Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 01:22
  • Data zakończenia: 17 grudnia 2025 01:37

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Fundamentowe
B. Osłonowe
C. Piwniczne
D. Kominowe
Wybór odpowiedzi dotyczących murów fundamentowych, kominowych czy piwnicznych oparty jest na błędnych założeniach dotyczących zastosowania cegły kratówki klasy 5. Mury fundamentowe muszą przenosić znaczne obciążenia, dlatego wymagają zastosowania materiałów o bardzo dużej wytrzymałości oraz odporności na działanie wilgoci, co w przypadku cegły kratówki nie jest wystarczające. Z tego powodu, do budowy fundamentów preferowane są bloczki betonowe lub cegły pełne, które zapewniają odpowiednie parametry nośności i izolacyjności. Z drugiej strony, kominy wymagają materiałów odpornych na wysoką temperaturę oraz działanie kwasów, co również wyklucza użycie cegły kratówki, która nie spełnia tych norm. Natomiast mury piwniczne muszą być odporne na działanie wilgoci oraz zapewniać właściwą izolację, co często wiąże się z koniecznością zastosowania odpowiednich materiałów hydroizolacyjnych, takich jak beton czy cegła pełna. Wybierając niewłaściwe materiały do konstrukcji budynków, można narazić się na problemy związane z trwałością i bezpieczeństwem obiektu, a także na dodatkowe koszty związane z remontami czy utrzymaniem budynku.

Pytanie 2

W przypadku, gdy nierównomierna praca podłoża prowadzi do rozłączenia ścian konstrukcyjnych, jakie działania można podjąć, aby je ponownie połączyć?

A. wypełnienie środkami bitumicznymi
B. wypełnienie pęknięć zaczynem cementowym
C. zastosowanie ściągów metalowych
D. iniekcję środka wiążącego
Ściągi metalowe to naprawdę świetny sposób na to, żeby naprawić ściany, które się rozdzieliły przez nierówne podłoże. Działają jak mostki między górną a dolną częścią ścian, co fajnie stabilizuje całą konstrukcję. W sytuacjach, gdy budynek osiada na fundamentach, takie ściągi mogą pomóc wzmocnić całość, zwiększając wytrzymałość. Z tego, co widziałem, często używa się stali do ich wykonania, bo jest odporna na różne trudne warunki. W dodatku, według norm budowlanych, jak Eurokod 3, ważne jest, żeby projektować je z myślą o różnych obciążeniach, żeby były skuteczne i bezpieczne. Dobrze dobrane ściągi nie tylko przywracają dawną integralność konstrukcji, ale też pomagają w przyszłości znieść możliwe przemieszczenia. Ich instalacja zazwyczaj nie jest jakoś bardzo inwazyjna, co jest dużym plusem, bo pozwala zachować estetykę budynku.

Pytanie 3

Najdłuższy czas przydatności do użycia, licząc od momentu połączenia składników, posiada zaprawa

A. cementowo-gliniana
B. wapienna
C. wapienno-cementowa
D. cementowa
Zaprawa wapienna charakteryzuje się najdłuższym okresem przydatności do użycia spośród wszystkich wymienionych rodzajów zapraw. W wyniku reakcji wody z wapnem (tlenkiem wapnia) powstaje węglan wapnia, co prowadzi do procesu twardnienia zaprawy. Ten proces nie jest natychmiastowy i może trwać wiele miesięcy, co sprawia, że zaprawa wapienna może być przechowywana przez dłuższy czas po zmieszaniu składników. Dodatkowo, zaprawy wapienne są znane z wysokiej przepuszczalności pary wodnej, co jest kluczowe w budownictwie, zwłaszcza w obiektach zabytkowych, gdzie ważne jest zachowanie odpowiedniego mikroklimatu. Z tego powodu są one często stosowane do renowacji starych murów, gdzie ich właściwości umożliwiają 'oddychanie' ścian. W praktyce, zastosowanie zaprawy wapiennej w budownictwie odpowiada standardom określonym w normach, takich jak PN-EN 459-1, które definiują wymagania dla wapna budowlanego.

Pytanie 4

Wyznacz wydatki na beton towarowy potrzebny do uformowania warstwy nadbetonu o grubości 15 cm dla stropu Filigran o wymiarach 8 m × 5 m, jeśli cena 1 m3 betonu wynosi 280,00 zł?

A. 1 680,00 zł
B. 33 600,00 zł
C. 11 200,00 zł
D. 168 000,00 zł
Prawidłowa odpowiedź na to pytanie to 1 680,00 zł. Aby obliczyć koszt betonu towarowego na warstwę nadbetonu, należy najpierw obliczyć objętość betonu wymaganej do wykonania nakładki o grubości 15 cm na stropie o wymiarach 8 m x 5 m. Obliczamy objętość według wzoru: V = długość × szerokość × wysokość. W naszym przypadku wygląda to następująco: V = 8 m × 5 m × 0,15 m = 6 m³. Następnie, znając cenę za 1 m³ betonu, która wynosi 280,00 zł, możemy obliczyć całkowity koszt: 6 m³ × 280,00 zł = 1 680,00 zł. Takie obliczenia są kluczowe w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów materiałów oraz efektywne planowanie budżetu. Warto również pamiętać o standardach jakości betonu oraz o konieczności uwzględniania strat podczas transportu i pomieszczenia, co może wpłynąć na ostateczną ilość betonu zamówionego.

Pytanie 5

Izolację poziomą w budynku bez piwnicy powinno się wykonać

A. na górnej powierzchni fundamentu i na poziomie terenu
B. pod fundamentem i na górnej powierzchni ściany fundamentowej
C. pod fundamentem i na poziomie podłogi na gruncie
D. na górnej powierzchni fundamentu i na górnej powierzchni ściany fundamentowej
Wykonanie lekkiej izolacji poziomej budynku niepodpiwniczonego na górnej powierzchni ławy oraz na górnej powierzchni ściany fundamentowej jest kluczowym elementem ochrony budynku przed wilgocią i wodami gruntowymi. Izolacja ta ma za zadanie zapewnić barierę przed przenikaniem wody oraz ograniczyć ryzyko powstawania pleśni i grzybów w konstrukcji budowlanej. W praktyce, stosowanie materiałów hydroizolacyjnych, takich jak membrany bitumiczne lub folie PVC, na poziomie ławy fundamentowej oraz ścian fundamentowych jest zgodne z normami budowlanymi i zaleceniami branżowymi. Tego rodzaju izolacja powinna być również odpowiednio zgrzewana lub klejona, aby zapewnić jej szczelność. Należy pamiętać, że skuteczność izolacji poziomej ma bezpośredni wpływ na trwałość budynku oraz jego komfort użytkowania. Dodatkowo, przy projektowaniu izolacji warto uwzględnić lokalne warunki gruntowe oraz poziom wód gruntowych, co pozwoli na optymalizację rozwiązań budowlanych.

Pytanie 6

Jaką powierzchnię tynku mozaikowego nałożono na cokole o wysokości 50 cm wokół budynku o wymiarach w rzucie 15 x 10 m?

A. 75 m2
B. 95 m2
C. 45 m2
D. 25 m2
Odpowiedź 25 m2 jest poprawna, ponieważ aby obliczyć powierzchnię tynku mozaikowego wokół budynku, należy najpierw wyznaczyć obwód budynku oraz pomnożyć go przez wysokość cokołu. Budynek ma wymiary 15 m na 10 m, co oznacza, że jego obwód wynosi: 2 * (15 m + 10 m) = 2 * 25 m = 50 m. Następnie, mnożąc obwód 50 m przez wysokość cokołu 0,5 m, otrzymujemy powierzchnię: 50 m * 0,5 m = 25 m2. Ta wiedza jest szczególnie ważna w budownictwie, gdzie precyzyjne obliczenia są niezbędne do prawidłowego wykonania prac tynkarskich. W praktyce, zrozumienie tych obliczeń pozwala na efektywne planowanie materiałów oraz kosztów, a także na zgodność z normami budowlanymi. Warto również pamiętać, że tynk mozaikowy jest stosowany nie tylko ze względów estetycznych, ale również funkcjonalnych, na przykład w celu ochrony przed warunkami atmosferycznymi.

Pytanie 7

Na podstawie receptury oblicz, ile piasku potrzeba do sporządzenia jednego zarobu mieszanki betonowej w betoniarce o pojemności roboczej 200 litrów.

Receptura na 1 m³ mieszanki betonowej
Beton - klasa C12/15
cement CEM I 32,570 kg
piasek 0-2 mm780 kg
żwir 2-16 mm1380 kg
woda165 l
A. 3900 kg
B. 1560 kg
C. 156 kg
D. 390 kg
Wybór nieprawidłowej odpowiedzi może być wynikiem kilku typowych błędów w obliczeniach związanych z przygotowaniem mieszanki betonowej. Często występujące nieporozumienia dotyczą przeliczeń jednostek oraz proporcji składników. Na przykład, odpowiadając 390 kg, można myśleć, że zwiększona ilość piasku poprawi jakość betonu. Jednak nadmiar piasku może negatywnie wpłynąć na stosunek cementu do wody, co może prowadzić do osłabienia struktury betonu. Inna z niepoprawnych odpowiedzi, 1560 kg, może wynikać z błędnego przeliczenia objętości lub mylnego założenia, że potrzebna ilość piasku powinna być proporcjonalnie większa do objętości. Ostatecznie, odpowiedź 3900 kg jest całkowicie nieuzasadniona, ponieważ wskazuje na niepoprawne zrozumienie podstawowych zasad mieszania składników. W praktyce budowlanej kluczowe jest zachowanie właściwych proporcji dla uzyskania mieszanki o optymalnych parametrach wytrzymałościowych. Dlatego tak ważne jest, aby kierować się standardami branżowymi oraz dokładnymi recepturami, co pozwala uniknąć błędów, które mogą prowadzić do poważnych problemów w przyszłości.

Pytanie 8

Jakie narzędzia są niezbędne do wykonania tynku wypalanego?

A. Kielnia tynkarska, łata murarska, młotek murarski
B. Kielnia tynkarska, packa obłożona filcem, poziomnica
C. Paca stalowa, kielnia tynkarska, młotek gumowy
D. Paca stalowa, kielnia tynkarska, łata murarska
Prawidłowy zestaw narzędzi do wykonania tynku wypalanego to paca stalowa, kielnia tynkarska oraz łata murarska. Paca stalowa jest kluczowym narzędziem do wygładzania i formowania powierzchni tynkarskiej, co pozwala osiągnąć odpowiednią gładkość i estetykę. Kielnia tynkarska służy do nakładania tynku na powierzchnię, a także do precyzyjnego formowania krawędzi i dotykowych detali. Łata murarska, z kolei, umożliwia wyrównanie tynku na dużych powierzchniach, co jest niezbędne dla uzyskania jednolitej grubości i gładkości. Przy stosowaniu tynku wypalanego, ważne jest, aby narzędzia były wykonane z materiałów odpornych na wysoką temperaturę oraz chemikalia, co gwarantuje długotrwałość i skuteczność podczas pracy. W praktyce, dobór tych narzędzi zgodnie z branżowymi standardami jest kluczowy dla uzyskania trwałego i estetycznego wykończenia, spełniającego normy budowlane.

Pytanie 9

Tynki szlachetne obejmują tynki

A. zmywane
B. wodoszczelne
C. pocienione
D. ciepłochronne
W kwestii tynków szlachetnych, odpowiedzi, które nie są zmywane, nie spełniają wymagań co do estetyki i funkcjonalności, które dziś są ważne. Tynki wodoszczelne, mimo że chronią przed wilgocią, nie pasują do kategorii tynków szlachetnych, bo ich główną rolą jest ochrona przed wodą, a nie ładny wygląd. Zazwyczaj używa się ich w miejscach, gdzie woda jest problemem, ale nie dają one efektownego wykończenia, które byśmy oczekiwali po tynkach szlachetnych. Z tynkami pocienionymi jest trochę zamieszania, bo można je pomylić z tynkami dekoracyjnymi, ale ich cienka warstwa ma swoje minusy, bo często nie wytrzymuje jakichś uszkodzeń. Ciepłochronne tynki, mimo że dobrze izolują, też nie wpasowują się w kategorię estetyki. Zwykle są stosowane w ociepleniu budynków, przez co nie są uważane za tynki szlachetne. Tak naprawdę, w tynkach szlachetnych ważne jest, żeby zrozumieć, że niektóre materiały, mimo że mają swoje plusy, nie spełniają estetycznych i użytkowych standardów, co może prowadzić do błędnych wniosków na ich temat.

Pytanie 10

Która z wymienionych metod łączenia dodatków podczas wytwarzania zaprawy cementowej jest błędna?

A. Dodatki suche i rozpuszczalne w wodzie powinny być stosowane w formie roztworów
B. Ciecze należy rozpuścić w wodzie przed dodaniem do składników sypkich
C. Dodatki sypkie i nierozpuszczalne w wodzie trzeba wymieszać na sucho z cementem przed dodaniem do piasku
D. Ciekłe należy połączyć z cementem przed wymieszaniem z piaskiem
Odpowiedź, że cieczy należy zmieszać z cementem przed zmieszaniem z piaskiem, jest poprawna, ponieważ ta metoda zapewnia lepsze rozprowadzenie dodatków w mieszance. Gdy ciecz, która może zawierać różne dodatki chemiczne, zostaje dodana bezpośrednio do cementu, umożliwia to równomierne rozprowadzenie substancji aktywnych w całej masie cementowej. Ta praktyka jest zgodna z normami branżowymi, które podkreślają znaczenie równomiernego wprowadzenia dodatków w celu uzyskania optymalnych właściwości zaprawy. Na przykład, w przypadku stosowania domieszek poprawiających urabialność, ich wcześniejsze wymieszanie z cementem może znacząco zwiększyć efektywność ich działania. Dobre praktyki budowlane sugerują także, aby przed dodaniem sypkich składników upewnić się, że ciecz jest odpowiednio genialnie dopasowana do wymagań mieszanki, co z kolei przyczynia się do uzyskania lepszej konsystencji i wytrzymałości końcowego produktu.

Pytanie 11

Wykorzystanie deskowania pełnego jest kluczowe przy realizacji stropu?

A. Akermana
B. Teriva
C. DZ-3
D. Fert
Zastosowanie deskowania pełnego w systemie Akermana jest kluczowe, gdyż zapewnia stabilność i odpowiednią jakość wykonywanego stropu. W systemie Akermana, który jest nowoczesnym rozwiązaniem w budownictwie, deskowanie pełne wykorzystuje się do uzyskania gładkiej powierzchni oraz zminimalizowania ryzyka związanych z kruszeniem się betonu. Pełne deskowanie pozwala na równomierne rozłożenie obciążeń i zapewnia odpowiednią formę podczas wiązania betonu, co jest istotne dla utrzymania wytrzymałości konstrukcji. Praktyczne zastosowanie deskowania pełnego w systemie Akermana można zaobserwować na przykład w budowie dużych obiektów przemysłowych, gdzie wymagana jest wysoka jakość stropów, a także w budynkach mieszkalnych, gdzie estetyka i funkcjonalność stropów mają kluczowe znaczenie. Warto również zauważyć, że w przypadku systemu Akermana, zastosowanie deskowania pełnego pozwala na efektywne prowadzenie prac budowlanych, co jest zgodne z najlepszymi praktykami w branży budowlanej i jest zgodne z normami budowlanymi, które nakładają obowiązek zachowania odpowiednich standardów jakościowych.

Pytanie 12

Jakie właściwości wełny mineralnej mają wpływ na jej użycie jako materiału izolacyjnego termicznie?

A. Wysoki współczynnik przewodzenia ciepła oraz paroprzepuszczalność
B. Wysoki współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
C. Niski współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
D. Niski współczynnik przewodzenia ciepła oraz paroprzepuszczalność
Wełna mineralna jest materiałem o niskim współczynniku przewodności cieplnej, co oznacza, że skutecznie izoluje termicznie, minimalizując straty ciepła w budynkach. Niska przewodność cieplna sprawia, że jest to jeden z najbardziej efektywnych materiałów izolacyjnych, co przekłada się na oszczędności energii w eksploatacji obiektów. Dodatkowo, paroprzepuszczalność wełny mineralnej pozwala na regulację wilgotności wewnętrznej pomieszczeń, co jest kluczowe dla utrzymania zdrowego mikroklimatu. Przykładowo, zastosowanie wełny mineralnej w dachach i ścianach budynków mieszkalnych oraz przemysłowych zapewnia nie tylko efektywność energetyczną, ale także ochronę przed kondensacją wilgoci. W zgodzie z normami budowlanymi, takimi jak PN-EN 13162, wełna mineralna spełnia wymagania dotyczące izolacyjności cieplnej i akustycznej, co czyni ją często wybieranym materiałem w budownictwie ekologicznym i energooszczędnym.

Pytanie 13

Jaką ilość zaprawy tynkarskiej trzeba przygotować do nałożenia tynku o grubości 15 mm na powierzchni 20 m2, wiedząc, że norma zużycia wynosi 5 kg/m2?

A. 30 kg
B. 50 kg
C. 15 kg
D. 100 kg
Aby obliczyć ilość zaprawy tynkarskiej potrzebnej do wykonania tynku o grubości 15 mm na powierzchni 20 m2, należy zastosować normę zużycia, która wynosi 5 kg/m2. Obliczenia można przeprowadzić w następujący sposób: mnożymy powierzchnię 20 m2 przez normę zużycia 5 kg/m2. To daje nam 20 m2 * 5 kg/m2 = 100 kg. W praktyce, znajomość norm zużycia jest kluczowa dla wykonawców, gdyż pozwala na precyzyjne zaplanowanie ilości materiałów, co minimalizuje ryzyko niedoborów lub nadmiaru materiałów na placu budowy. Dobrze jest także uwzględnić ewentualne straty materiałowe, które mogą wystąpić podczas nakładania zaprawy. Z tego powodu, w standardach budowlanych zaleca się uwzględnienie dodatkowego zapasu materiału, co może być przydatne w przypadku nieprzewidzianych okoliczności. Warto również pamiętać, że grubość tynku wpływa na ogólną estetykę i funkcjonalność wykończenia, dlatego ważne jest, aby stosować się do wskazanych norm.

Pytanie 14

Oblicz całkowity koszt robocizny należny za ręczne wykonanie tynku zwykłego kategorii II na stropie garażu, którego wymiary w rzucie wynoszą 5,0 x 4,2 m, a stawka godzinowa tynkarza i robotnika wynosi łącznie 15,00 zł za 1 r-g.

Ilustracja do pytania
A. 133,16 zł
B. 199,74 zł
C. 292,95 zł
D. 951,15 zł
Poprawna odpowiedź wynika z dokładnego obliczenia kosztów robocizny związanej z ręcznym tynkowaniem stropu garażu. Na początku obliczamy powierzchnię stropu, która w tym przypadku wynosi 5,0 m x 4,2 m, co daje 21 m². Następnie, korzystając z tabeli nakładów pracy na 100 m² dla tynku zwykłego kategorii II, możemy określić, ile roboczogodzin potrzebujemy na wykonanie tej pracy. Jeśli załóżmy, że na 100 m² przypada określona liczba roboczogodzin, to dla 1 m² będzie to znacznie mniej. Po przeliczeniu na 21 m² uzyskujemy całkowity nakład pracy, który następnie mnożymy przez stawkę godzinową wynoszącą 15,00 zł. Ostatecznie, po dokonaniu obliczeń, uzyskujemy wynik 199,74 zł. Warto zauważyć, że dokładność tych obliczeń jest kluczowa w praktyce budowlanej, gdyż pozwala na precyzyjne planowanie budżetu oraz efektywne zarządzanie zasobami w trakcie realizacji prac budowlanych.

Pytanie 15

Na ilustracji przedstawiono fragment lica muru wykonanego w wiązaniu

Ilustracja do pytania
A. słowiańskim.
B. polskim.
C. weneckim.
D. holenderskim.
No to odpowiedź 'polskim' jest rzeczywiście trafiona. To wiązanie ceglne, które widzisz na obrazku, ma taki ciekawy układ cegieł, gdzie każda warstwa jest przesunięta o pół cegły w stosunku do poprzedniej. To nie tylko fajnie wygląda, ale też sprawia, że mur jest bardziej stabilny i wytrzymały. Wiązanie polskie jest popularne w tradycyjnej architekturze w Polsce, zwłaszcza w zabytkowych budynkach. Możesz je zauważyć w zamkach, kościołach czy starych kamienicach z czasów renesansu i baroku. Fajnie jest znać różne rodzaje wiązań ceglanych, szczególnie jeśli planujesz być architektem albo budowlańcem. Wiedza o tym, jakie techniki stosować, jest ważna – przemyśl, co będzie pasować do stylu budynku i jakie ma być wrażenie wizualne. No i warto też znać lokalne tradycje budowlane, bo to pomaga zachować nasze dziedzictwo kulturowe.

Pytanie 16

Rozbiórkę ręczną stropu ceglanego wspieranego na belkach stalowych należy zacząć od

A. demontażu wierzchniej warstwy stropu, czyli podłogi
B. usunąć wypełnienie stropu
C. przycięcia belek wzdłuż ścian
D. usunięcia tynku z powierzchni stropu, czyli sufitu
Rozpoczęcie ręcznej rozbiórki stropu ceglanego od wycięcia belek przy ścianach jest podejściem niebezpiecznym i niezgodnym z zasadami dobrej praktyki budowlanej. Tego rodzaju działanie może prowadzić do destabilizacji konstrukcji, co stwarza poważne ryzyko zawalenia się stropu. Belek nie powinno się wycinać przed dokładnym zbadaniem i przygotowaniem całej konstrukcji, ponieważ belek stalowych nie można traktować jako elementów, które można usuwać w pierwszej kolejności w procesie demontażu. Ponadto, rozebranie wierzchu stropu przed usunięciem tynku prowadzi do wielu komplikacji, w tym do niekontrolowanego opadania luźnych materiałów i zwiększonego ryzyka dla pracowników. Prace demontażowe powinny być prowadzone w odwrotnej kolejności do ich konstrukcji, co oznacza, że najpierw należy zająć się warstwą tynku, następnie ewentualnymi wypełnieniami, a na końcu elementami nośnymi, takimi jak belki. Ignorowanie tej zasady może skutkować nie tylko uszkodzeniem konstrukcji, ale także zwiększeniem kosztów związanych z naprawą ewentualnych szkód. Oprócz tego, skucie wypełnienia stropu przed usunięciem tynku także może prowadzić do sytuacji, w której nie da się skutecznie ocenić stanu belek, co w perspektywie czasowej może przełożyć się na konieczność wykonania kosztownych napraw. Dlatego kluczowe jest przestrzeganie ustalonych procedur oraz norm bezpieczeństwa podczas rozbiórki, aby uniknąć poważnych konsekwencji.

Pytanie 17

Na ilustracji przedstawiono etap badania konsystencji mieszanki betonowej metodą

Ilustracja do pytania
A. opadu stożka.
B. stolika rozpływowego.
C. oznaczania stopnia zagęszczalności.
D. Ve-be.
Odpowiedź "opadu stożka" jest prawidłowa, ponieważ na ilustracji widać typowy sprzęt używany w tej metodzie, czyli stożek Abramsa. Metoda opadu stożka jest szeroko stosowana do oceny konsystencji mieszanki betonowej, umożliwiając określenie, jak dobrze beton zachowuje się po wlaniu do formy. Proces polega na napełnieniu stożka betonem, następnie jego usunięciu, co pozwala na zmierzenie wysokości opadu mieszanki. Zmiana wysokości opadniętego betonu względem wysokości stożka pozwala na uzyskanie wartości miary, która jest kluczowa w kontekście wielu zastosowań budowlanych. Przykładowo, w budownictwie inżynieryjnym, gdzie wymaga się różnych klas konsystencji betonu, metoda opadu stożka staje się nieodzowna, aby zapewnić odpowiednią jakość i trwałość konstrukcji. Według norm PN-EN 12350, przeprowadzenie takiego testu jest elementem standardowej procedury badawczej, gwarantującej, że beton spełnia wymagania dotyczące jego właściwości użytkowych.

Pytanie 18

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Wytrzymałość na ściskanie i nasiąkliwość
B. Proporcje oraz urabialność
C. Wytrzymałość na ściskanie i proporcje
D. Nasiąkliwość oraz urabialność
Stwardniała zaprawa murarska jest kluczowym elementem w budownictwie, a jej cechy techniczne mają istotny wpływ na trwałość oraz stabilność konstrukcji. Wytrzymałość na ściskanie odnosi się do zdolności materiału do wytrzymywania dużych obciążeń bez deformacji czy zniszczenia. W praktyce oznacza to, że zaprawa murarska musi być w stanie utrzymać ciężar elementów budowlanych, na przykład cegieł czy bloczków, co jest fundamentem dla wszelkiego rodzaju budowli. Nasiąkliwość z kolei odnosi się do zdolności zaprawy do absorbowania wody, co jest kluczowe w kontekście ochrony przed wilgocią. Nasiąkliwość wpływa na długoterminową trwałość zaprawy, ponieważ zbyt wysoka nasiąkliwość może prowadzić do powstawania pęknięć i osłabienia struktury. Przykładowo, w normach budowlanych, takich jak PN-EN 998-2, podkreśla się znaczenie wytrzymałości i nasiąkliwości w kontekście oceny zapraw murarskich, co potwierdza ich praktyczne zastosowanie w budownictwie. Również w standardach jakości, takich jak ISO 9001, te cechy są uwzględniane, co pokazuje ich fundamentalne znaczenie w zapewnianiu wysokiej jakości materiałów budowlanych.

Pytanie 19

Jakie materiały budowlane mogą być użyte do tworzenia murowanych ścian fundamentowych?

A. pustaki typu Max
B. cegły silikatowe
C. bloczki z betonu zwykłego
D. bloczki z betonu komórkowego
Bloczki z betonu zwykłego są doskonałym materiałem do wykonywania murowanych ścian fundamentowych. Charakteryzują się one wysoką nośnością oraz odpornością na działanie różnych czynników atmosferycznych i chemicznych, co czyni je idealnym wyborem do konstrukcji nośnych. W praktyce stosowanie bloczków z betonu zwykłego w fundamentach zapewnia trwałość oraz stabilność budynku. Zgodnie z normami budowlanymi, takie materiały powinny spełniać wymagania dotyczące wytrzymałości na ściskanie oraz mrozoodporności, co jest kluczowe w kontekście polskiego klimatu. Dodatkowo, beton zwykły jest dostępny w różnych klasach wytrzymałości, co pozwala na dostosowanie materiału do specyficznych warunków projektowych. Przykładem zastosowania bloczków z betonu zwykłego może być budowa domów jednorodzinnych, gdzie fundamenty muszą przenosić ciężar całej konstrukcji oraz zapewniać odpowiednią izolację od wilgoci. Warto również wspomnieć o ich zastosowaniu w obiektach przemysłowych, gdzie wymagana jest wysoka nośność oraz odporność na obciążenia dynamiczne.

Pytanie 20

Jaki element architektoniczny przedstawiony jest na fotografii?

Ilustracja do pytania
A. Gzyms.
B. Rygiel.
C. Cokół.
D. Pilaster.
Gzyms jest kluczowym elementem architektonicznym, który pełni zarówno funkcje estetyczne, jak i praktyczne. Na zdjęciu widoczny jest poziomy występ, typowy dla gzymsów, które często znajdują się na zewnętrznych krawędziach budynków. Gzymsy mogą być profilowane, co dodaje im charakteru i dekoracyjności. Poza aspektami wizualnymi, gzymsy pełnią funkcję odprowadzania wody deszczowej, co chroni mury przed zawilgoceniem i erozją. W praktyce architektonicznej, zastosowanie gzymsu można zaobserwować w różnych stylach architektonicznych, od klasycyzmu po modernizm. Warto również zauważyć, że gzymsy mogą być wykonane z różnych materiałów, takich jak kamień, beton czy drewno, co pozwala na szeroką gamę zastosowań i estetyki. Współczesne budynki często wykorzystują gzymsy w sposób innowacyjny, łącząc tradycję z nowoczesnym wzornictwem, co jest zgodne z najlepszymi praktykami w projektowaniu architektonicznym.

Pytanie 21

Oczytaj z danych zawartych w tabeli, jaką powierzchnię ściany zewnętrznej budynku należy otynkować?

KOSZTORYS

L
p.
PodstawaOpisjmNakładyKoszt
jedn.
RMS
1KNR 2-02
0103-06
Ściany budynków jednokond.o wys.do 4.5m z
cegieł pełnych lub dziurawek na
zapr.cement.gr.2ceg.
obmiar = 125m²
1*-- R --
robocizna
3.91r-g/m² * 35.00zł/r-g
r-g488.7500136.85017106.25
2*-- M --
cegła budowlana pełna
200.6szt/m² * 0.59zł/szt
szt25075.0000118.35414794.25
3*zaprawa cementowa
0.143m³/m² * 174.64zł/m³
17.875024.9743121.69
4*materiały pomocnicze
1.5% * 17915.94zł
%1.50002.150268.74
Razem koszty bezpośrednie: 35291.00
Ceny jednostkowe
282.32817106.25
136.850
18184.68
145.478

0.000
2KNR 2-02
0903-02
Tynki zewn.zwykłe doborowe kat.IV na ścia-
nach płaskich i pow.poziom.(balkony i loggie)
wyk.mech.
obmiar = 125m²
1*-- R --
robocizna
0.7567r-g/m² * 35.00zł/r-g
r-g94.587526.4853310.56
2*-- M --
zaprawa wapienna M1
0.0028m³/m² * 148.68zł/m³
0.35000.41652.04
3*zaprawa cementowo wapienna M15
0.0217m³/m² * 233.64zł/m³
2.71255.070633.75
4*zaprawa cementowo-wapienna M5
0.0007m³/m² * 318.60zł/m³
0.08750.22327.88
5*materiały pomocnicze
1.5% * 713.67zł
%1.50000.08610.71
6*-- S --
agregat tynkarski 1.1-3 m3/h
0.1225m-g/m² * 40.00zł/m-g
m-g15.31254.900612.50
Razem koszty bezpośrednie: 4647.50
Ceny jednostkowe
37.1803310.56
26.485
724.38
5.795
612.50
4.900
A. 148,68 m2
B. 200,60 m2
C. 35,00 m2
D. 125,00 m2
Odpowiedź 125,00 m2 jest jak najbardziej na miejscu, bo odpowiada realnej powierzchni ściany zewnętrznej, która potrzebuje tynku. Z danych w tabeli wynika, że tynki zewnętrzne są w czwartej kategorii jakości, więc materiały muszą spełniać pewne normy i wymagania techniczne. W praktyce, dobre obliczenie powierzchni do otynkowania ma duże znaczenie, bo to pomaga określić koszty i wybrać odpowiednie materiały budowlane. Nie można też zapominać o lokalnych warunkach pogodowych i izolacji termicznej. Użycie odpowiednich standardów w obliczeniach i dobór właściwych tynków mogą znacząco wpłynąć na odporność i efektywność energetyczną budynku. Dlatego znajomość powierzchni do tynkowania jest kluczowa w każdym projekcie budowlanym.

Pytanie 22

Który z rodzajów tynków dekoracyjnych charakteryzuje się twardą, gładką i lśniącą strukturą, przypominającą polerowany kamień?

A. Sgraffito
B. Sztablatura
C. Sztukateria
D. Stiuk
Stiuk to tynk szlachetny, który charakteryzuje się twardą, gładką i lśniącą powierzchnią, co sprawia, że imituje polerowany kamień. Jest stosowany w architekturze zarówno wewnętrznej, jak i zewnętrznej, często w eleganckich wnętrzach lub jako element dekoracyjny fasad budynków. Proces jego aplikacji wymaga dużej precyzji i doświadczenia, ponieważ polega na nakładaniu wielu warstw specjalnie przygotowanej masy tynkarskiej, która po wyschnięciu jest szlifowana i polerowana. Przykładowo, stiuk często spotyka się w klasycznych pałacach oraz kościołach, gdzie elewacje lub wnętrza mają naśladować drogie materiały kamienne, co podnosi prestiż budowli. Dobrze wykonany stiuk nie tylko nadaje estetyczny wygląd, ale również zapewnia trwałość i odporność na różne czynniki atmosferyczne, co czyni go popularnym wyborem wśród architektów i projektantów.

Pytanie 23

Wzmocnienie budowlanych ław fundamentowych wykonanych z cegły poprzez podmurowanie oraz zwiększenie ich szerokości powinno się przeprowadzać w odcinkach o długości

A. 2,0 m
B. 3,0 m
C. 1,0 m
D. 2,5 m
Wzmocnienie istniejących ław fundamentowych z cegły przez podmurowanie i zwiększenie ich szerokości powinno być przeprowadzane w odcinkach o długości 1,0 m. Takie podejście jest zgodne z zaleceniami zawartymi w normach budowlanych, które wskazują na konieczność stopniowego i kontrolowanego zwiększania fundamentów, aby uniknąć powstawania lokalnych naprężeń. Praktyczne zastosowanie tej metody polega na tym, że podczas podmurowania zbyt długie odcinki mogą prowadzić do nierównomiernego osiadania, co zwiększa ryzyko pęknięć i uszkodzeń konstrukcji. Dodatkowo, wykonując prace w mniejszych segmentach, możliwe jest lepsze monitorowanie postępu robót oraz dostosowanie technik do rzeczywistych warunków budowy. Zastosowanie takich standardów zapewnia również, że proces wzmocnienia będzie bardziej efektywny i zgodny z dobrą praktyką inżynieryjną, co w dłuższym okresie przyczynia się do trwałości i stabilności budowli.

Pytanie 24

Na podstawie danych zawartych w tablicy 0120 z KNR oblicz, ile cegieł dziurawek potrzeba do wykonana 10 m2 ścianki pełnej o grubości 1/2 cegły.

Ilustracja do pytania
A. 287 sztuk.
B. 286 sztuk.
C. 486 sztuk.
D. 481 sztuk.
Tak, zgadza się, prawidłowa odpowiedź to 486 cegieł. To obliczenie bierze się z tablicy 0120 z KNR, gdzie normatywne zużycie cegieł dziurawek na 1 m2 wynosi 48,60 sztuk, jeśli mamy ściankę pełną o grubości 1/2 cegły. Żeby sprawdzić ile cegieł potrzeba na 10 m2, wystarczy pomnożyć 48,60 przez 10. Także 48,60 szt/m2 razy 10 m2 daje 486 sztuk. W budownictwie takie obliczenia są bardzo ważne, bo pomagają zaoszczędzić czas i pieniądze. Zawsze lepiej mieć dokładne dane, bo gdy źle oszacujesz materiał, może się to zakończyć opóźnieniami i dodatkowymi kosztami za dodatkowe cegły. Dlatego ważne jest, żeby znać te normy i przepisy – to zdecydowanie ułatwia pracę w branży budowlanej i pozwala lepiej planować budżet.

Pytanie 25

Jakie narzędzie wykorzystuje się do określenia zewnętrznych krawędzi układanych warstw muru?

A. poziomica murarska
B. sznur murarski
C. pion murarski
D. kątownik murarski
Sznur murarski jest kluczowym narzędziem w budownictwie, szczególnie przy układaniu murów. Umożliwia on wyznaczenie prostoliniowego kierunku oraz poziomu krawędzi muru, co jest niezbędne do zapewnienia stabilności, estetyki i dokładności wykonania. Kiedy murarz naciąga sznur pomiędzy dwoma punktami, tworzy on linię odniesienia, która pozwala na precyzyjne układanie kolejnych cegieł lub bloczków. Dzięki temu można uniknąć ewentualnych błądów związanych z krzywym układaniem materiałów budowlanych. W praktyce, sznur murarski jest często używany w połączeniu z pionem murarskim i poziomicą murarską, aby zapewnić, że nie tylko poziom, ale także pion krawędzi muru jest prawidłowy. Często stosuje się go w budownictwie jednorodzinnym oraz w większych projektach budowlanych, gdzie precyzja wykonania ma kluczowe znaczenie dla późniejszych etapów budowy. Warto znać tę metodę, gdyż jest ona zgodna z najlepszymi praktykami branżowymi, które promują dokładność oraz efektywność pracy.

Pytanie 26

Strzępia zazębione tworzy się, pozostawiając w każdej drugiej warstwie muru puste miejsce o głębokości

A. 2 cegły
B. 1/2 cegły
C. 1 cegła
D. 1/4 cegły
Wybór nieprawidłowej odpowiedzi, jak na przykład 1 cegły, 1/2 cegły czy 2 cegieł, wynika z nieporozumienia dotyczącego zasadności głębokości pustek w strzępiach zazębionych. W przypadku głębokości 1 cegły, mur staje się zbyt słaby, ponieważ zbyt duże szczeliny mogą prowadzić do problemów z integralnością strukturalną. Z kolei 1/2 cegły również jest zbyt dużą głębokością, co może powodować, że mur będzie podatny na deformacje, a tym samym na uszkodzenia pod wpływem obciążeń. Zastosowanie większych pustek prowadzi do niekorzystnych warunków izolacyjnych, co może wpływać na wilgotność i trwałość materiałów budowlanych. Odpowiednia głębokość pustek jest kluczowym czynnikiem projektowym, a wszelkie odstępstwa od norm mogą skutkować poważnymi problemami strukturalnymi. W praktyce, ważne jest, aby murarz był świadomy tego, jak różne głębokości pustek wpływają na całość konstrukcji oraz jakie są zalecenia w dokumentach normatywnych i branżowych. Zrozumienie tych zależności pozwala na lepsze planowanie i realizację projektów, co jest kluczowe w budownictwie. Dlatego też, pozostawienie pustek o głębokości 1/4 cegły jest najlepszą praktyką, która gwarantuje zarówno wytrzymałość, jak i estetykę wykonanej pracy.

Pytanie 27

Jaki element budynku przedstawiony jest na zdjęciu?

Ilustracja do pytania
A. Gzyms.
B. Dylatacja.
C. Nadproże.
D. Cokół.
Cokół jest kluczowym elementem architektonicznym, który pełni zarówno funkcje konstrukcyjne, jak i estetyczne. Na zdjęciu widoczna dolna część ściany zewnętrznej budynku, wykończona innym materiałem, wskazuje na cokół, który oddziela elewację od gruntu. Cokół zazwyczaj wykonuje się z materiałów odpornych na wilgoć, takich jak beton, kamień czy ceramika, co jest istotne dla ochrony budynku przed szkodliwymi wpływami atmosferycznymi i mechanicznymi. W praktyce, cokół nie tylko chroni dolną część budynku, ale także wpływa na jego estetykę, mogąc być zdobiony lub malowany, co pozwala na harmonijne wkomponowanie w całość elewacji. Warto dodać, że w niektórych projektach architektonicznych cokół może być elementem podkreślającym stylistykę budynku, a jego integralność i prawidłowe wykonanie są zgodne z dobrymi praktykami budowlanymi, które wymagają, aby odległość cokołu od gruntu była odpowiednia, co pociąga za sobą mniejsze ryzyko gromadzenia się wilgoci i uszkodzeń.

Pytanie 28

Korzystając z instrukcji producenta, określ liczbę worków gipsu, która będzie potrzebna do uzyskania 180 litrów zaprawy.

Instrukcja producenta
Gips tynkarski ręczny
OPAKOWANIE: worki papierowe 25 kg
DANE TECHNICZNE: proporcje składników 15 l wody na 25 kg gipsu tynkarskiego ręcznego
WYDAJNOŚĆ: na 120 l zaprawy – 100 kg gipsu
ZUŻYCIE: 0,85 kg na 1m2 na każdy 1 mm grubości tynku
A. 5 worków.
B. 4 worki.
C. 8 worków.
D. 6 worków.
Wybór złej liczby worków gipsu, jak 5, 4 czy 8, zazwyczaj bierze się z nieporozumień w przeliczeniach między objętością a wagą. Na przykład, myśląc, że 5 worków wystarczy na 180 litrów, można łatwo się pomylić, bo każdy worek ma ograniczoną ilość zaprawy. 4 worki to też za mało, co pokazuje, że nie rozumiesz, że 180 litrów to więcej materiału. Z kolei 8 worków może wskazywać, że przeciągnąłeś z obliczeniami, co generuje niepotrzebne wydatki. Moim zdaniem, żeby uniknąć takich rzeczy, warto zawsze robić dokładne wyliczenia i korzystać ze standardów dotyczących przechowywania i mieszania gipsu. W budowlance dobrze jest nie tylko używać odpowiednich materiałów, ale także umieć je policzyć, żeby zmniejszyć koszty i ryzyko błędów w projektach. Przed zakupami materiałów zawsze lepiej zrobić porządne obliczenia i sprawdzić instrukcje producenta.

Pytanie 29

Kruszywem wykorzystywanym do produkcji betonów lekkich jest

A. keramzyt
B. tłuczeń
C. grys
D. pospółka
Kruszywem stosowanym do wytwarzania betonów lekkich jest keramzyt, który jest materiałem pochodzenia naturalnego, powstałym w wyniku wypalania gliny w wysokotemperaturowych piecach. Keramzyt charakteryzuje się niską gęstością, co sprawia, że doskonale nadaje się do produkcji lekkich betonów o obniżonej masie, a także dobrej izolacyjności termicznej i akustycznej. Dzięki tym właściwościom, beton keramzytowy jest szeroko stosowany w budownictwie do wykonywania elementów takich jak ściany osłonowe, stropy, a także w konstrukcjach, gdzie obniżona waga ma kluczowe znaczenie, na przykład w budynkach wielokondygnacyjnych. Zastosowanie keramzytu przyczynia się również do oszczędności energii, ponieważ budynki wykonane z tego materiału mają lepsze właściwości izolacyjne, co przekłada się na mniejsze koszty ogrzewania. Zgodnie z normą PN-EN 206-1, beton wykorzystujący keramzyt jako kruszywo może osiągać różne klasy wytrzymałości, co czyni go materiałem uniwersalnym i wszechstronnie zastosowalnym w nowoczesnym budownictwie.

Pytanie 30

Jakie kruszywo wykorzystuje się do produkcji betonów lekkich?

A. Baryt
B. Żwir
C. Pospółkę
D. Keramzyt
Keramzyt jest materiałem, który idealnie nadaje się do produkcji betonów lekkich ze względu na swoje właściwości fizyczne. Jest to kruszywo pochodzenia naturalnego lub syntetycznego, charakteryzujące się niską gęstością i wysoką porowatością, co przekłada się na mniejsze obciążenie konstrukcji. Dzięki zastosowaniu keramzytu w betonie lekkim, możliwe jest uzyskanie właściwości termoizolacyjnych oraz akustycznych, co jest istotne w kontekście nowoczesnego budownictwa. W praktyce, betony lekkie z keramzytem są wykorzystywane w budownictwie mieszkalnym oraz przemysłowym, gdzie istotna jest redukcja masy konstrukcyjnej. Zgodnie z normą PN-EN 206, betony te mogą być stosowane w elementach nośnych oraz nie nośnych, co zapewnia ich wszechstronność w różnorodnych zastosowaniach budowlanych. Warto również zauważyć, że keramzyt jest materiałem ekologicznym, ponieważ jego produkcja często wykorzystuje odpady przemysłowe, co wpisuje się w zasady zrównoważonego rozwoju oraz ochrony środowiska.

Pytanie 31

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
B. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
C. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
D. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
Wskazanie organizacji stanowiska roboczego w robót murarskich jako podziału na prostopadłe pasma może prowadzić do poważnych błędów w praktyce budowlanej. W kontekście wykonywania robót murarskich, pasma prostopadłe do muru mogą ograniczać przestrzeń roboczą i powodować chaos w organizacji pracy. W sytuacji, gdy pasmo robocze jest prostopadłe do muru, wykonawcy mogą napotykać trudności z dostępem do materiałów budowlanych i narzędzi, co prowadzi do nieefektywności i opóźnień w realizacji projektu. Dodatkowo, nieprawidłowe zorganizowanie przestrzeni roboczej zwiększa ryzyko wypadków, ponieważ zatory i przeszkody mogą powodować potknięcia lub upadki. Podobnie, koncepcja czterech pasm, w tym pasma narzędziowego, może być myląca, ponieważ nadmiar podziałów w ograniczonej przestrzeni prowadzi do zamieszania i trudności w lokalizacji potrzebnych zasobów. W praktyce budowlanej ważne jest, aby zorganizować stanowisko pracy w sposób, który sprzyja płynności wykonywania robót, a nie utrudnia je. Kluczem do sukcesu jest więc utrzymanie trzech równoległych pasm, co jest powszechnie uznawane za najlepszą praktykę w branży budowlanej.

Pytanie 32

Do jakich zastosowań należy używać zapraw szamotowych?

A. do mocowania izolacji termicznych w ścianach
B. do łączenia ceramicznych elementów palenisk
C. do realizacji tynków w pomieszczeniach sanitarnych
D. do wykonywania posadzek na gruncie
Zaprawy szamotowe są specjalistycznymi materiałami stosowanymi przede wszystkim w budowie pieców i kominków. Ich głównym zastosowaniem jest łączenie ceramicznych elementów palenisk, co jest kluczowe ze względu na wysokie temperatury, którym są one poddawane. Zaprawy te charakteryzują się doskonałą odpornością na działanie wysokich temperatur oraz na zmiany termiczne, co sprawia, że idealnie nadają się do stosowania w miejscach, gdzie występuje intensywne ciepło. W praktyce, zaprawy szamotowe często stosuje się w piecach kaflowych, gdzie łączą one elementy ceramiczne, zapewniając szczelność oraz trwałość konstrukcji. Dodatkowo, zgodnie z normami budowlanymi, zaprawy te muszą spełniać określone wymogi dotyczące odporności na ogień i trwałości, co czyni je niezastąpionymi w budownictwie kominkowym i piecowym. Warto również pamiętać, że stosując zaprawy szamotowe, należy przestrzegać zasad ich aplikacji, takich jak odpowiednie proporcje składników oraz techniki nakładania, co wpływa na ich efektywność i żywotność.

Pytanie 33

Izolację pionową przeciwwilgociową lekkiego typu na ścianach fundamentowych należy zrealizować

A. z dwóch warstw lepiku asfaltowego
B. z dwóch warstw papy termozgrzewalnej
C. z jednej warstwy emulsji asfaltowej
D. z jednej warstwy folii kubełkowej
Izolacja przeciwwilgociowa na ścianach fundamentowych jest kluczowym elementem, który zapobiega przenikaniu wilgoci do wnętrza budynku. Wybór niewłaściwego materiału lub technologii izolacyjnej prowadzi do poważnych problemów, takich jak zawilgocenie ścian, rozwój pleśni oraz osłabienie struktury budynku. Odpowiedzi sugerujące zastosowanie jednej warstwy emulsji asfaltowej lub folii kubełkowej są nieefektywne z perspektywy długoterminowej ochrony przed wilgocią. Emulsja asfaltowa, choć stosunkowo łatwa w aplikacji, nie oferuje takiej samej trwałości i odporności na działanie wód gruntowych jak lepik asfaltowy, co może prowadzić do jej degradacji z czasem. Z kolei folia kubełkowa, mimo że jest używana w izolacjach, nie pełni funkcji pełnoprawnej izolacji przeciwwilgociowej, a raczej wspomaga odprowadzanie wody opadowej. Jej zastosowanie w kontekście fundamentów może być mylące, ponieważ nie tworzy ona dostatecznej bariery dla wilgoci, co stwarza ryzyko jej przenikania do wnętrza budynku. Również pomysł używania jednej warstwy papy termozgrzewalnej jest błędny, ponieważ wymaga to przynajmniej dwóch warstw, aby zapewnić odpowiedni poziom szczelności. Tego rodzaju błędne założenia mogą wynikać z niepełnego zrozumienia mechanizmów działania izolacji przeciwwilgociowych oraz ich wpływu na trwałość i bezpieczeństwo konstrukcji budowlanej.

Pytanie 34

Na rysunku przedstawiono

Ilustracja do pytania
A. sklepienie odcinkowe.
B. nadproże sklepione łukowo.
C. nadproże sklepione płasko.
D. sklepienie półkoliste.
Nadproże sklepione płasko, które zostało przedstawione na rysunku, to konstrukcja charakteryzująca się poziomą formą, która przenosi obciążenia z górnej części ściany na boki otworu. Jest to popularne rozwiązanie w budownictwie, zwłaszcza przy projektowaniu otworów w murach nośnych, nad oknami czy drzwiami. W konstrukcji nadproża płaskiego zastosowanie znajdują elementy, takie jak cegły, betonowe bloczki czy stalowe belki, które są ułożone w poziomie, tworząc stabilną podstawę. Warto podkreślić, że nadproża te są szczególnie efektywne w budynkach jednorodzinnych oraz w obiektach, gdzie nie są przewidziane duże obciążenia. Zastosowanie tego typu nadproża przyczynia się do zwiększenia wytrzymałości konstrukcji oraz poprawy estetyki budynku. W praktyce budowlanej, projektanci stosują nadproża płaskie zgodnie z zasadami zawartymi w normach budowlanych, co gwarantuje bezpieczeństwo i funkcjonalność obiektu.

Pytanie 35

Jaki rodzaj nadproża łukowego przedstawiono na rysunku?

Ilustracja do pytania
A. Odcinkowy.
B. Koszowy.
C. Ostrołukowy.
D. Półkolisty.
Wybór odpowiedzi, która nie odnosi się do ostrołukowego nadproża, prowadzi do licznych nieporozumień związanych z architekturą i konstrukcją. Nadproże odcinkowe, na przykład, ma kształt fragmentu linii prostej, co sprawia, że jest ono mniej efektywne w rozkładaniu obciążeń. W zastosowaniach, gdzie występują duże siły, takie nadproża mogą być bardziej narażone na uszkodzenia. Półkoliste nadproża, chociaż stosowane w architekturze klasycznej, tworzą kształt półkola, co nie pozwala na takie same możliwości rozkładu obciążeń, jak nadproża ostrołukowe. Ich zastosowanie w nowoczesnych budynkach ogranicza się głównie do dekoracyjnych elementów. Z kolei nadproża koszowe są wydłużonymi łukami, które mają swoje miejsce w architekturze, ale ich struktura jest znacznie bardziej skomplikowana i mniej powszechnie stosowana w standardowych budynkach. Typowe błędy w myśleniu, które prowadzą do wyboru tych odpowiedzi, obejmują niepełne zrozumienie różnic między tymi typami nadproży oraz ich wpływu na stabilność i estetykę konstrukcji. Warto zwrócić uwagę na to, jak różne kształty nadproży wpływają na cały projekt budowlany oraz jakie są ich praktyczne zastosowania w różnych stylach architektonicznych.

Pytanie 36

W trakcie prac remontowych, które obejmują wykonanie otworu dla przełożenia instalacji centralnego ogrzewania w betonie, powinno się wykorzystać

A. wiertarki o niskich obrotach
B. piły tarczowej
C. piły łańcuchowej
D. młota udarowego
Wykorzystanie młota udarowego do wykonania otworu w ścianie betonowej jest najlepszym wyborem w tym przypadku. Młot udarowy łączy w sobie funkcję wiercenia i udaru, co pozwala na skuteczne wnikanie w twarde materiały, takie jak beton. Dzięki zastosowanej technologii, narzędzie to generuje silne uderzenia, które rozbijają beton, co znacząco ułatwia pracę w porównaniu do innych urządzeń. Na przykład, używając młota udarowego, można szybko i efektywnie przebić się przez grube ściany, co jest niezbędne podczas instalacji rur centralnego ogrzewania. W standardach budowlanych oraz w branżowych praktykach remontowych, młot udarowy jest rekomendowany do tego typu zadań, ponieważ zapewnia szybkość oraz precyzję, minimalizując ryzyko uszkodzenia otaczających struktur. Dodatkowo, przy stosowaniu młota udarowego warto pamiętać o odpowiednich środkach ochrony osobistej, takich jak okulary ochronne i nauszniki, ponieważ praca z tym narzędziem generuje znaczny hałas oraz odpryski materiału.

Pytanie 37

Narzędzie przedstawione na rysunku należy zastosować do

Ilustracja do pytania
A. narzucania tynku,
B. wyznaczenia powierzchni tynku.
C. zacierania tynku.
D. wyrównywania tynku,
Wybór odpowiedzi "wyrównywania tynku" jest na miejscu, bo to właśnie łata tynkarska, którą widać na rysunku, jest kluczowym narzędziem używanym do wyrównania powierzchni. Ta łata, najczęściej z drewna albo metalu, pomaga równo rozprowadzić tynk na ścianie, co w efekcie daje ładną, gładką powierzchnię. Wyrównywanie tynku to ważny krok podczas końcowych prac, bo to zapewnia dobrą przyczepność dla farby czy tapety. Jeśli używasz łaty, to dobrze jest robić ruchy wzdłuż i wszerz, żeby równomiernie pozbyć się nadmiaru tynku. W budowlance to się stosuje i jest zgodne z najlepszymi praktykami, bo precyzyjne wyrównanie naprawdę robi różnicę w trwałości i estetyce końcowego efektu.

Pytanie 38

Masa asfaltowa dostępna jest w pojemnikach 10-litrowych w cenie 74,90 zł za pojemnik.
Oblicz koszt zakupu masy asfaltowej niezbędnej do przeprowadzenia dwuwarstwowej hydroizolacji na dwóch ścianach fundamentowych o powierzchni 25,0 m² każda, jeśli zużycie masy w pierwszej warstwie wynosi 0,5 l/m², a w drugiej 0,4 l/m².

A. 149,80 zł
B. 299,60 zł
C. 374,50 zł
D. 224,70 zł
Aby obliczyć całkowity koszt zakupu masy asfaltowej do wykonania dwuwarstwowej hydroizolacji, należy najpierw policzyć, ile masy potrzebujemy na obydwie warstwy. Powierzchnia jednej ściany fundamentowej wynosi 25 m², więc dla dwóch ścian potrzebujemy 50 m². Zużycie masy w pierwszej warstwie wynosi 0,5 l/m², co daje 0,5 l/m² * 50 m² = 25 l na pierwszą warstwę. W drugiej warstwie zużycie wynosi 0,4 l/m², co daje 0,4 l/m² * 50 m² = 20 l na drugą warstwę. Łącznie potrzebujemy 25 l + 20 l = 45 l masy asfaltowej. Masa asfaltowa sprzedawana jest w opakowaniach 10-litrowych, co oznacza, że potrzebujemy 5 opakowań (45 l / 10 l = 4,5, zaokrąglając w górę do 5). Koszt jednego opakowania wynosi 74,90 zł, więc całkowity koszt zakupu to 5 opakowań * 74,90 zł = 374,50 zł. Takie obliczenia są niezwykle istotne w praktyce budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów materiałów, co jest kluczowe dla zachowania budżetu i efektywności projektów budowlanych.

Pytanie 39

Oblicz wydatki związane z zaprawą niezbędną do budowy ścian o powierzchni 50 m2 z ceramicznych pustaków, jeśli cena 1 m3 zaprawy wynosi 146,00 zł, a do stworzenia 1 m2 ściany potrzeba 0,046 m3 zaprawy?

A. 230,00 zł
B. 671,80 zł
C. 730,00 zł
D. 335,80 zł
Aby obliczyć koszt zaprawy potrzebnej do wykonania ścian o powierzchni 50 m², musimy najpierw określić, ile m³ zaprawy jest wymagane na tę powierzchnię. Z danych wynika, że do wykonania 1 m² ściany potrzeba 0,046 m³ zaprawy. Zatem, dla 50 m² zaprawy potrzebujemy: 50 m² * 0,046 m³/m² = 2,3 m³ zaprawy. Koszt 1 m³ zaprawy wynosi 146,00 zł, więc całkowity koszt zaprawy to: 2,3 m³ * 146,00 zł/m³ = 335,80 zł. Taki sposób obliczania kosztów materiałów budowlanych jest powszechnie stosowany w branży budowlanej, gdzie precyzyjne obliczenia pozwalają na efektywne planowanie budżetu oraz minimalizację strat materiałowych. Używanie dokładnych danych dotyczących zużycia materiałów jest kluczowe dla oszacowania całkowitych kosztów projektu, co jest zgodne z najlepszymi praktykami w budownictwie.

Pytanie 40

Rysunek przedstawia mury i ściany

Ilustracja do pytania
A. istniejące.
B. wyburzone.
C. projektowane.
D. przeznaczone do wyburzenia.
Odpowiedź "przeznaczone do wyburzenia" jest prawidłowa, ponieważ na rysunku znajdują się krzyżyki na linii, co zgodnie z normą PN-70/B-01025 "Oznaczenia graficzne na rysunkach architektoniczno-budowlanych" jednoznacznie wskazuje na elementy, które mają być usunięte. Tego typu oznaczenia są kluczowe w procesie projektowania i realizacji budowy, ponieważ pozwalają na odpowiednie planowanie prac budowlanych i zabezpieczenie pozostałych elementów konstrukcyjnych. Zastosowanie takich standardów ułatwia komunikację pomiędzy projektantami, wykonawcami a inwestorami. Przykładowo, podczas prac remontowych w obiektach zabytkowych, precyzyjne oznaczenie elementów do usunięcia jest niezbędne, aby uniknąć uszkodzeń cennych struktur. Umiejętność prawidłowego interpretowania rysunków architektonicznych jest istotna dla każdego profesjonalisty w branży budowlanej, co bezpośrednio wpływa na efektywność całego procesu budowlanego.