekście tego zadania. Z kolei średnicówka służy do mierzenia średnic wewnętrznych, na przykład w otworach, i również nie nadaje się do mierzenia długości korytek. Jest to narzędzie stosowane w mechanice precyzyjnej, gdzie ważne jest dokładne określenie średnicy otworów. Mikrometr natomiast jest używany do bardzo precyzyjnych pomiarów grubości i średnicy zewnętrznych, ale jego zakres pomiarowy jest ograniczony, co nie jest odpowiednie, gdy mierzymy większe elementy jak korytka montażowe. Wszystkie te narzędzia mają swoje specyficzne zastosowania i są niezwykle przydatne w odpowiednich kontekstach, ale nie zastąpią przymiaru kreskowego, kiedy potrzebujemy zmierzyć długość w prosty i skuteczny sposób. Częstym błędem jest myślenie, że każde precyzyjne narzędzie pomiarowe nadaje się do wszystkich typów pomiarów, co jest dalekie od prawdy. Ważne jest, aby dobrze rozumieć specyfikę każdego narzędzia i jego ograniczenia, aby unikać nieporozumień w kontekście ich zastosowania.

Pytanie 13

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. zworę.
B. styki.
C. cewkę.
D. rdzeń.
Zwróć uwagę na wskazanie strzałki w rysunku – jest to kluczowy element rozpoznawania zwory w przekaźniku. Zwora to ruchoma część przekaźnika, która pełni rolę mostka zamykającego lub otwierającego obwód w momencie przyciągnięcia przez elektromagnes. To właśnie dzięki zworze możemy kontrolować przepływ prądu w obwodach za pomocą sygnałów sterujących. Dzięki temu przekaźniki znajdują zastosowanie w wielu dziedzinach, od prostych układów automatyki po złożone systemy sterowania. Pamiętaj, że zwora działa skutecznie tylko wtedy, gdy jest dobrze zintegrowana z resztą elementów przekaźnika - cewką, rdzeniem i stykami. W praktyce kluczowe jest zapewnienie, że mechanizm zwory nie ulega zacięciom i jest dobrze skalibrowany. Warto również pamiętać o standardach, takich jak IEC 61810, które definiują wymagania dotyczące przekaźników. Zwory muszą działać precyzyjnie, co jest szczególnie ważne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa.

Pytanie 14

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. redukcyjny.
B. bezpieczeństwa.
C. dławiący.
D. zwrotny.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 15

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Przetwornica akumulatorowa 2x24 V / 230 V AC
B. Przetwornica napięcia 2x24 V DC / 230 V AC
C. Obiektowy separator napięć 24 V DC
D. Zasilacz 230 V AC / 24 V DC
Świetnie, że wybrałeś zasilacz 230 V AC / 24 V DC! Urządzenie pokazane na zdjęciu to typowy zasilacz, który przekształca napięcie przemienne 230 V na napięcie stałe 24 V. To jest kluczowe w wielu zastosowaniach przemysłowych i domowych, gdzie potrzebne jest stabilne napięcie stałe. Zasilacze te znajdują zastosowanie w systemach automatyki, sterowania, a także w urządzeniach telekomunikacyjnych. Są one zgodne z wieloma normami bezpieczeństwa, co zapewnia niezawodność w działaniu. Stosowanie zasilaczy zamiast przetwornic czy separatorów jest uzasadnione, gdy potrzebujemy jedynie obniżyć napięcie i przekształcić je na stałe. Z mojego doświadczenia wynika, że ważne jest również zwrócenie uwagi na parametry takie jak wydajność prądowa - w tym przypadku 6A, co jest odpowiednie dla wielu urządzeń o średnim poborze mocy. Dlatego zawsze warto sprawdzić dokładnie parametry przed zakupem, aby upewnić się, że zasilacz spełnia wszystkie wymagania techniczne.

Pytanie 16

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. koncentrator sieciowy.
B. zasilacz impulsowy.
C. panel operatorski.
D. sterownik PLC.
To urządzenie to sterownik PLC, czyli programowalny sterownik logiczny. Jest ono kluczowym elementem w automatyce przemysłowej, używane do sterowania procesami produkcyjnymi i maszynami. PLC mogą być programowane w językach takich jak ladder logic, co pozwala na elastyczne dostosowanie działania do konkretnych potrzeb. Przykładowo, w fabrykach używa się ich do sterowania liniami montażowymi czy systemami pakowania. Warto zauważyć, że PLC są zaprojektowane tak, aby mogły pracować w trudnych warunkach, są odporne na zakłócenia elektromagnetyczne i wibracje. Dzięki temu, są niezawodne i cenione w przemyśle. Standardy takie jak IEC 61131 określają, jak powinny być programowane i stosowane, co zapewnia ich unifikację i możliwość współpracy z różnymi systemami. W praktyce, dobry technik czy inżynier automatyki powinien umieć nie tylko programować PLC, ale też diagnozować ewentualne problemy i optymalizować działanie całych systemów. Także, świetnie, że rozpoznałeś to urządzenie!

Pytanie 17

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, aby można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-ON, 2-ON, 3-ON, 4-ON
B. 1-OFF, 2-OFF, 3-OFF, 4-OFF
C. 1-OFF, 2-ON, 3-OFF, 4-OFF
D. 1-ON, 2-OFF, 3-OFF, 4-OFF
Ta odpowiedź jest prawidłowa, ponieważ ustawienie przełącznika przemiennika częstotliwości 1-ON, 2-OFF, 3-OFF, 4-OFF odpowiada sygnałowi sterującemu 0-20 mA. W praktyce oznacza to, że przemiennik został skonfigurowany do pracy z urządzeniami, które wysyłają sygnały o natężeniu prądu w tym zakresie. Jest to częsty standard w automatyce przemysłowej, gdzie sygnały 0-20 mA są wykorzystywane do komunikacji pomiędzy czujnikami a urządzeniami wykonawczymi. Dzięki temu można płynnie regulować parametry pracy, jak prędkość obrotową silnika, co jest niezwykle istotne w aplikacjach wymagających precyzyjnego sterowania. Warto też pamiętać, że stosowanie sygnałów prądowych zamiast napięciowych ma tę zaletę, że jest mniej podatne na zakłócenia elektromagnetyczne, co jest szczególnie ważne w środowiskach przemysłowych. Z mojego doświadczenia, dobrze jest pamiętać, aby zawsze sprawdzać specyfikacje urządzeń, z którymi pracujemy, aby uniknąć błędnych konfiguracji, które mogą prowadzić do nieprawidłowej pracy systemu.

Pytanie 18

Na rysunku przedstawiono listwę przyłączeniową regulatora temperatury. Do których zacisków regulatora należy podłączyć czujnik termoelektryczny?

Ilustracja do pytania
A. 5 i 6
B. 1 i 2
C. 2 i 3
D. 1 i 3
Wybór innych zacisków niż 2 i 3 prowadzi do błędnego podłączenia czujnika termoelektrycznego. Zaciski 1 i 3 lub 1 i 2 mogą być używane do innych funkcji niż podłączenie termopary, np. dla innych typów czujników lub jako część obwodu sterowania. Często popełnianym błędem jest mylenie zacisków z powodu podobieństwa ich oznaczeń lub konfiguracji fizycznej na listwie. W praktyce, wybór niewłaściwych zacisków skutkuje brakiem odczytu temperatury lub generowaniem błędnych wartości, co może wpływać na działanie całego systemu regulacji temperatury. Zaciski 5 i 6, które także były jedną z opcji, są zazwyczaj używane w innych częściach układu, np. do zasilania bądź jako część innego obwodu. Kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej regulatora temperatury, która precyzyjnie opisuje funkcje poszczególnych zacisków. Zrozumienie, jak działa efekt Seebecka i jak termopary generują sygnały, jest istotne dla prawidłowego podłączania i diagnozowania potencjalnych problemów. Dlatego edukacja w zakresie podstawowych zasad działania czujników i regulatorów jest nieoceniona dla każdego technika zajmującego się automatyką przemysłową.

Pytanie 19

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DS-w
B. DY-w
C. LY-w
D. DG-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 20

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RS-232
B. HDMI
C. RJ-45
D. USB
To złącze to RS-232, znane również jako port szeregowy. Jest jednym z najstarszych standardów komunikacji szeregowej i choć dziś nie jest już tak popularne jak kiedyś, wciąż znajduje zastosowanie w pewnych niszowych urządzeniach i systemach. RS-232 jest często używane do połączeń między komputerami a urządzeniami peryferyjnymi, takimi jak modemy, drukarki, a nawet niektóre starsze typy myszy komputerowych. Złącza te zazwyczaj mają dziewięć pinów, jak na ilustracji, chociaż istnieją też wersje z 25 pinami. Jego zaletą jest prostota i niezawodność w przesyłaniu danych na krótkie odległości. Standard RS-232 definiuje sygnały elektryczne, poziomy napięcia oraz czasowanie, co gwarantuje zgodność między urządzeniami różnych producentów. Moim zdaniem, mimo że technologia poszła do przodu, RS-232 jest wciąż interesujący ze względu na swoją trwałość i wszechstronność. Jest to doskonały przykład standardu, który przetrwał próbę czasu, głównie dzięki swojej niezawodności w specyficznych zastosowaniach przemysłowych.

Pytanie 21

Na rysunku przedstawiono

Ilustracja do pytania
A. podstawę robota.
B. przegub robota.
C. chwytak robota.
D. ramię robota.
To, co widzisz na obrazku, to rzeczywiście chwytak robota. Chwytaki są niezwykle istotne w automatyzacji procesów, bo to one pozwalają na manipulację obiektami. W praktyce, chwytaki mogą być pneumatyczne, elektryczne lub hydrauliczne, w zależności od zastosowania. Wielu producentów stawia na precyzję i delikatność, zwłaszcza w branży elektronicznej, gdzie chwytak musi bardzo ostrożnie obchodzić się z drobnymi komponentami. Standardy przemysłowe, takie jak ISO 10218 dotyczące bezpieczeństwa robotów, podkreślają znaczenie zastosowania odpowiednich chwytaków w zależności od zadania. Kolejną rzeczą do rozważenia jest materiał, z jakiego wykonany jest chwytak – zazwyczaj używa się aluminium ze względu na jego lekkość i wytrzymałość. Warto również pamiętać, że chwytaki są często zintegrowane z systemami wizyjnymi, co zwiększa ich precyzję i efektywność. Moim zdaniem, jest to jeden z najważniejszych elementów robota, bo to dzięki niemu robot może naprawdę wpływać na otoczenie.

Pytanie 22

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. O oraz L
B. 5 oraz L
C. 2 oraz L
D. H oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 23

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 1.
B. w pozycji 3.
C. w pozycji 4.
D. w pozycji 2.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 24

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. prawidłowość podłączeń przewodów ochronnych w układzie.
B. położenie przełącznika trybu pracy sterownika PLC.
C. kolejność podłączeń elementów wyjściowych do sterownika.
D. kolejność podłączeń elementów wejściowych do sterownika.
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest absolutnie kluczowe przy uruchamianiu systemów opartych na sterownikach PLC. Bezpieczeństwo to podstawa, a przewody ochronne zapewniają, że w razie awarii prąd nie będzie stanowił zagrożenia dla osób obsługujących urządzenie. Moim zdaniem to właśnie dlatego takie sprawdzenie powinno być zawsze na pierwszym miejscu. Przewody ochronne to nie tylko kwestia zgodności z normami, takimi jak PN-EN 60204, ale i dobra praktyka inżynierska. Wyobraź sobie sytuację, w której bez tego sprawdzenia system zostaje uruchomiony, a w przypadku zwarcia nie ma odpowiedniej drogi dla prądu upływowego. To prosta droga do porażenia prądem. Z mojego doświadczenia wynika, że niedocenianie tej prostej czynności może prowadzić do poważnych konsekwencji. W przemyśle zawsze mówimy, że lepiej dmuchać na zimne. Podczas szkoleń często powtarzam, że zabezpieczenia to twoi najlepsi przyjaciele. Zawsze warto poświęcić czas na solidne sprawdzenie, zanim przejdziemy do bardziej skomplikowanych czynności.

Pytanie 25

Na schemacie przedstawiono

Ilustracja do pytania
A. konwerter łącza szeregowego na łącze światłowodowe.
B. przetwornik pomiarowy prądu lub napięcia AC.
C. regulowany wzmacniacz napięć lub prądów zmiennych.
D. przetwornik napięcia AC na prąd AC.
Na przedstawionym schemacie nie mamy ani przetwornika napięcia AC, ani wzmacniacza sygnałów, ani przetwornika pomiarowego. Widać tu wyraźnie interfejs komunikacyjny RS-232 po lewej stronie (z liniami TxD, RxD, 0V, Sh) oraz wyjścia oznaczone FO po stronie prawej, czyli Fiber Optic – światłowód. To jednoznacznie wskazuje na konwerter łącza szeregowego na łącze światłowodowe. Pozostałe odpowiedzi są niezgodne z charakterem urządzenia: przetwornik napięcia AC na prąd AC służyłby w pomiarach energii elektrycznej, a nie w transmisji danych; przetwornik pomiarowy dotyczy konwersji sygnałów analogowych (np. 0–10 V lub 4–20 mA), nie cyfrowych; natomiast wzmacniacz napięć AC nie posiadałby torów transmisyjnych z diodami optycznymi, jak na tym schemacie. Typowym błędem jest skojarzenie symbolu zasilania (24–240 V AC/DC) z przetwornikami pomiarowymi, ale w tym przypadku napięcie służy jedynie do zasilania modułu komunikacyjnego. Konwertery RS-232/FO stosuje się wtedy, gdy wymagana jest galwaniczna izolacja lub duża odporność na zakłócenia elektromagnetyczne, np. w przemyśle automatyki, kolejnictwie czy telekomunikacji. W praktyce urządzenie to jest niezbędne wszędzie tam, gdzie tradycyjny RS-232 nie zapewnia wystarczającego zasięgu lub bezpieczeństwa transmisji – a więc jego rola jest czysto komunikacyjna, nie pomiarowa.

Pytanie 26

Na podstawie zamieszczonych w tabeli danych katalogowych przetwornika różnicy ciśnień dobierz zakres napięcia zasilania dla prądowego sygnału wyjściowego.

Wybrane dane katalogowe przetwornika różnicy ciśnień
Zasilanie
[V DC]
  • 15 ÷ 30 (sygn. wyj. 0 ÷ 10 V)
  • 10 ÷ 30 (sygn. wyj. 0 ÷ 5 V)
  • 5 ÷ 12 (sygn. wyj. 0 ÷ 3 V)
  • 10 ÷ 36 (sygn. wyj. 4 ÷ 20 mA)
Sygnały
wyjściowe
  • 4 ÷ 20 mA
  • 0 ÷ 10 V, 0 ÷ 5 V, 1 ÷ 5 V
  • 0 ÷ 3 V (low-power)
  • Możliwe jest również wykonanie przetworników
    z dowolnym napięciowym sygnałem wyjściowym,
    mniejszym od 0 ÷ 10 V (np. 0 ÷ 4 V, 2 ÷ 8 V itp.)
A. 15 + 30 V DC
B. 5 + 12 V DC
C. 10 + 30 V DC
D. 10 + 36 V DC
Wybór napięcia zasilania 10 ÷ 36 V DC dla prądowego sygnału wyjściowego 4 ÷ 20 mA jest absolutnie zgodny z normami przemysłowymi i najlepszymi praktykami. Przetworniki tego typu często stosuje się w aplikacjach przemysłowych, ponieważ sygnał prądowy 4 ÷ 20 mA jest mniej podatny na zakłócenia i straty sygnału na długich dystansach. Taki sygnał jest szeroko akceptowany w branży automatyki przemysłowej, gdzie stabilność i niezawodność są kluczowe. Co więcej, standard 4 ÷ 20 mA pozwala na łatwe wykrywanie awarii w obwodzie – prąd poniżej 4 mA wskazuje na przerwanie pętli. Jest to jedna z najczęściej stosowanych metod sygnalizacji w systemach sterowania procesami. Z mojego doświadczenia wynika, że wybór odpowiedniego napięcia zasilania jest kluczowy dla zapewnienia prawidłowego działania czujnika i jakości sygnału wyjściowego. Utrzymanie napięcia w podanym zakresie umożliwia optymalne warunki pracy przetwornika, co ma bezpośrednie przełożenie na precyzję pomiarów, a co za tym idzie, na efektywność całego systemu. Przestrzeganie tego typu specyfikacji to podstawa w projektowaniu niezawodnych systemów kontrolno-pomiarowych.

Pytanie 27

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. NAND.
B. OR.
C. XOR.
D. NOR.
Wybór niewłaściwej odpowiedzi może wynikać często z błędnego zrozumienia funkcji logicznych OR, XOR czy NAND. Funkcja OR, na przykład, aktywuje wyjście, gdy przynajmniej jedno z wejść jest aktywne. Jest to zdecydowane przeciwieństwo NOR, który wymaga, by oba wejścia były nieaktywne, aby uzyskać aktywne wyjście. Nieporozumienia mogą również dotyczyć funkcji XOR, która aktywuje wyjście tylko wtedy, gdy dokładnie jedno z wejść jest aktywne. Działanie XOR jest często mylone z OR, ale kluczową różnicą jest wymaganie XOR dotyczące różności sygnałów wejściowych. Kolejno, funkcja NAND, która jest odwrotnością funkcji AND, aktywuje wyjście, gdy przynajmniej jedno z wejść jest nieaktywne. Błędy myślowe mogą pochodzić z nieznajomości tych subtelnych różnic. Moim zdaniem, istotne jest, aby dobrze zrozumieć każdą z tych funkcji logicznych, ponieważ są one fundamentem w programowaniu PLC. Praktyka pokazuje, że dokładne przećwiczenie i zrozumienie każdego z operatorów logicznych pozwala na uniknięcie takich pomyłek w przyszłości. Zwiększa to również efektywność i bezpieczeństwo w projektowaniu systemów automatyki przemysłowej. Warto poświęcić czas na zapamiętanie, że NOR jest jednym z bardziej restrykcyjnych operatorów, wymagającym nieaktywnych sygnałów wejściowych.

Pytanie 28

Do pomiaru średnicy otworu φ 50 z dokładnością do 0,01 mm należy użyć

A. średnicówki mikrometrycznej.
B. przymiaru kreskowego.
C. czujnika zegarowego.
D. głębokościomierza.
Średnicówka mikrometryczna to narzędzie, które idealnie nadaje się do pomiaru średnicy otworu z wysoką precyzją, nawet do 0,01 mm. Dlaczego właśnie ten przyrząd? Średnicówki mikrometryczne są zaprojektowane do wykonywania niezwykle dokładnych pomiarów wewnętrznych, co czyni je nieocenionymi w przemyśle maszynowym, gdzie precyzja jest kluczowa. Dzięki swojej budowie, która obejmuje śrubę mikrometryczną, można uzyskać dokładność i powtarzalność pomiarów, co jest niezbędne w produkcji seryjnej czy przy kontroli jakości. Przykłady zastosowania średnicówki mikrometrycznej to choćby kontrola jakości otworów w elementach silników spalinowych czy w produkcji elementów hydraulicznych, gdzie każda odchyłka od normy może prowadzić do awarii całego systemu. Z mojego doświadczenia, posługiwanie się średnicówką wymaga pewnej wprawy, ale kiedy już opanujesz tę umiejętność, otwierają się przed tobą szerokie możliwości. Ważne jest również, by pamiętać o regularnej kalibracji tego instrumentu, zgodnie z wymaganiami norm ISO, co zapewnia zachowanie dokładności i niezawodności pomiarów.

Pytanie 29

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. T
B. P
C. B
D. A
Częstym błędem jest mylenie przyłącza T z pozostałymi portami zaworu, szczególnie z P lub A/B. W hydraulice symbolika jest jednak bardzo konsekwentna – port P to Pressure, czyli zasilanie z pompy, gdzie występuje wysokie ciśnienie robocze. Nie wolno tam podłączać zbiornika, bo w efekcie ciśnienie z pompy nie miałoby gdzie się rozładować, co mogłoby doprowadzić do uszkodzenia elementów. Z kolei porty A i B prowadzą ciecz do odbiorników, takich jak siłowniki czy silniki hydrauliczne, i ich zadaniem jest wykonywanie pracy – tam przepływ jest kierowany naprzemiennie w zależności od położenia suwaka zaworu. Port T natomiast służy wyłącznie do odprowadzenia cieczy z układu z powrotem do zbiornika, dlatego jego konstrukcja zapewnia niskie ciśnienie i duży przekrój, by nie ograniczać przepływu. W praktyce warsztatowej niewłaściwe podłączenie (np. zamiana T z P) skutkuje gwałtownym wzrostem ciśnienia i zniszczeniem uszczelnień zaworu. Na schematach hydraulicznych port T oznaczony jest strzałką skierowaną w dół – to znak, że ciecz spływa do zbiornika. Warto też pamiętać, że w zaworach 4/3 lub 4/2 symbol ten zawsze występuje i nie można go pomijać w analizie. Dlatego poprawnym rozwiązaniem jest połączenie zbiornika z portem T, a nie z P, A ani B.

Pytanie 30

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. PNP NC
C. NPN NC
D. NPN NO
Gratulacje, wybrałeś poprawną odpowiedź! Czujnik przedstawiony na schemacie to czujnik z wyjściem typu NPN NC. Oznacza to, że w stanie normalnie zamkniętym (NC), czujnik przewodzi prąd w stanie spoczynkowym. Wyjście NPN oznacza, że czujnik łączy wyjście do masy (0 V) po zmianie stanu. W praktyce takie czujniki często stosuje się w aplikacjach przemysłowych, gdzie ważne jest, aby układ informował o obecności obiektu nawet w sytuacji awarii zasilania - stąd konfiguracja NC. Czujniki NPN są popularne w systemach, gdzie kontroler PLC odbiera sygnały względem masy. Stosowanie NPN w systemach automatyki przemysłowej jest zgodne z wieloma normami i standardami, co czyni je powszechnym wyborem wśród inżynierów. Warto zwrócić uwagę na to, że dobór odpowiedniego typu wyjścia czujnika zależy od konkretnej aplikacji i wymagań systemu, więc warto znać różnice między NPN a PNP oraz między NO a NC.

Pytanie 31

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Ciśnienia.
B. Natężenia przepływu.
C. Temperatury.
D. Natlenienia.
Zrozumienie, do czego służy przetwornik, wymaga analizy jego specyfikacji i budowy. Przetwornik na zdjęciu jest urządzeniem do pomiaru ciśnienia, co jest wskazywane przez jego zakres pomiarowy podany w barach. W przypadku odpowiedzi dotyczącej natlenienia, należy pamiętać, że takie pomiary wymagają specjalnych czujników, które mierzą stężenie tlenu w cieczy lub gazie, często stosując metody elektrochemiczne lub optyczne. Temperaturę natomiast mierzy się za pomocą termometrów rezystancyjnych, termistorów lub termopar, które nie mają podobnego wyglądu do przetworników ciśnienia. Z kolei natężenie przepływu mierzy się za pomocą innego typu urządzeń, takich jak przepływomierze, które działają na zasadach elektromagnetycznych, ultradźwiękowych lub mechanicznych. Częstym błędem jest mylenie przetworników ciśnienia z innymi czujnikami ze względu na ich podobną konstrukcję i możliwość montowania w rurociągach. Dlatego ważne jest, aby zwracać uwagę na specyfikacje i parametry wskazane na obudowie urządzenia, co pomaga w poprawnym przypisaniu funkcji pomiarowej. W praktyce, zrozumienie różnic między tymi urządzeniami jest kluczowe dla efektywnej pracy w środowisku przemysłowym, gdzie precyzyjne pomiary są niezbędne.

Pytanie 32

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wiele osób myli symbol przekładni zębatej z symbolami innych rodzajów napędów, co jest całkiem zrozumiałe na początku nauki rysunku technicznego. Symbole z kołami połączonymi linią oznaczają przekładnie pasowe, w których napęd przenoszony jest przez pas, a nie przez zazębienie. To rozwiązanie pozwala na cichszą pracę i amortyzację drgań, ale ma mniejszą sprawność. Z kolei symbol z przerywaną linią wokół kół przedstawia przekładnię łańcuchową, w której moment obrotowy przenosi łańcuch z ogniwami współpracującymi z zębatkami. Inny symbol z ukośnymi liniami i strzałkami to element związany ze spawalnictwem, nie z mechaniką napędów. Wszystkie te błędne interpretacje wynikają z podobieństwa wizualnego – koła i linie często wyglądają podobnie, lecz zasada działania jest inna. W przekładni zębatej przeniesienie momentu odbywa się przez zazębienie kół, bez poślizgu i z dużą dokładnością. Dlatego poprawny symbol to ten, który pokazuje bezpośredni kontakt osi i zazębienie, a nie pas lub łańcuch.

Pytanie 33

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. P
B. PD
C. PI
D. PID
Odpowiedź skokowa na wykresie wskazuje, że mamy do czynienia z regulatorem PI, a nie P, PD czy PID. Regulator P, który jest najprostszą formą regulatora, daje odpowiedź natychmiastową proporcjonalną do błędu, ale nie usuwa uchybu ustalonego, co jest widoczne w statycznym zachowaniu systemu. W przypadku regulatora PD, integracja nie występuje, zamiast tego mamy do czynienia z różniczkowaniem, które poprawia odpowiedź dynamiczną systemu, ale nie zawsze jest praktyczne, zwłaszcza w obecności szumów. Regulator PID łączy w sobie cechy wszystkich trzech: proporcjonalność, całkowanie i różniczkowanie, oferując najbardziej wszechstronne rozwiązanie. W praktyce, jednak jego złożoność i konieczność precyzyjnego dostrojenia parametrów mogą być wyzwaniem. Dlatego też często używa się regulatorów PI tam, gdzie nie potrzebujemy tak szybkiej odpowiedzi dynamicznej, jaką oferuje PD, a utrzymanie zerowego uchybu ustalonego jest kluczowe. Często spotykanym błędem jest niedocenienie wpływu całkowania, które może znacząco poprawić dokładność regulacji, jednak może też prowadzić do przeregulowania, jeśli nie jest właściwie skonfigurowane. To właśnie właściwe zrozumienie i zastosowanie teorii regulatorów pozwala na ich skuteczne wykorzystanie w różnych aplikacjach przemysłowych oraz w automatyce domowej.

Pytanie 34

Do trasowania na płaszczyźnie stosuje się

A. wałeczki pomiarowe.
B. rysik.
C. średnicówkę mikrometryczną.
D. pryzmę.
Wybór narzędzia do trasowania na płaszczyźnie jest kluczowy dla precyzyjnego wykonania zadań technicznych. Średnicówka mikrometryczna, choć precyzyjne narzędzie pomiarowe, służy przede wszystkim do mierzenia średnic wewnętrznych i zewnętrznych elementów, a nie do trasowania. Jej konstrukcja i sposób działania nie pozwalają na kreślenie linii na powierzchni materiałów, co jest istotą trasowania. Wałeczki pomiarowe, z kolei, używane są głównie do pomiaru gwintów i jako elementy pomocnicze w różnych układach pomiarowych. Nie mają funkcji trasowania i nie pozwalają na nanoszenie linii na powierzchni materiału. Pryzma to narzędzie stosowane głównie jako podparcie dla elementów cylindrycznych podczas pomiarów czy obróbki mechanicznej. Jej rola jest pomocnicza, a nie związana bezpośrednio z trasowaniem. Często błędnie zakłada się, że każde narzędzie precyzyjne można używać do rysowania linii, jednak trasowanie wymaga specyficznych narzędzi, takich jak rysik, które umożliwiają precyzyjne i trwałe naniesienie linii na materiał. Nieprawidłowe zrozumienie funkcji tych narzędzi prowadzi do błędnych wniosków co do ich zastosowania w trasowaniu. Zrozumienie różnicy między narzędziami pomiarowymi a trasującymi jest kluczowe dla uniknięcia błędów w pracy technicznej. Takie błędy mogą prowadzić do problemów produkcyjnych, co podkreśla znaczenie prawidłowego doboru narzędzi.

Pytanie 35

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Temperatury.
B. Ciśnienia.
C. Natężenia przepływu.
D. Natlenienia.
Odpowiedzi mówiące o pomiarze natlenienia, temperatury czy natężenia przepływu w kontekście tego przetwornika są nietrafione, co wynika z jego specyfikacji widocznej na rysunku. Przetworniki natlenienia zwykle mają sensory elektrochemiczne lub optyczne i są używane głównie w aplikacjach biologicznych i środowiskowych, takich jak monitorowanie jakości wody czy procesów fermentacyjnych. Przetworniki temperatury, takie jak termopary czy czujniki RTD, działają na zupełnie innych zasadach fizycznych i są przeznaczone do bezpośredniego pomiaru temperatury, co w przypadku tego przetwornika nie ma zastosowania. Natomiast pomiar natężenia przepływu jest realizowany za pomocą urządzeń takich jak przepływomierze, które są zazwyczaj większe, wyposażone w rurki, wirniki lub ultradźwiękowe sensory. Typowym błędem myślowym jest założenie, że każdy przetwornik może mierzyć dowolną wielkość fizyczną, podczas gdy w rzeczywistości muszą być one specyficznie dopasowane do mierzonej wielkości. W praktyce, zrozumienie specyfikacji technicznych i zastosowań różnych przetworników jest kluczowe, aby uniknąć błędów w wyborze i instalacji urządzeń pomiarowych.

Pytanie 36

Których diod należy użyć do montażu układu przedstawionego na schemacie?

Ilustracja do pytania
A. Prostowniczych.
B. Pojemnościowych.
C. Zenera.
D. Schottky'ego.
Schemat, który widzisz, przedstawia mostek prostowniczy, który jest używany do przekształcania prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod prostowniczych ułożonych w specyficzny sposób. Diody prostownicze są kluczowe w tym układzie, ponieważ przepuszczają prąd tylko w jednym kierunku, co pozwala na uzyskanie prądu stałego z prądu przemiennego. W praktyce, diody prostownicze są wykorzystywane w zasilaczach, ładowarkach oraz innych urządzeniach elektronicznych, gdzie konieczna jest konwersja prądu. Diody prostownicze są zaprojektowane tak, aby wytrzymywać duże wartości prądu i napięcia, co czyni je idealnymi do tego typu zastosowań. Standardy branżowe wskazują na użycie diod o odpowiedniej wytrzymałości napięciowej i prądowej, co zapewnia niezawodne działanie układu prostowniczego. To dlatego odpowiedź numer 3 jest poprawna - diody prostownicze są nieodzowne w poprawnym działaniu mostka prostowniczego.

Pytanie 37

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór miernika z obrazu #2 jest trafny, gdyż jest to specjalistyczne urządzenie dedykowane do testowania okablowania strukturalnego. Takie mierniki, jak te od Fluke Networks, są zaprojektowane do dokładnego mierzenia parametrów sieciowych, takich jak długość kabla, tłumienie sygnału czy przesłuch między parami. Mierniki te pozwalają wykonywać testy zgodnie z normami, takimi jak TIA/EIA, co gwarantuje, że okablowanie spełnia wymagania certyfikacyjne. W praktyce, przy instalacjach sieciowych, użycie takiego sprzętu jest nieocenione, bo pozwala na szybkie diagnozowanie problemów związanych z jakością połączenia. Dzięki wbudowanym funkcjom, takim jak auto-test, użytkownik może w prosty sposób sprawdzić, czy kabel spełnia normy dla Ethernetu 1000BASE-T, co jest istotne w środowiskach wymagających wysokiej przepustowości. Ważne jest, aby stosować odpowiednie urządzenia, które nie tylko wskazują problemy, ale też dostarczają szczegółowych raportów dotyczących stanu sieci, co jest kluczowe dla utrzymania jej niezawodności i wydajności.

Pytanie 38

Przetwornik poziomu, o zakresie pomiarowym 0 cm ÷ 100 cm, przetwarza liniowo zmierzony poziom na natężenie prądu z przedziału 4 mA ÷ 20 mA. Przy wzroście poziomu z wartości 55 cm na 75 cm natężenie prądu wyjściowego z przetwornika

A. zmaleje o 1,6 mA
B. wzrośnie o 3,2 mA
C. zmaleje o 3,2 mA
D. wzrośnie o 1,6 mA
Przetwornik poziomu o zakresie 0 cm do 100 cm, który przetwarza poziom na prąd w zakresie 4 mA do 20 mA, działa na zasadzie proporcjonalności. Oznacza to, że każdy centymetr zmiany poziomu odpowiada określonej zmianie prądu. W tym przypadku, mamy do czynienia z pełnym zakresem 100 cm, który odpowiada rozpiętości 16 mA (od 4 mA do 20 mA). Oznacza to, że każdy centymetr zmiany poziomu odpowiada zmianie prądu o 0,16 mA. Skoro poziom wzrasta z 55 cm na 75 cm, to zmienia się o 20 cm. Przy zmianie o 20 cm, prąd wzrośnie o 20 * 0,16 mA, co daje 3,2 mA. To dokładnie ta różnica, którą obliczyliśmy. W praktyce, takie przetworniki są często stosowane w przemyśle, na przykład w zbiornikach magazynujących płyny, gdzie precyzyjny odczyt poziomu jest kluczowy dla zarządzania zasobami i uniknięcia przepełnienia. Technicy często kalibrują takie urządzenia, aby zapewnić, że działają zgodnie z oczekiwaniami, co jest zgodne z dobrymi praktykami branżowymi. Dzięki temu, mamy pewność, że systemy te działają precyzyjnie i niezawodnie, co jest niezwykle ważne w kontekście automatyzacji procesów przemysłowych.

Pytanie 39

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. MUL
B. DIV
C. SUB
D. ADD
Odpowiedź SUB jest poprawna, ponieważ w programowaniu sterowników PLC jest to instrukcja służąca do odejmowania. W praktyce, podczas projektowania systemów automatyki, często spotykamy się z sytuacjami, w których wymagane jest zmniejszenie wartości sygnału, np. podczas obliczania różnicy między wartością zadana a rzeczywistą. Instrukcja SUB jest tutaj kluczowa. W językach programowania PLC, takich jak Ladder Logic czy język strukturalny tekst, SUB jest standardowym poleceniem. Działa podobnie jak operator odejmowania w matematyce, umożliwiając programiście manipulację danymi w czasie rzeczywistym. To jest szczególnie przydatne w systemach sterowania procesami przemysłowymi, gdzie od dokładnych obliczeń zależy bezpieczeństwo i efektywność operacji. Warto również zauważyć, że odejmowanie, jako operacja arytmetyczna, jest jedną z podstawowych funkcji każdego języka programowania, także tych używanych w PLC. Dlatego umiejętność korzystania z SUB to podstawa dla każdego inżyniera automatyki. Moim zdaniem, zrozumienie tych podstawowych funkcji pozwala na budowanie bardziej skomplikowanych algorytmów sterujących, które mogą w znaczący sposób poprawić funkcjonowanie całego systemu.

Pytanie 40

Na schemacie przedstawiającym elektrozawór, strzałka wskazuje

Ilustracja do pytania
A. sprężynę.
B. zworę.
C. gniazdo.
D. cewkę.
Cieszę się, że wybrałeś poprawną odpowiedź – cewkę. W elektrozaworach cewka to kluczowy komponent, który przekształca energię elektryczną w energię magnetyczną. Dzięki temu możliwe jest sterowanie ruchem zwory, co z kolei otwiera lub zamyka przepływ medium, jak woda czy powietrze. Cewka jest nawijana z cienkiego drutu miedzianego i umieszczona wokół rdzenia, który staje się elektromagnesem po zasileniu prądem. W praktyce na przykład w systemach automatyki przemysłowej czy w samochodowych układach klimatyzacji, niezawodność elektrozaworów jest kluczowa. Ważne jest, aby cewki były zgodne ze standardami, takimi jak IP67, zapewniającymi odporność na kurz i wodę. Moim zdaniem, zrozumienie działania cewki pozwala lepiej projektować i diagnozować usterki w systemach, które polegają na precyzyjnej kontroli przepływu. Cewka jest jak serce elektrozaworu – choć niewidoczna na co dzień, to jej działanie jest kluczowe dla całego układu.