Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 16 lutego 2026 19:45
  • Data zakończenia: 16 lutego 2026 19:46

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z komponentów należy do hydraulicznego systemu hamulcowego?

A. Kable hamulcowe
B. Pompa hamulcowa
C. Zawór sterujący
D. Zbiornik powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa hamulcowa jest kluczowym elementem hydraulicznego układu hamulcowego, ponieważ odpowiada za generowanie ciśnienia w układzie. Kiedy kierowca wciśnie pedał hamulca, pompa hamulcowa przetłacza płyn hamulcowy do cylindra hamulcowego, co z kolei powoduje, że klocki hamulcowe są dociskane do tarczy hamulcowej. Ten proces jest niezbędny do skutecznego spowolnienia lub zatrzymania pojazdu. W nowoczesnych samochodach stosuje się pompy hamulcowe o różnej budowie, w tym pompy z jednostkami ABS, które zapobiegają blokowaniu kół podczas hamowania. Przykładem zastosowania może być układ hamulcowy w samochodach osobowych, gdzie pompy hamulcowe są projektowane zgodnie z wytycznymi zawartymi w normach ISO oraz SAE, co gwarantuje ich niezawodność i efektywność. Dobrą praktyką jest regularne sprawdzanie stanu pompy hamulcowej oraz pozostałych komponentów układu w celu zapewnienia pełnej sprawności i bezpieczeństwa pojazdu.

Pytanie 2

Na podstawie zamieszczonego rysunku i numeru identyfikacyjnego pojazdu WSM00000003190329 można określić, że pojazd został wyprodukowany w

Ilustracja do pytania
A. Kanadzie.
B. Niemczech.
C. Polsce.
D. Wielkiej Brytanii.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na Niemcy jako kraj produkcji pojazdu jest prawidłowa z uwagi na analizę numeru identyfikacyjnego WSM00000003190329. Zasady klasyfikacji numerów VIN (Vehicle Identification Number) są ściśle określone przez międzynarodowe standardy, w tym ISO 3779. W tym systemie, pierwsze dwa znaki odzwierciedlają region oraz kraj produkcji. W przypadku litery 'W', oznacza ona Europę, podczas gdy litera 'S' jest przypisana do Niemiec. To podejście nie tylko ułatwia identyfikację kraju produkcji, ale także wspiera standardy związane z bezpieczeństwem i jakością, które są egzekwowane w niemieckim przemyśle motoryzacyjnym. W praktyce, znajomość tych zasad może być kluczowa dla specjalistów zajmujących się importem i eksportem pojazdów, ponieważ pozwala na weryfikację ich autentyczności i zgodności z przepisami. Ponadto, analiza VIN może być używana w serwisach naprawczych do identyfikacji specyfikacji pojazdu, co jest istotne dla zapewnienia odpowiednich części zamiennych oraz przeprowadzania procedur serwisowych zgodnych z zaleceniami producentów.

Pytanie 3

W samochodzie z przednim zablokowanym układem napędowym, podczas przyspieszania i skrętu w prawo, słychać stuki z przedniego koła. Te objawy mogą sugerować zużycie

A. łożysk w piaście
B. przegubu napędowego
C. mechanizmu różnicowego
D. sprzęgła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przegub napędowy jest kluczowym elementem w układzie napędowym samochodu, szczególnie w pojazdach z przednim napędem. Jego głównym zadaniem jest przenoszenie momentu obrotowego z skrzyni biegów na koła, jednocześnie umożliwiając ruch zawieszenia i skręcanie. Stuki, które występują podczas przyspieszania przy skręcie w prawo, mogą wskazywać na uszkodzenie przegubu, który nie jest w stanie prawidłowo przenosić obciążenia. W praktyce, zużyty przegub napędowy może powodować nie tylko hałas, ale także drgania i uczucie luzu w układzie kierowniczym. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne przeglądy układu napędowego oraz wymiana przegubów w przypadku zauważenia pierwszych objawów zużycia mogą znacznie zwiększyć bezpieczeństwo i komfort jazdy. Dlatego ważne jest, aby mechanicy zwracali uwagę na takie objawy i odpowiednio reagowali, zanim dojdzie do poważniejszych uszkodzeń.

Pytanie 4

Przed przystąpieniem do diagnostyki geometrii kół kierowanych w pierwszej kolejności należy

A. sprawdzić ciśnienie w ogumieniu.
B. zablokować pedał hamulca.
C. zablokować koło kierownicy.
D. sprawdzić stopień tłumienia amortyzatorów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie ciśnienia w ogumieniu przed diagnostyką i regulacją geometrii kół to absolutna podstawa, bez tego wszystkie późniejsze pomiary mogą być po prostu przekłamane. Koło zaniżone lub przetłoczone zmienia efektywną średnicę, kształt powierzchni styku z nawierzchnią i wysokość pojazdu na danej osi. To z kolei wpływa na kąty pochylenia, zbieżności, wyprzedzenia sworznia zwrotnicy i ogólnie na całą kinematykę zawieszenia. W praktyce warsztatowej każdy dobry diagnosta zaczyna od kontroli ciśnienia i jego korekty do wartości zalecanych przez producenta (tabliczka znamionowa, instrukcja obsługi). Moim zdaniem, jak ktoś od razu podłącza auto do komputera geometrii bez sprawdzenia opon, to robi to trochę na skróty. Prawidłowe ciśnienie zapewnia powtarzalność pomiarów i pozwala później uczciwie ocenić stan elementów zawieszenia oraz układu kierowniczego. W wielu instrukcjach urządzeń do pomiaru geometrii pierwszym krokiem procedury jest właśnie kontrola ogumienia: ciśnienia, zużycia bieżnika, ewentualnych uszkodzeń. Dopiero na takim przygotowanym pojeździe ma sens blokowanie kierownicy, ustawianie pojazdu na płycie pomiarowej i dalsze czynności. W realnym serwisie pominięcie tego etapu kończy się często reklamacjami typu: auto dalej ściąga, opony się krzywo zużywają, a geometria niby była "zrobiona". Dlatego ta odpowiedź jest zgodna i z teorią, i z normalną praktyką warsztatową.

Pytanie 5

Biały kolor wskaźnika stanu naładowania (tzw. magicznego oka) akumulatora bezobsługowego sygnalizuje

A. akumulator jest rozładowany
B. za niski poziom elektrolitu
C. uszkodzenie akumulatora
D. akumulator jest naładowany

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolor biały wskaźnika naładowania akumulatora bezobsługowego, znany jako "magiczne oko", sygnalizuje, że poziom elektrolitu w akumulatorze jest za niski. Akumulatory te są zaprojektowane, aby działały w określonym zakresie poziomu elektrolitu, a jego niedobór może prowadzić do nieprawidłowego działania i skrócenia żywotności akumulatora. Wartości elektrolitu powinny być regularnie kontrolowane, aby zapewnić prawidłowe funkcjonowanie akumulatora. Praktyczne podejście do zarządzania akumulatorami zaleca sprawdzanie poziomu elektrolitu co kilka miesięcy, zwłaszcza w warunkach intensywnego użytkowania pojazdu. Niskie poziomy elektrolitu mogą prowadzić do nadmiernego przegrzewania akumulatora oraz zmniejszenia jego pojemności. Wymiana elektrolitu powinna być przeprowadzana zgodnie z zaleceniami producenta, aby uniknąć uszkodzenia akumulatora oraz zapewnić jego optymalne działanie. W celu monitorowania stanu akumulatora można również korzystać z testerów, które wskazują nie tylko poziom elektrolitu, ale także ogólny stan naładowania akumulatora.

Pytanie 6

Zasilanie silnika zbyt bogatą mieszanką paliwowo-powietrzną objawia się pokryciem izolatora świecy zapłonowej osadem w kolorze

A. brunatnym.
B. białoszarym.
C. błękitnym.
D. czarnym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pokrycie izolatora świecy zapłonowej czarnym, suchym lub lekko sadzowym nalotem to klasyczny objaw zbyt bogatej mieszanki paliwowo‑powietrznej. Przy nadmiarze paliwa w stosunku do powietrza spalanie nie przebiega całkowicie, część węglowodorów się nie dopala i odkłada się na świecy w postaci sadzy. Ten czarny osad jest zwykle miękki, matowy, czasem trochę pylący. W praktyce warsztatowej, gdy mechanik wykręca świece i widzi taki obraz na kilku cylindrach, od razu zaczyna podejrzewać np. zbyt duży wydatek wtryskiwaczy, uszkodzony czujnik temperatury silnika, błędne korekty dawki paliwa lub po prostu jazdę na „ssaniu” i krótkie odcinki. Moim zdaniem warto pamiętać, że świeca jest takim prostym, ale bardzo użytecznym „oknem” do wnętrza komory spalania – dobrzy diagności od lat stosują ocenę koloru izolatora jako jedną z podstawowych metod oceny składu mieszanki. Według dobrych praktyk, mieszanka powinna być bliska stechiometrycznej, wtedy kolor izolatora ma odcień jasno‑brązowy, kawa z mlekiem, bez grubych nagarów. Jeśli świeca jest czarna, to poza większym zużyciem paliwa pojawia się ryzyko przeskoku iskry po powierzchni nagaru, wypadania zapłonów, a nawet problemów z odpalaniem na ciepło. W silnikach nowoczesnych, mimo sondy lambda i korekt ECU, dalej można spotkać taki objaw np. przy zapieczonym wtryskiwaczu lub źle dobranych mapach po chip tuningu. Warto też wiedzieć, że długotrwała jazda na zbyt bogatej mieszance nie tylko brudzi świece, ale dodatkowo obciąża katalizator, rozrzedza olej silnikowy benzyną i ogólnie skraca żywotność całego układu zasilania.

Pytanie 7

Jakie jest zadanie cewki zapłonowej?

A. produkcja wysokiego natężenia prądu
B. wytwarzanie wysokiego napięcia
C. ochrona przed przepięciem
D. generowanie iskry zapłonowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cewka zapłonowa odgrywa kluczową rolę w układzie zapłonowym silników spalinowych, a jej głównym zadaniem jest wytworzenie wysokiego napięcia, które jest niezbędne do generowania iskry zapłonowej w świecy zapłonowej. Działa na zasadzie indukcji elektromagnetycznej, gdzie prąd stały płynący przez uzwojenie wtórne wytwarza pole magnetyczne. Kiedy prąd w uzwojeniu pierwotnym zostaje przerwany, pole magnetyczne zapada się, co powoduje indukcję wysokiego napięcia w uzwojeniu wtórnym. Wysokie napięcie, osiągające nawet 40 kV, jest niezbędne do pokonywania odstępów między elektrodami świecy zapłonowej, co umożliwia zapłon mieszanki paliwowo-powietrznej w cylindrze. Przykładowo, w nowoczesnych silnikach stosuje się cewki zapłonowe oparte na technologii DIS (Direct Ignition System), które eliminują potrzebę używania przewodów zapłonowych, co poprawia efektywność i niezawodność systemu zapłonowego. Takie rozwiązania są zgodne z aktualnymi standardami branżowymi, które kładą nacisk na efektywność systemów zapłonowych i redukcję emisji spalin.

Pytanie 8

Usterka, której kod zaczyna się na literę B, odnosi się do komponentu

A. nadwozia
B. systemu komunikacyjnego
C. układu napędowego
D. podwozia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kod awarii zaczynający się na literę B dotyczy nadwozia, co jest zgodne z międzynarodowymi standardami, jak ISO 15031. Problemy z nadwoziem mogą obejmować różne uszkodzenia, jak zniekształcenia, problemy z malowaniem, a także kłopoty z działaniem drzwi i okien. Moim zdaniem, to zrozumienie jest kluczowe, bo technicy mogą szybciej rozpoznać usterki i dokonać napraw, co w efekcie zwiększa bezpieczeństwo i komfort jazdy. Zrozumienie, jakie konkretne problemy mogą dotyczyć nadwozia, to także pomoc w lepszym planowaniu przeglądów i konserwacji. To wszystko ma znaczenie dla długowieczności pojazdu i obniżenia kosztów. Warto też wiedzieć, że znajomość kodów usterek i ich klasyfikacji to podstawowa umiejętność dla każdego mechanika, co pokazuje, jak ważne jest ciągłe kształcenie w tym temacie.

Pytanie 9

Pierwsze elektroniczne urządzenie sterujące w historii motoryzacji - system Motronic od firmy Bosch - stosowano do regulacji

A. układem przeciwpoślizgowym
B. centralnym systemem blokady drzwi
C. układem wtryskowo-zapłonowym
D. skrzynką biegów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca układu wtryskowo-zapłonowego jest poprawna, ponieważ system Motronic, opracowany przez firmę Bosch, rewolucjonizował proces zarządzania silnikiem spalinowym. Zintegrowane sterowanie wtryskiem paliwa i zapłonem pozwalało na precyzyjne dostosowanie dawki paliwa do warunków pracy silnika, co znacząco wpłynęło na jego wydajność oraz redukcję emisji szkodliwych substancji. W praktyce, system ten analizuje różne parametry, takie jak temperatura silnika, prędkość obrotowa i ciśnienie atmosferyczne, aby optymalizować proces spalania. Dzięki zastosowaniu elektronicznych czujników i zaawansowanego oprogramowania, Motronic stał się wzorem dla nowoczesnych systemów zarządzania silnikami. Współczesne standardy w branży motoryzacyjnej, takie jak Euro 6, wymagają zastosowania zaawansowanych rozwiązań sterujących, które system Motronic zainspirował. Przykładem zastosowania tego systemu są pojazdy marki Volkswagen, które jako pierwsze wprowadziły ten typ sterowania w latach 80-tych XX wieku.

Pytanie 10

Ciśnienie podciśnienia to ciśnienie, które jest

A. równe ciśnieniu atmosferycznemu
B. wyższe od ciśnienia atmosferycznego
C. niższe od ciśnienia atmosferycznego
D. równe ciśnieniu atmosferycznemu na poziomie morza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podciśnienie to stan, w którym ciśnienie w danym obszarze jest mniejsze od ciśnienia atmosferycznego, co oznacza, że siła wywierana przez powietrze na powierzchnię jest niższa niż w otaczającym środowisku. Jest to istotny koncept w wielu dziedzinach, takich jak inżynieria, meteorologia czy medycyna. Przykładowo, w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja) wykorzystuje się podciśnienie do efektywnego transportu powietrza i filtracji. W przemyśle spożywczym podciśnienie stosuje się w procesach pakowania, aby wydłużyć trwałość produktów przez eliminację tlenu. Również w medycynie, podciśnienie jest używane w urządzeniach do odsysania, które wspomagają usuwanie płynów z ran. Rozumienie podciśnienia i jego zastosowań jest kluczowe dla efektywnego projektowania systemów oraz zapewnienia bezpieczeństwa i efektywności w różnych branżach. Wiedza na temat różnicy między ciśnieniem atmosferycznym a podciśnieniem jest zatem fundamentem dla wielu zastosowań inżynieryjnych i technologicznych.

Pytanie 11

Przedstawione na rysunku przepalenie denka tłoka w silniku z zapłonem iskrowym jest skutkiem

Ilustracja do pytania
A. zastosowanie paliwa o zbyt wysokiej liczbie cetanowej.
B. zbyt niskiej temperatury pracy silnika.
C. zbyt ciasno spasowanego tłoka w cylindrze.
D. zastosowania świecy zapłonowej o niewłaściwej wartości cieplnej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie świecy zapłonowej o niewłaściwej wartości cieplnej jest kluczowym czynnikiem wpływającym na prawidłowe funkcjonowanie silnika z zapłonem iskrowym. Świeca zapłonowa jest odpowiedzialna za inicjowanie procesu spalania mieszanki paliwowo-powietrznej w cylindrze, a jej wartość cieplna determinuje, jak łatwo świeca odprowadza ciepło do otoczenia. Zbyt wysoka wartość cieplna może prowadzić do nadmiernego nagrzewania się tłoka, co z kolei prowadzi do jego przepalenia. W praktyce, dobór odpowiednich świec zapłonowych zgodnych z zaleceniami producenta silnika jest niezbędny dla zapewnienia optymalnej pracy oraz wydajności silnika. Przykładowo, silniki wyposażone w systemy zarządzania silnikiem, takie jak ECU, mogą monitorować temperaturę pracy i dostosowywać parametry zapłonu, co podkreśla znaczenie właściwego doboru komponentów. Używanie świec o niewłaściwej wartości cieplnej nie tylko wpływa na trwałość tłoków, ale może również prowadzić do zmniejszenia efektywności spalania i zwiększenia emisji szkodliwych substancji, dlatego przestrzeganie standardów branżowych jest kluczowe.

Pytanie 12

W samochodzie zauważono nierówną pracę silnika przy wyższych obrotach. Na początku należy zweryfikować

A. opory w układzie napędowym
B. szczelność układu chłodzenia
C. ciśnienie w układzie smarowania
D. drożność filtra paliwa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Drożność filtra paliwa jest kluczowym aspektem, który wpływa na właściwą pracę silnika. Filtr paliwa ma za zadanie zatrzymywanie zanieczyszczeń i zanieczyszczeń w paliwie, co zapewnia czystość układu paliwowego. Nierówna praca silnika przy wyższych prędkościach obrotowych może być spowodowana niedostatecznym dopływem paliwa do komory spalania, co może wynikać z zatykania się filtra. W praktyce, kiedy filtr jest zanieczyszczony, silnik nie otrzymuje odpowiedniej ilości paliwa, co może prowadzić do spadku mocy i niestabilnego biegu. Dobre praktyki serwisowe sugerują regularną wymianę filtra paliwa zgodnie z zaleceniami producenta pojazdu, a także kontrolę jego stanu w przypadku wystąpienia problemów z pracą silnika. Warto również zwrócić uwagę na jakość paliwa, gdyż niskiej jakości paliwo może szybciej zatykać filtr. Zrozumienie tej zasady pozwala na szybsze diagnozowanie problemów i skuteczniejsze działania naprawcze.

Pytanie 13

Reaktor katalityczny stanowi część systemu

A. zasilania
B. wylotowego
C. napędowego
D. dolotowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reaktor katalityczny jest kluczowym komponentem układu wylotowego w pojazdach z silnikami spalinowymi. Jego głównym zadaniem jest redukcja emisji szkodliwych substancji, takich jak tlenki azotu, węglowodory i tlenek węgla, poprzez katalityczną konwersję ich w mniej szkodliwe związki, takie jak azot i dwutlenek węgla. Przykładem zastosowania reaktora katalitycznego jest jego rola w układzie wydechowym, gdzie zachodzi reakcja chemiczna na powierzchni katalizatora. W praktyce, reaktory te współpracują z systemem monitorowania emisji, co pozwala na spełnienie norm ekologicznych, takich jak te określone w normach Euro. Dobre praktyki branżowe zalecają regularne kontrole stanu reaktora katalitycznego, aby zapewnić jego efektywność i długowieczność, co z kolei wpływa na zmniejszenie kosztów eksploatacyjnych pojazdów oraz ograniczenie ich wpływu na środowisko. Współczesne technologie wytwarzania katalizatorów, w tym rozwój katalizatorów na bazie platyny, palladu czy rod, pozwalają na osiąganie coraz lepszych parametrów redukcji emisji, co czyni reaktory katalityczne niezbędnym elementem nowoczesnych układów wydechowych.

Pytanie 14

Układ zblokowany przedni wskazuje, iż silnik znajduje się

A. z przodu pojazdu i napędza koła przednie
B. z tyłu pojazdu i napędza koła tylne
C. z przodu pojazdu i napędza koła tylne
D. z tyłu pojazdu i napędza koła przednie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ zblokowany przedni oznacza, że silnik jest umieszczony z przodu pojazdu i napędza koła przednie. Taki układ charakteryzuje się lepszą przyczepnością na nawierzchni, zwłaszcza w trudnych warunkach, co jest kluczowe dla zachowania stabilności pojazdu. Przykładem zastosowania jest większość samochodów osobowych, gdzie taki układ napędowy pozwala na efektywne przeniesienie momentu obrotowego na koła przednie, co z kolei wpływa na lepsze prowadzenie oraz komfort jazdy. W standardach branżowych, jak ISO 26262, układy zblokowane są preferowane w kontekście bezpieczeństwa, gdyż pozwalają na bardziej przewidywalne reakcje pojazdu w sytuacjach awaryjnych. Dodatkowo, układy te są często korzystniejsze pod względem kosztów produkcji i konserwacji, co czyni je popularnym wyborem wśród producentów samochodów.

Pytanie 15

Aby określić stopień zużycia oleju silnikowego, należy przeprowadzić pomiar

A. multimetrem
B. refraktometrem
C. pirometrem
D. wiskozymetrem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiskozymetr to przyrząd służący do pomiaru lepkości cieczy, co czyni go idealnym narzędziem do określenia stopnia zużycia oleju silnikowego. Lepkość oleju jest kluczowym wskaźnikiem jego stanu; wraz z upływem czasu i eksploatacją oleju, jego lepkość ulega zmianie w wyniku degradacji, zanieczyszczeń i utleniania. Pomiar lepkości pozwala na ocenę, czy olej nadal spełnia normy wymagane dla właściwej pracy silnika. W praktyce, wiskozymetr może być używany do testowania oleju podczas rutynowych przeglądów technicznych pojazdów, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej. Warto również zaznaczyć, że pomiar lepkości jest częścią analizy olejów silnikowych, która jest zalecana przez producentów silników, aby zapewnić ich długotrwałe i efektywne działanie.

Pytanie 16

Odporność na niekontrolowany samozapłon paliwa przeznaczonego do silników z zapłonem iskrowym jest określana przez

A. liczbę metanową
B. liczbę oktanową
C. liczbę cetanową
D. liczbę propanową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczba oktanowa jest miarą odporności paliwa na niekontrolowany samozapłon, co jest kluczowe dla silników z zapłonem iskrowym. Wyższa liczba oktanowa oznacza, że paliwo jest bardziej odporne na detonację, co zwiększa efektywność pracy silnika oraz jego żywotność. W praktyce, paliwa o wyższej liczbie oktanowej, takie jak paliwa premium, są często zalecane dla pojazdów sportowych lub tych z silnikami o wysokim stopniu sprężania. Dzięki temu, silniki mogą pracować z optymalnym osiągnięciem mocy i momentu obrotowego, co przekłada się na lepsze osiągi i mniejsze zużycie paliwa. Dobre praktyki branżowe zalecają regularne stosowanie paliw o uzasadnionej liczbie oktanowej zgodnie z specyfikacją producenta samochodu, aby zminimalizować ryzyko uszkodzeń silnika. Ponadto, zrozumienie liczby oktanowej pomaga w wyborze odpowiedniego paliwa w celu dostosowania do warunków eksploatacji, takich jak jazda w górach, gdzie silnik może być obciążony większymi wymaganiami.

Pytanie 17

Podczas pomiaru ciśnienia sprężania zauważono, że w jednym cylindrze wartość ta jest zbyt niska. Wykonanie próby olejowej nie zmieniło wartości ciśnienia sprężania. Taki rezultat może wskazywać na uszkodzenie

A. panewki sworznia tłokowego
B. pierścieni tłokowych
C. przylgni zaworów
D. uszczelniaczy zaworowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "przylgni zaworów" jest prawidłowa, ponieważ niskie ciśnienie sprężania w cylindrze silnika może wynikać z nieszczelności na przylgni zaworów, co prowadzi do utraty kompresji podczas cyklu sprężania. Przylgnięcie zaworów ma kluczowe znaczenie dla prawidłowego funkcjonowania silnika, a ich nieszczelność może być efektem zużycia, osadów lub niewłaściwego montażu. Przeprowadzenie próby olejowej, polegającej na dodawaniu oleju do cylindra, ma na celu ustalenie, czy problem jest związany z pierścieniami tłokowymi. W przypadku, gdy ciśnienie nie wzrasta, najprawdopodobniej wskazuje to na uszkodzenie lub nieszczelność przylgni zaworów. W praktyce, monitorowanie stanu zaworów i ich przylgni jest kluczowe dla utrzymania wysokiej efektywności silnika, co znajduje odzwierciedlenie w standardach diagnostycznych, takich jak ISO 9001 w branży motoryzacyjnej. Regularne przeglądy i odpowiednia konserwacja mogą zapobiec poważniejszym uszkodzeniom i zapewnić długotrwałą wydajność silnika.

Pytanie 18

Wartość sprężania w silnikach z zapłonem iskrowym w porównaniu do silników z zapłonem samoczynnym jest

A. zawsze identyczna.
B. zawsze wyższa.
C. nie do porównania.
D. niższa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silniki z zapłonem iskrowym, takie jak silniki benzynowe, charakteryzują się niższym stopniem sprężania w porównaniu do silników z zapłonem samoczynnym (silników Diesla). Zazwyczaj stopień sprężania w silnikach benzynowych wynosi od 8 do 12, podczas gdy w silnikach Diesla wartość ta może wynosić od 14 do 25. Niższy stopień sprężania w silnikach z zapłonem iskrowym pozwala na uniknięcie zjawiska klekotania, które jest bardziej powszechne przy wyższych wartościach sprężania. W praktyce oznacza to, że silniki z zapłonem iskrowym mogą być łatwiej uruchamiane w różnych warunkach oraz mają mniejsze wymagania dotyczące jakości paliwa, co czyni je bardziej elastycznymi. Ponadto, niższy stopień sprężania wpływa na efektywność spalania i moc silnika, co może być istotne w kontekście osiągów i ekonomiki jazdy. W związku z tym, zrozumienie różnic w stopniach sprężania między tymi dwoma typami silników jest kluczowe dla inżynierów i projektantów pojazdów, którzy muszą dostosować parametry silników do ich zamierzonych zastosowań.

Pytanie 19

Podczas holowania uszkodzonego samochodu z automatyczną skrzynią biegów należy

A. odłączyć system sterowania skrzynią biegów
B. ustawić dźwignię zmiany biegów w pozycji D (jazda)
C. unosić oś napędzaną pojazdu
D. spuścić olej ze skrzyni biegów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas holowania uszkodzonego pojazdu wyposażonego w automatyczną skrzynię biegów kluczowe jest uniesienie osi napędzanej, co zapobiega uszkodzeniu skrzyni biegów. Automatyczne skrzynie biegów są zaprojektowane do pracy w ruchu i ich elementy, takie jak pompa olejowa, wymagają ruchu, aby prawidłowo smarować wewnętrzne części. Jeśli pojazd jest holowany w sposób, który nie unosi osi napędzanej, istnieje ryzyko, że olej smarujący nie będzie krążył, co może prowadzić do przegrzania lub uszkodzenia skrzyni biegów. Przykładem prawidłowego postępowania jest użycie platformy holowniczej, która unosi cały przód lub tył pojazdu, co zapewnia, że skrzynia biegów pozostaje w bezpiecznej i odpowiedniej pozycji. W branży motoryzacyjnej standardowym podejściem jest unikanie holowania pojazdów z automatycznymi skrzyniami biegów na kołach napędzanych, co może być zgodne z wytycznymi producentów pojazdów. Warto także zapoznać się z instrukcją obsługi pojazdu, gdzie często znajdziemy informacje dotyczące holowania.

Pytanie 20

Na wykresie przedstawiono charakterystykę prędkościową silnika ZI. Oznaczenie ge dotyczy

Ilustracja do pytania
A. mocy użytecznej.
B. prędkości obrotowej.
C. jednostkowego zużycia paliwa.
D. momentu obrotowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca oznaczenia g_e w kontekście charakterystyki prędkościowej silnika ZI jest poprawna, ponieważ dotyczy jednostkowego zużycia paliwa, wyrażanego w gramach na kilowatogodzinę (g/kWh). Jest to kluczowy wskaźnik efektywności energetycznej silnika, który informuje o ilości paliwa potrzebnej do wytworzenia określonej mocy w danym czasie. W praktyce, im mniejsze jednostkowe zużycie paliwa, tym silnik jest bardziej efektywny, co przekłada się na mniejsze koszty eksploatacji i mniejszy wpływ na środowisko. W przemyśle motoryzacyjnym oraz w projektowaniu silników, zrozumienie i optymalizacja jednostkowego zużycia paliwa jest kluczowe dla spełnienia norm emisji spalin oraz wymagań dotyczących oszczędności paliwa. Warto zauważyć, że w kontekście wydajności silników ZI, producenci coraz częściej stosują różnorodne technologie, takie jak wtrysk bezpośredni czy turbosprężarki, które mają na celu dalsze obniżenie jednostkowego zużycia paliwa, co jest zgodne z aktualnymi trendami w branży. Zrozumienie tego pojęcia oraz jego implikacji jest istotne dla inżynierów i projektantów pracujących w dziedzinie motoryzacji.

Pytanie 21

Na rysunku przedstawiono układ zawieszenia

Ilustracja do pytania
A. zależnego z osią nienapędzaną.
B. zależnego z osią napędzaną.
C. niezależnego z osią napędzaną.
D. niezależnego z osią nienapędzaną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "zależnego z osią nienapędzaną" jest prawidłowa, ponieważ przedstawiony na rysunku układ zawieszenia charakteryzuje się połączeniem obu kół za pomocą sztywnej belki, co jest typowe dla zawieszenia zależnego. W układzie tym, ruch jednego koła wpływa na ruch drugiego, co ma swoje zastosowanie w pojazdach terenowych lub w samochodach, gdzie stabilność jest kluczowa. Przykładem zastosowania zawieszenia zależnego z osią nienapędzaną są samochody osobowe z napędem na przednią oś. Takie rozwiązanie pozwala na obniżenie kosztów produkcji oraz uproszczenie konstrukcji pojazdu. W kontekście standardów branżowych, zawieszenie zależne zapewnia lepszą kontrolę nad ruchem pojazdu w trudnych warunkach drogowych, co jest zgodne z zaleceniami dotyczącymi projektowania układów zawieszenia samochodowego. Istotne jest również, że w przypadku braku elementów napędu, jak półosie, możemy jednoznacznie stwierdzić, że oś jest nienapędzana, co dodatkowo potwierdza naszą odpowiedź.

Pytanie 22

Rezystancję oblicza się jako

A. sumę natężenia oraz napięcia prądu elektrycznego
B. iloraz napięcia do natężenia prądu elektrycznego
C. iloczyn napięcia oraz natężenia prądu elektrycznego
D. różnicę natężenia oraz napięcia prądu elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość rezystancji jest definiowana przez prawo Ohma, które mówi, że rezystancja (R) jest równa ilorazowi napięcia (U) do natężenia prądu (I). Matematycznie można to zapisać jako R = U/I. Ta zależność jest kluczowa w elektroenergetyce i inżynierii elektrycznej, gdzie pozwala na projektowanie i analizowanie obwodów elektrycznych. Przykładem zastosowania tej zasady jest obliczanie wartości rezystorów w układach elektronicznych, aby zapewnić odpowiednie działanie komponentów elektronicznych, takich jak diody czy tranzystory. W praktyce, zrozumienie tego związku umożliwia również dobieranie odpowiednich wartości komponentów do określonych zastosowań, co jest niezwykle istotne w kontekście projektowania układów zasilania oraz systemów automatyki. Wiedza na temat rezystancji i jej obliczania jest również niezbędna w kontekście oceny efektywności energetycznej, co jest istotne dla zrównoważonego rozwoju oraz oszczędności energetycznych w różnych aplikacjach przemysłowych oraz domowych.

Pytanie 23

Na ilustracji jest przedstawiony pojazd z ramą

Ilustracja do pytania
A. centralną.
B. podłużnicową.
C. płytową.
D. krzyżową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rama podłużnicowa, jaką przedstawia ilustracja, jest kluczowym elementem konstrukcyjnym wielu pojazdów, zwłaszcza ciężarówek oraz samochodów terenowych. Jej charakterystyczna budowa polega na długich, równoległych elementach, które biegną wzdłuż całej długości pojazdu, co zapewnia wysoką sztywność oraz wytrzymałość na obciążenia. W praktyce, takie ramy są często wykorzystywane w pojazdach przeznaczonych do transportu ciężkich ładunków, ponieważ mogą skutecznie absorbować siły działające na konstrukcję, co jest istotne w trudnych warunkach terenowych. Dodatkowo, systemy zawieszenia oraz mocowania silników są projektowane tak, aby współpracować z tego typu ramą, co przekłada się na lepsze osiągi pojazdu oraz komfort jazdy. W branży motoryzacyjnej stosowanie ram podłużnicowych jest zgodne z wieloma standardami inżynieryjnymi, które podkreślają znaczenie wytrzymałości i niezawodności konstrukcji pojazdów, szczególnie w kontekście ich eksploatacji w trudnych warunkach.

Pytanie 24

Pedał hamulca, który nadmiernie się ugina przy kolejnych naciskach, wskazuje na

A. nadmierne zużycie bieżnika opon
B. zbyt wysoki poziom płynu hamulcowego
C. zapowietrzenie układu hamulcowego
D. brak przyczepności opony do nawierzchni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbyt miękki pedał hamulca, który rośnie przy kolejnych naciśnięciach, najprawdopodobniej wskazuje na zapowietrzenie układu hamulcowego. Zapowietrzenie oznacza, że w układzie hydraulicznym znajduje się powietrze, co powoduje, że ciśnienie generowane przez pompkę hamulcową nie jest w pełni przenoszone na tłoczki hamulców. W efekcie pedał hamulca staje się mniej responsywny i wymaga większego wciśnięcia. Aby skutecznie rozwiązać ten problem, należy przeprowadzić odpowietrzanie układu hamulcowego, co jest kluczowym krokiem w utrzymaniu bezpieczeństwa pojazdu. Według standardów branżowych, zaleca się regularne sprawdzanie stanu układu hamulcowego oraz okresowe wymiany płynu hamulcowego, co zapobiega osadzaniu się powietrza oraz zapewnia jego właściwe właściwości hydrauliczne. Przykładem dobrych praktyk jest również stosowanie odpowiednich narzędzi do odpowietrzania, takich jak zestawy podciśnieniowe, które umożliwiają szybką i skuteczną eliminację powietrza z systemu.

Pytanie 25

Badanie organoleptyczne jako metoda diagnostyki to badanie

A. lepkości oleju.
B. ciśnienia sprężania.
C. bez przyrządów.
D. interfejsem diagnostycznym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Badanie organoleptyczne to po prostu diagnozowanie „zmysłami” – bez użycia specjalistycznych przyrządów pomiarowych. W praktyce oznacza to oględziny wzrokowe, słuchanie nietypowych dźwięków, wyczuwanie zapachów, czasem delikatne sprawdzenie dotykiem temperatury, luzów czy wibracji (oczywiście z zachowaniem BHP). Dlatego prawidłowa odpowiedź to badanie bez przyrządów. W warsztacie bardzo często pierwszym etapem diagnostyki jest właśnie ocena organoleptyczna: mechanik słyszy nierówną pracę silnika, widzi wyciek oleju przy uszczelce, czuje zapach spalonego sprzęgła, zauważa przebarwienia na przewodach hamulcowych czy ślady przegrzania na złączach elektrycznych. To wszystko są informacje zebrane bez manometru, komputera czy czujników zegarowych. Moim zdaniem dobry diagnosta zaczyna od organoleptyki, a dopiero potem sięga po przyrządy, bo pozwala to zawęzić obszar poszukiwań i zaoszczędzić masę czasu. W literaturze i dobrych praktykach serwisowych podkreśla się, że prawidłowa procedura diagnostyczna to: oględziny, wywiad z klientem, badanie organoleptyczne, a dopiero później pomiary i testy komputerowe. Organoleptyka nie zastępuje pomiarów ciśnienia sprężania czy diagnostyki interfejsem OBD, ale jest ich uzupełnieniem i wstępną selekcją. W nowoczesnych pojazdach, gdzie elektroniki jest pełno, nadal podstawą jest oko, ucho i nos mechanika – komputer pokaże kod błędu, ale to człowiek oceni, czy np. wiązka jest przetarta, złącze zaśniedziałe, albo czy olej ma nienormalny zapach świadczący o przedostawaniu się paliwa lub płynu chłodzącego.

Pytanie 26

Jakie narzędzie pomiarowe powinno być zastosowane do określenia wartości zużycia tulei cylindrowej?

A. Suwmiarki
B. Mikrometru
C. Średnicówki zegarowej
D. Sprawdzianu do otworów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Średnicówka zegarowa jest narzędziem pomiarowym o wysokiej precyzji, które jest szczególnie przydatne w pomiarach średnic otworów, zarówno cylindrycznych, jak i innych kształtów. Jej konstrukcja pozwala na dokładne i łatwe odczytywanie wyników dzięki zastosowaniu mechanizmu zegarowego, co znacznie ułatwia pracę. W przypadku pomiaru tulei cylindra, świetnie sprawdza się, ponieważ dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego luzu oraz prawidłowego dopasowania elementów silnika. Używając średnicówki zegarowej, można wykryć nawet niewielkie odchylenia od normy, co pozwala na wczesne wykrycie potencjalnych problemów w procesie produkcji lub remontu silnika. W praktyce, pomiar za pomocą tego narzędzia jest często stosowany w warsztatach mechanicznych i w przemyśle motoryzacyjnym, gdzie precyzja ma krytyczne znaczenie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co tylko potwierdza wybór średnicówki zegarowej jako narzędzia właściwego w tym kontekście.

Pytanie 27

Znaczenie wilgoci dla parametrów eksploatacyjnych jest szczególnie istotne w odniesieniu do

A. oleju silnikowego
B. jednostki napędowej
C. układu klimatyzacji
D. płynu hamulcowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Płyn hamulcowy jest substancją, która charakteryzuje się bardzo wysoką higroskopijnością, co oznacza, że ma zdolność do absorpcji wilgoci z otoczenia. Obecność wody w układzie hamulcowym może prowadzić do obniżenia temperatury wrzenia płynu, co z kolei może skutkować zjawiskiem tzw. 'pompowania' hamulców, gdyż płyn hamulcowy, w wyniku podgrzania, może zacząć wrzeć. W rezultacie pojawia się para, która nie jest w stanie przenieść siły z pedału hamulca na układ hamulcowy, co może prowadzić do znacznego pogorszenia skuteczności hamowania. Dlatego niezwykle istotne jest regularne kontrolowanie stanu płynu hamulcowego oraz jego wymiana co dwa lata, zgodnie z zaleceniami producentów pojazdów. W kontekście bezpieczeństwa, minimalizacja wilgoci w płynie hamulcowym jest kluczowym elementem utrzymania optymalnych parametrów eksploatacyjnych, co potwierdzają standardy branżowe, takie jak SAE J1703.

Pytanie 28

Na korbowodowych czopach wałów korbowych silników czterosuwowych wykorzystuje się łożyska

A. ślizgowe
B. kulowe
C. igłowe
D. stożkowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łożyska ślizgowe używane w czopach korbowodowych wałów korbowych silników czterosuwowych odgrywają kluczową rolę w zapewnieniu efektywnego przenoszenia obciążeń oraz minimalizacji tarcia. W przeciwieństwie do innych typów łożysk, łożyska ślizgowe nie mają elementów tocznych, co pozwala na lepsze dostosowanie do warunków pracy w silniku oraz zapewnia dłuższą żywotność przy odpowiednim smarowaniu. W silnikach czterosuwowych, gdzie występują duże obciążenia dynamiczne i zmienne warunki pracy, łożyska ślizgowe redukują hałas i drgania, co jest szczególnie istotne w kontekście nowoczesnych standardów emisji oraz komfortu użytkowania. Przykłady zastosowań obejmują nie tylko silniki spalinowe, ale także aplikacje w przemyśle, gdzie wymagana jest wysoka precyzja ruchu przy minimalnym tarciu. Zgodnie z najlepszymi praktykami, łożyska te powinny być regularnie smarowane odpowiednimi lubrykantami, aby zwiększyć ich efektywność i trwałość.

Pytanie 29

Skrót DOHC w specyfikacji technicznej silnika oznacza, że jest to silnik

A. z dwoma wałkami rozrządu umieszczonymi w głowicy
B. z systemem rozrządu suwakowego
C. z systemem rozrządu górnozaworowego
D. z wałkiem rozrządu znajdującym się w głowicy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skrót DOHC oznacza 'Dual Overhead Camshaft', co w tłumaczeniu na język polski oznacza 'dwoma wałkami rozrządu w głowicy'. Tego rodzaju konstrukcja silnika jest powszechnie stosowana w nowoczesnych pojazdach. Zastosowanie dwóch wałków rozrządu pozwala na precyzyjne sterowanie zaworami dolotowymi i wylotowymi, co przekłada się na lepszą wydajność silnika oraz wyższe osiągi. Silniki DOHC są często bardziej efektywne pod względem zużycia paliwa oraz generują więcej mocy, szczególnie w wyższych zakresach obrotów. Dodatkowo, ta konstrukcja umożliwia zastosowanie nowoczesnych technologii, takich jak zmienne fazy rozrządu, które dodatkowo poprawiają charakterystyki silnika. Przykładem zastosowania silnika DOHC może być wiele modeli sportowych i wyścigowych, w których kluczowe są parametry dynamiczne oraz efektywność. Dzięki skomplikowanej budowie silniki te są również często bardziej responsywne na wciśnięcie pedału gazu, co ma znaczenie w motoryzacji wyczynowej.

Pytanie 30

Przy demontażu łożysk z pierścieniem uszczelniającym, należy oddziaływać siłą bezpośrednio na

A. wszystkie elementy łożyska.
B. niezdejmowany pierścień łożyska.
C. elementy toczne łożyska.
D. zdejmowany pierścień łożyska.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przy demontażu łożyska z pierścieniem uszczelniającym siłę należy zawsze przyłożyć do zdejmowanego pierścienia łożyska, czyli dokładnie do tego elementu, który ma się przemieścić względem wału lub obudowy. Dzięki temu obciążenia z demontażu przechodzą bezpośrednio przez pierścień, który jest docelowo wyciskany, a nie przez elementy toczne czy uszczelnienie. Moim zdaniem to jest jedna z podstawowych zasad pracy z łożyskami, a mimo to w praktyce często się o niej zapomina. W dobrych instrukcjach serwisowych producentów łożysk (SKF, FAG, NSK itp.) wyraźnie jest zaznaczone: siła montażu i demontażu musi działać na ten pierścień, który jest osadzony ciasno i jest aktualnie zdejmowany. W przeciwnym razie bardzo łatwo o mikrouszkodzenia bieżni, odkształcenie koszyka albo zarysowanie powierzchni tocznych. W warsztatach motoryzacyjnych widać to np. przy wymianie łożysk kół, łożysk alternatora czy sprzęgieł jednokierunkowych – używa się odpowiednich ściągaczy, tulei i pras, tak żeby łapały dokładnie za pierścień, a nie za zewnętrzne elementy czy sam uszczelniacz. Dobrą praktyką jest też kontrola, który pierścień ma pasowanie ciasne (najczęściej ten na wale w łożyskach szybkoobrotowych), i odpowiednie ustawienie ściągacza. Wtedy demontaż jest czysty, bez szarpania, łożysko nie dostaje dodatkowych obciążeń udarowych, a gniazdo w obudowie i czop wału pozostają w dobrym stanie. Przy okazji – jeżeli łożysko ma być ponownie użyte, to takie „kulturalne” zdjęcie go ze współosiowym dociskiem do zdejmowanego pierścienia bardzo zwiększa szansę, że nie pojawią się później hałasy czy przegrzewanie podczas pracy.

Pytanie 31

Zgięty wahacz pojazdu należy

A. wzmocnić elementem dodatkowym.
B. wyprostować na zimno.
C. wyprostować na gorąco.
D. wymienić na nowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgięty wahacz zawsze kwalifikuje się do bezwzględnej wymiany na nowy element, bo jest to część kluczowa dla geometrii zawieszenia i bezpieczeństwa jazdy. Wahacz przenosi obciążenia z koła na nadwozie, utrzymuje właściwy kąt pochylenia i zbieżność kół, a przy tym pracuje w zmiennych obciążeniach zmęczeniowych. Jeśli profil wahacza został zgięty, to materiał ma już za sobą przekroczenie granicy plastyczności – struktura wewnętrzna jest naruszona, mogą pojawić się mikro‑pęknięcia, osłabione strefy, utrata sztywności. Tego nie widać gołym okiem, ale w praktyce warsztatowej wiadomo, że taki element nie gwarantuje już pierwotnych parametrów wytrzymałościowych. Producenci zawieszeń i normy serwisowe praktycznie wszystkich marek jasno wskazują: elementy nośne zawieszenia po odkształceniu wymienia się, a nie prostuje. Wymiana na nowy wahacz przywraca fabryczną geometrię, zapewnia prawidłową pracę sworzni i silentbloków, a po zbieżności kół pojazd znowu prowadzi się stabilnie. Z mojego doświadczenia każdy „oszczędny” zabieg prostowania kończy się później ściąganiem auta, nierównomiernym zużyciem opon albo stukami w zawieszeniu. Dobra praktyka jest taka: jeśli wahacz dostał strzał od krawężnika, dziury czy kolizji i widać odkształcenie, najlepiej nawet się nie zastanawiać, tylko zamówić nową część, a po montażu zrobić pełną kontrolę zawieszenia i geometrii kół.

Pytanie 32

Który z poniższych elementów nie wchodzi w skład sprzęgła ciernego?

A. Sprężyna dociskowa
B. Łożysko wyciskowe
C. Wał napędowy silnika
D. Sprężyna centralna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wał napędowy silnika nie jest częścią sprzęgła ciernego, ponieważ pełni zupełnie inną funkcję w układzie napędowym pojazdu. Sprzęgło cierne to mechanizm, który umożliwia płynne łączenie i rozłączanie momentu obrotowego pomiędzy silnikiem a skrzynią biegów. W skład sprzęgła ciernego wchodzą elementy takie jak łożysko wyciskowe, sprężyna dociskowa oraz tarcza sprzęgłowa. Każdy z tych elementów ma kluczowe znaczenie dla poprawnego działania sprzęgła. Na przykład, łożysko wyciskowe pozwala na odciągnięcie sprężyny dociskowej w celu swobodnego przesuwania tarczy sprzęgłowej. Dobrze działające sprzęgło cierne zapewnia efektywne przenoszenie mocy z silnika do układu napędowego, co jest istotne dla osiągów pojazdu. Wiedza na temat konstrukcji i działania sprzęgła jest niezbędna dla mechaników i inżynierów zajmujących się układami napędowymi, a także dla wszystkich pasjonatów motoryzacji.

Pytanie 33

Na ilustracji przedstawiono przekładnię

Ilustracja do pytania
A. hipoidalną.
B. zębatkową.
C. planetarną.
D. ślimakową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekładnia planetarna, przedstawiona na ilustracji, charakteryzuje się unikalną konstrukcją składającą się z centralnego koła zębatego (słońca), które jest otoczone przez kilka mniejszych kół zębatych (planetarnych), osadzonych na wspólnej osi. Na zewnątrz znajduje się pierścień zębaty (korona), który wprowadza dodatkową zwrotność w przenoszeniu momentu obrotowego. Tego rodzaju przekładnie są szeroko stosowane w przemyśle motoryzacyjnym, szczególnie w automatycznych skrzyniach biegów, dzięki ich zdolności do uzyskiwania różnych przełożeń przy kompaktowej budowie. W porównaniu do innych typów przekładni, przekładnie planetarne oferują korzystny stosunek momentu obrotowego do prędkości obrotowej, co czyni je idealnym rozwiązaniem w aplikacjach wymagających dużej mocy w ograniczonej przestrzeni. Dodatkowo, ich konstrukcja pozwala na równomierne rozłożenie obciążeń, co zwiększa ich trwałość i niezawodność, co jest zgodne z najlepszymi praktykami inżynieryjnymi w dziedzinie mechaniki.

Pytanie 34

W trakcie wypadku rolą napinacza pasa bezpieczeństwa jest

A. zablokowanie zwijacza, co uniemożliwi rozwinięcie pasa
B. jak najszybsze, mocne związanie ciała człowieka z konstrukcją pojazdu
C. ułatwienie wypięcia pasa tuż po zamortyzowaniu uderzenia
D. zmniejszenie nacisku pasa na ludzkie ciało, gdy jest on zbyt duży

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napinacz pasa bezpieczeństwa odgrywa kluczową rolę w systemie zabezpieczeń pojazdu. Jego głównym zadaniem jest jak najszybsze i ściśle związanie ciała pasażera z konstrukcją pojazdu w momencie zderzenia. Dzięki temu, podczas nagłego hamowania lub kolizji, napinacz minimalizuje ryzyko przesunięcia się ciała pasażera do przodu, co mogłoby prowadzić do poważnych obrażeń. Warto zauważyć, że napinacze działają na zasadzie mechanizmu automatyzacji, który w momencie detekcji wypadku błyskawicznie napina pas, co zostało zaprojektowane zgodnie z normami bezpieczeństwa, takimi jak ECE R16 w Europie. Przykładowo, w nowoczesnych pojazdach, systemy napinaczy współpracują z poduszkami powietrznymi, co jeszcze bardziej zwiększa poziom ochrony pasażerów. Prawidłowe działanie napinacza jest zatem kluczowe dla zapewnienia bezpieczeństwa podczas jazdy oraz w sytuacjach kryzysowych, co podkreśla jego znaczenie w inżynierii motoryzacyjnej.

Pytanie 35

Zauważalny wzrost ciśnienia sprężania silnika podczas testu olejowego wskazuje na uszkodzenie

A. pierścieni tłokowych
B. uszczelki podgłowicowej
C. przylgni zaworowych
D. prowadnic zaworowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost ciśnienia sprężania podczas próby olejowej w silniku spalinowym jest kluczowym wskaźnikiem stanu pierścieni tłokowych. Pierścienie tłokowe mają za zadanie skutecznie uszczelniać przestrzeń między tłokiem a cylindrem, co pozwala na osiągnięcie odpowiedniego ciśnienia sprężania. Kiedy pierścienie są zużyte, pęknięte lub nieprawidłowo zamontowane, olej silnikowy może dostawać się do komory spalania, co prowadzi do wzrostu ciśnienia sprężania. Przeprowadzenie próby olejowej, polegającej na dodaniu oleju do cylindrów, pozwala na zdiagnozowanie problemu. Jeżeli po dodaniu oleju ciśnienie wzrasta, to wskazuje na uszkodzenie pierścieni tłokowych, co jest zgodne z najlepszymi praktykami diagnostycznymi w branży motoryzacyjnej. Wysoka wartość ciśnienia sprężania po dodaniu oleju musi być traktowana jako sygnał do przeprowadzenia dalszych badań i ewentualnej wymiany pierścieni, co z kolei przekłada się na poprawę efektywności pracy silnika oraz jego żywotności.

Pytanie 36

Na rysunku przedstawiono sposób działania układu

Ilustracja do pytania
A. paliwowego w silniku.
B. oczyszczania spalin w silniku.
C. turbodoładowania.
D. chłodzenia w silniku.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca turbodoładowania jest poprawna, ponieważ przedstawiony rysunek ilustruje kluczowe elementy tego układu, który istotnie zwiększa moc silnika poprzez optymalizację procesu spalania. Turbodoładowanie działa na zasadzie wykorzystania energii spalin do napędu turbiny, która następnie spręża powietrze dostarczane do cylindrów silnika. Dzięki temu, silnik może spalić większą ilość paliwa, co przekłada się na wzrost jego mocy. Układ ten jest szczególnie popularny w silnikach benzynowych i wysokoprężnych, a jego zastosowanie przyczynia się do zwiększenia efektywności oraz redukcji emisji spalin, co jest zgodne z obowiązującymi normami ekologicznymi. Dobre praktyki w zakresie projektowania układów turbodoładowania obejmują m.in. dobór odpowiednich materiałów odpornych na wysoką temperaturę oraz zastosowanie systemów chłodzenia, aby zminimalizować ryzyko przegrzania. Wiedza o działaniu turbodoładowania jest kluczowa dla inżynierów zajmujących się projektowaniem nowoczesnych silników spalinowych.

Pytanie 37

W głowicy czterosuwowego silnika spalinowego stosuje się zawory

A. grzybkowe.
B. membranowe.
C. kulowe.
D. suwakowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W głowicy czterosuwowego silnika spalinowego stosuje się zawory grzybkowe i to jest absolutny standard w budowie współczesnych silników samochodowych, motocyklowych czy przemysłowych. Zawór grzybkowy ma charakterystyczną budowę: talerz (grzybek), trzonek oraz stożkową powierzchnię uszczelniającą, która przylega do gniazda zaworowego w głowicy. Dzięki takiej konstrukcji można uzyskać dobre uszczelnienie komory spalania przy bardzo wysokim ciśnieniu i temperaturze, a jednocześnie zachować dość prostą i trwałą konstrukcję całego układu rozrządu. W praktyce w głowicy mamy najczęściej układ OHV, OHC albo DOHC, gdzie zawory grzybkowe są napędzane przez wałek rozrządu poprzez popychacze, dźwigienki lub bezpośrednio krzywką na szklance. Moim zdaniem to jedno z ważniejszych rozwiązań, które trzeba dobrze rozumieć, bo od stanu zaworów i gniazd zależy kompresja, moc silnika, spalanie paliwa i emisja spalin. Zawory grzybkowe są wykonywane ze specjalnych stopów żaroodpornych, często zawór wydechowy jest z twardszego materiału, czasem wypełniony sodem dla lepszego odprowadzania ciepła. W serwisie spotkasz się z ich szlifowaniem, docieraniem, wymianą prowadnic i uszczelniaczy trzonków. Dobra praktyka warsztatowa wymaga sprawdzenia szczelności zaworów, luzów zaworowych oraz bicia promieniowego. Właściwie dobrane i wyregulowane zawory grzybkowe gwarantują prawidłowe napełnianie cylindra mieszanką i skuteczne opróżnianie spalin, co przekłada się na kulturę pracy silnika i jego trwałość. W czterosuwach inne typy zaworów praktycznie się nie przyjęły właśnie dlatego, że zawór grzybkowy najlepiej łączy szczelność, prostotę i możliwość pracy przy wysokich obrotach.

Pytanie 38

Za pomocą klucza hakowego wykonuje się demontaż

A. filtra oleju.
B. łożyska ślizgowego.
C. łożyska tocznego.
D. wtryskiwacza.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klucz hakowy (często nazywany też kluczem taśmowym albo paskowym, zależy od konstrukcji) jest typowym narzędziem warsztatowym do odkręcania filtrów oleju, szczególnie tych puszkowych, wkręcanych bezpośrednio w korpus silnika. Filtr oleju po kilku tysiącach kilometrów jest zwykle mocno „przyklejony” przez uszczelkę i osady, więc odkręcanie ręką bywa niewykonalne. Właśnie wtedy wchodzi do gry klucz hakowy: obejmuje obudowę filtra, a hak lub taśma zaciska się przy próbie obrotu, co pozwala bezpiecznie przenieść moment dokręcający bez uszkodzenia obudowy. W praktyce przyjęło się, że do filtrów oleju używamy specjalistycznych kluczy: paskowych, łańcuchowych, nasadowych „kubkowych” albo hakowych, a nie przypadkowych narzędzi typu kombinerki czy przecinak, bo to niszczy filtr i grozi uszkodzeniem gniazda w silniku. Dobrą praktyką jest też odkręcanie filtra przy jeszcze ciepłym oleju (ale oczywiście z zachowaniem BHP), bo uszczelka jest wtedy bardziej elastyczna. Po demontażu filtra zawsze sprawdza się, czy stara uszczelka nie została przyklejona do korpusu silnika, bo podwójna uszczelka przy montażu nowego filtra to prosta droga do wycieku oleju pod ciśnieniem. Moim zdaniem warto też wyrabiać nawyk lekkiego posmarowania nowej uszczelki cienką warstwą świeżego oleju silnikowego – ułatwia to późniejszy demontaż i zapewnia równomierne dociśnięcie. W instrukcjach serwisowych producentów pojazdów i silników znajdziesz wprost zalecenie używania odpowiedniego klucza do filtra, właśnie po to, żeby uniknąć uszkodzeń mechanicznych i zachować szczelność układu smarowania.

Pytanie 39

Klient zgłosił się do stacji obsługi pojazdów na przegląd techniczny swojego samochodu Po wykonaniu przeglądu wymieniono olej silnikowy, filtr oleju silnikowego, filtr paliwa, filtr powietrza, płyn hamulcowy oraz klocki hamulcowe przednie. Wszystkie płyny eksploatacyjne i części klient dostarczył we własnym zakresie. Pracownik stacji obsługi, na podstawie danych z tabeli, wystawił fakturę na sumę

Lp.Nazwa usługiCena
(brutto)
1przegląd techniczny pojazdu90,00 zł
2wymiana oleju przekładniowego, silnikowego20,00 zł
3wymiana przednich klocków hamulcowych60,00 zł
4wymiana tylnych klocków hamulcowych90,00 zł
5wymiana tarcz hamulcowych80,00 zł
6wymiana płynu hamulcowego30,00 zł
7wymiana płynu chłodzącego25,00 zł
8wymiana filtru kabinowego15,00 zł
10wymiana filtru paliwa lub oleju10,00 zł
11wymiana filtru powietrza15,00 zł
A. 235 zł
B. 175 zł
C. 265 zł
D. 145 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź 235 zł wynika z poprawnego zsumowania wyłącznie kosztów robocizny, zgodnie z podanym cennikiem usług. W zadaniu wyraźnie zaznaczono, że wszystkie płyny eksploatacyjne i części klient dostarczył we własnym zakresie, więc stacja obsługi nalicza tylko usługę, a nie materiały. Trzeba więc z tabeli wybrać dokładnie te pozycje, które faktycznie zostały wykonane: przegląd techniczny pojazdu – 90 zł, wymiana oleju silnikowego (podchodzi pod „wymiana oleju przekładniowego, silnikowego”) – 20 zł, wymiana klocków hamulcowych przednich – 60 zł, wymiana płynu hamulcowego – 30 zł, wymiana filtru oleju silnikowego – 10 zł (pozycja „wymiana filtru paliwa lub oleju”) oraz wymiana filtru paliwa – kolejne 10 zł z tej samej pozycji, bo są to dwie osobne czynności, każda płatna osobno. Na końcu wymieniono filtr powietrza – 15 zł. Po zsumowaniu: 90 + 20 + 60 + 30 + 10 + 10 + 15 = 235 zł. W praktyce warsztatowej dokładne rozdzielanie kosztów na robociznę i materiały to standardowa dobra praktyka, szczególnie gdy klient przywozi własne części. Ma to znaczenie m.in. dla odpowiedzialności za reklamacje: warsztat odpowiada wtedy głównie za jakość wykonania usługi, a nie za wadliwy element dostarczony przez klienta. Z mojego doświadczenia dobrze jest też pamiętać, że jeśli jedna pozycja w cenniku obejmuje „filtr paliwa lub oleju”, to przy wymianie dwóch filtrów liczymy usługę podwójnie, bo mechanik realnie wykonuje dwie oddzielne operacje demontażu i montażu. W wielu serwisach, także autoryzowanych, stosuje się podobny sposób kalkulacji, co ułatwia później analizę kosztów przeglądów i planowanie obsługi okresowej pojazdu.

Pytanie 40

W tłokowym silniku spalinowym luz zaworowy jest

A. niepotrzebny, bo powoduje tylko szybsze zużycie części układu rozrządu.
B. niezbędny w celu kompensacji rozszerzalności temperaturowej elementów układu rozrządu.
C. potrzebny w celu uniknięcia kolizji zaworu z denkiem tłoka.
D. niewskazany, bo powoduje zwiększenie ilości świeżego ładunku w cylindrze.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Luz zaworowy w tłokowym silniku spalinowym jest właśnie po to, żeby skompensować rozszerzalność cieplną elementów układu rozrządu: trzonków zaworów, popychaczy, dźwigienek, szklanek, a nawet głowicy i bloku. Na zimnym silniku wszystkie te części są krótsze, mniejsze. Po rozgrzaniu, szczególnie zawór wydechowy, mocno się wydłuża. Gdyby nie było luzu, przy temperaturze roboczej zawór „wydłużyłby” cały łańcuch kinematyczny tak bardzo, że zacząłby się cały czas lekko uchylać, czyli nie domykałby się do gniazda. To oznacza spadek kompresji, przegrzewanie talerza zaworu i gniazda, wypalanie zaworów, a w konsekwencji bardzo kosztowny remont głowicy. Dlatego producenci w dokumentacji serwisowej zawsze podają konkretną wartość luzu zaworowego (np. 0,20 mm ssący, 0,25 mm wydechowy) oraz warunek pomiaru – zazwyczaj na zimnym silniku. W warsztacie, przy regulacji rozrządu z popychaczami mechanicznymi, szczelinomierzem sprawdza się, czy luz między krzywką wałka a dźwigienką (lub płytką regulacyjną) mieści się w tolerancji. Moim zdaniem to jedna z ważniejszych regulacji okresowych w starszych silnikach, bo od prawidłowego luzu zależy nie tylko kultura pracy, ale też trwałość całego układu rozrządu. W nowoczesnych jednostkach rolę tej kompensacji przejmują hydrauliczne popychacze, które same utrzymują „zerowy” luz roboczy, ale idea pozostaje ta sama – musi być możliwość kompensacji rozszerzalności temperaturowej, żeby zawór zawsze pewnie się domykał i żeby nie wybijać elementów mechanizmu.