Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 10:47
  • Data zakończenia: 8 grudnia 2025 11:03

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. zaśmiecenie komutatora pyłem węglowym
B. zbyt mocny nacisk szczotek na komutator
C. umiejscowienie szczotek poza obszarem neutralnym
D. brak kontaktu szczotek z komutatorem
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."

Pytanie 2

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. wlot powietrza
B. czujnik temperatury
C. klatka wirnika
D. koło pasowe
Wybór czujnika temperatury, klatki wirnika czy koła pasowego jako kluczowych elementów chłodzenia silnika elektrycznego wskazuje na niepełne zrozumienie zasad działania takich urządzeń. Czujnik temperatury, choć istotny dla monitorowania stanu silnika, nie wpływa bezpośrednio na proces chłodzenia. Jego zadaniem jest jedynie dostarczanie informacji o aktualnej temperaturze, co może być przydatne do diagnostyki, ale nie zastąpi aktywnego chłodzenia, które zapewnia wlot powietrza. Klatka wirnika, będąca częścią wirującego elementu silnika, nie ma wpływu na odprowadzanie ciepła, a jej rola koncentruje się na wytwarzaniu momentu obrotowego. Natomiast koło pasowe jest elementem mechanicznym, który przekazuje ruch, ale również nie uczestniczy w procesach chłodzenia. Zastosowanie tych komponentów jako głównych czynników chłodzenia jest zatem błędne i może prowadzić do przegrzewania silnika, co z kolei skraca czas jego eksploatacji. Kluczowym błędem myślowym jest zamiana elementów detekcyjnych i mechanicznych w rolę aktywnego systemu chłodzenia, co nie jest zgodne z zasadami inżynierii elektrycznej. W rzeczywistości, efektywność chłodzenia zawsze powinna być oparta na systemach wentylacji oraz odpowiednim projektowaniu wlotów powietrza, co jest standardem w branży elektrycznej.

Pytanie 3

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 830 Ω
B. 2 000 Ω
C. Około 1 660 Ω
D. 4 000 Ω
Największa dopuszczalna rezystancja uziomu <i>R<sub>A</sub></i> przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego <i>I<sub>N</sub> = 30 mA</i> i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 4

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
B. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
C. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
D. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
Usunięcie usterki w instalacji elektrycznej przez przeciągnięcie uszkodzonych żył za pomocą przewodów jednodrutowych jest niewłaściwym podejściem, które może prowadzić do poważnych problemów. Przewody jednodrutowe mają inne właściwości mechaniczne i elektryczne niż przewody wielodrutowe, co może skutkować niższą elastycznością oraz zwiększoną podatnością na uszkodzenia. Ponadto, takie połączenia są często niezgodne z obowiązującymi normami i przepisami dotyczącymi instalacji elektrycznych, co może narażać użytkownika na niebezpieczeństwo. Przeprowadzenie naprawy bez montażu puszki zwiększa ryzyko wystąpienia zwarć i utrudnia ewentualne przyszłe konserwacje. Połączenie przewodów jedynie za pomocą taśmy izolacyjnej jest również niewłaściwe, ponieważ nie zapewnia stabilności oraz bezpieczeństwa elektrycznego. W kontekście przepisów, jak norma PN-IEC 60364, zaleca się unikanie takich praktyk, które mogą prowadzić do nieodwracalnych uszkodzeń instalacji. Ważne jest, aby pamiętać, że każdy interwencja w instalacji elektrycznej powinna być przeprowadzana zgodnie z zasadami sztuki, co zapewnia bezpieczeństwo oraz trwałość wykonania. Zastosowanie pilotów do przeciągania nowych przewodów bez odpowiedniej inspekcji i naprawy uszkodzeń jest także niebezpieczne, ponieważ może wpłynąć na integralność całego obwodu.

Pytanie 5

Jakie środki ochrony przed porażeniem stosuje się w przypadku dotyku bezpośredniego w urządzeniach pracujących do 1 kV?

A. Izolacja elektryczna obwodu pojedynczego odbiornika.
B. Wykorzystanie izolacji podwójnej lub wzmocnionej.
C. Automatyczne odłączenie zasilania.
D. Usytuowanie części czynnych poza zasięgiem dłoni.
Separacja elektryczna obwodu pojedynczego odbiornika, mimo że jest praktyką stosowaną w niektórych aplikacjach, nie jest wystarczającą metodą ochrony przed dotykiem bezpośrednim. W rzeczywistości, ta technika skupia się na oddzieleniu obwodów, co może zredukować ryzyko zwarcia, ale nie eliminuje go całkowicie w kontekście kontaktu z częściami czynymi. Samoczynne wyłączenie zasilania jest ważnym mechanizmem zabezpieczającym, jednak polega na detekcji awarii, co oznacza, że może nie zadziałać w przypadku natychmiastowego kontaktu z prądem przed jego wyłączeniem. Zastosowanie izolacji podwójnej lub izolacji wzmocnionej z pewnością zwiększa bezpieczeństwo, ale również w tym przypadku nie gwarantuje ono, że użytkownik nie będzie miał dostępu do części czynnych. Kiedy myślimy o zagrożeniach związanych z porażeniem prądem, kluczowe jest zrozumienie, że każda z tych metod ma swoje ograniczenia. Mylne jest zakładanie, że jedna strategia może w pełni zabezpieczyć użytkowników. W kontekście projektowania instalacji elektrycznych, należy zawsze dążyć do zastosowania kombinacji różnych środków ochrony, zapewniając kompleksowe podejście do bezpieczeństwa, co jest zgodne z normami takimi jak PN-EN 61140, które nakładają obowiązek stosowania wielu warstw ochrony dla minimalizacji ryzyka.

Pytanie 6

Która z poniższych czynnościnie jest częścią prób odbiorczych w instalacjach elektrycznych?

A. Weryfikacja ochrony uzupełniającej
B. Weryfikacja kolejności faz
C. Pomiar mocy, którą pobiera obwód odbiorczy
D. Pomiar rezystancji ścian i podłóg
Chociaż pomiar rezystancji podłóg i ścian, sprawdzenie ochrony uzupełniającej oraz kontrola kolejności faz są istotnymi czynnościami w zakresie prób odbiorczych, należy zrozumieć, dlaczego pomiar mocy pobieranej przez obwód odbiorczy nie jest zgodny z tym zakresem. Mierzenie mocy pobieranej przez obwód odbiorczy dotyczy efektywności energetycznej i obciążenia, a nie bezpieczeństwa czy poprawności technicznej instalacji. W kontekście prób odbiorczych, kluczowym celem jest zapewnienie, że instalacja działa zgodnie z normami bezpieczeństwa, co obejmuje weryfikację takich parametrów jak rezystancja izolacji, która jest istotna dla zapobiegania porażeniom elektrycznym. Pomiar mocy jest bardziej związany z eksploatacją i zarządzaniem energią niż z odbiorem instalacji, co może prowadzić do mylnych wniosków. Istotne jest, aby podczas analizy funkcjonowania instalacji elektrycznych nie mylić procesów odbiorczych z monitorowaniem zużycia energii. Niekiedy, zwłaszcza w kontekście modernizacji czy rozbudowy instalacji, mogą występować niedopowiedzenia dotyczące tego, co stanowi właściwy zakres prób odbiorczych. Kluczowe jest zrozumienie, że odbiór koncentruje się na zapewnieniu bezpieczeństwa i zgodności z obowiązującymi normami, a nie na analizie efektywności energetycznej, co może prowadzić do błędnych interpretacji.

Pytanie 7

W tabeli zestawiono wyniki pomiarów rezystancji izolacji różnych instalacji elektrycznych, przeprowadzonych podczas prób odbiorczych. Która z instalacji znajduje się w złym stanie technicznym, wykluczającym jej eksploatację?

InstalacjaRezystancja izolacji, MΩ
A.SELV0,9
B.FELV0,9
C.230 V/400 V1,5
D.400 V/ 690 V1,2
A. C.
B. D.
C. A.
D. B.
Wybór innej odpowiedzi niż B może wynikać z niedostatecznego zrozumienia kryteriów oceny stanu technicznego instalacji elektrycznych. Wiele osób przypuszcza, że wszystkie wartości rezystancji izolacji są akceptowalne, jeśli mieszczą się w pewnym zakresie, co jest błędnym podejściem. Każda instalacja elektryczna ma określone normy, które muszą być przestrzegane, aby zapewnić bezpieczeństwo i niezawodność. W przypadku instalacji elektrycznych, normy takie jak IEC 60364 wyraźnie wskazują, że rezystancja izolacji poniżej 1 MΩ jest niebezpieczna. Przypuszczenie, że wartości takie jak 1 MΩ są jedynie orientacyjne, ignoruje poważne zagrożenia związane z niską rezystancją, takie jak ryzyko pożaru lub porażenia prądem. Odpowiedzi inne niż B mogą również wskazywać na mylne zrozumienie pojęcia rezystancji izolacji, gdzie sądzono, że im wyższa wartość, tym lepiej, ale bez odniesienia do kontekstu użytkowego. Ignorowanie wpływu rezystancji na bezpieczeństwo eksploatacji prowadzi do poważnych konsekwencji, dlatego tak istotne jest stosowanie się do standardów i dobrych praktyk w każdej instalacji elektrycznej. W kontekście praktycznym, brak regularnych pomiarów i konserwacji instalacji, co może być przyczyną niskiej rezystancji, jest kolejnym typowym błędem, który może prowadzić do tragedii. Utrzymanie właściwych wartości rezystancji nie tylko chroni użytkowników, ale również zapewnia długowieczność samej instalacji.

Pytanie 8

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Przed przepięciem i przeciążeniem
B. Wyłącznie przed zwarciem
C. Wyłącznie przed przeciążeniem
D. Przed zwarciem i przeciążeniem
Zrozumienie funkcji wkładek topikowych aM w kontekście zabezpieczeń elektrycznych wymaga znajomości mechanizmów, które je definiują. Odpowiedzi sugerujące, że wkładki aM chronią tylko przed przeciążeniem, są błędne, ponieważ te elementy nie mają zdolności do wykrywania długotrwałych przeciążeń prądowych. W przypadku przeciążenia, wkładki te w ogóle nie reagują, co prowadzi do ich powolnego przegrzewania się, a w konsekwencji może doprowadzić do uszkodzenia instalacji. Ponadto, twierdzenie, że wkładki aM chronią przed przepięciem, jest również mylące. Przepięcia, które są nagłymi wzrostami napięcia, wymagają innych typów zabezpieczeń, takich jak ograniczniki przepięć, które są zaprojektowane do szybkiej reakcji na zmiany napięcia. Właściwe zrozumienie zabezpieczeń elektrycznych polega na znajomości ich specyfikacji i zastosowań, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania instalacji. Często dochodzi do pomylenia funkcji różnych zabezpieczeń, co prowadzi do niewłaściwego ich doboru i tym samym zwiększa ryzyko awarii lub pożaru. Dlatego ważne jest, aby projektując instalacje elektryczne, opierać się na standardach branżowych, które jasno definiują wymagania dla zabezpieczeń, tak aby każda ich funkcja była zrozumiana i stosowana w odpowiednich warunkach.

Pytanie 9

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. symetrii uzwojeń
B. rezystancji uzwojeń stojana
C. prądu upływu
D. rezystancji przewodu ochronnego
Pomiar rezystancji uzwojeń stojana oraz rezystancji przewodu ochronnego nie dostarcza bezpośrednich informacji na temat stanu izolacji względem korpusu silnika. Rezystancja uzwojeń wskazuje na ich ogólny stan, ale nie uwzględnia ewentualnych uszkodzeń izolacji, które mogą występować w postaci przebicia. Tego rodzaju defekty mogą być niewidoczne podczas pomiarów rezystancji, co prowadzi do fałszywego poczucia bezpieczeństwa. Z kolei pomiar rezystancji przewodu ochronnego odnosi się do skuteczności uziemienia, które ma na celu ochronę przed porażeniem prądem elektrycznym, ale nie jest wskaźnikiem stanu izolacji wewnętrznej uzwojeń. Symetria uzwojeń, mimo że jest istotna dla prawidłowego działania silnika, nie ma bezpośredniego związku z izolacją. Problemy z symetrią mogą prowadzić do nierównomiernego rozkładu prądów w uzwojeniach, co z kolei może powodować przegrzewanie silnika, ale nie wykryje uszkodzeń izolacji. W branży elektrotechnicznej kluczowe jest zrozumienie, że różne metody pomiarowe mają swoje unikalne zastosowania i ograniczenia, a ich niewłaściwe stosowanie może prowadzić do niebezpieczeństwa oraz kosztownych napraw. Warto zwracać uwagę na odpowiednie procedury diagnostyczne, aby zapewnić bezpieczeństwo i efektywność działania maszyn elektrycznych.

Pytanie 10

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 5 lat
B. 2 lata
C. 3 lata
D. 4 lata
Wybierając okres krótszy niż 5 lat na przeglądy instalacji elektrycznej, można narazić bezpieczeństwo użytkowników obiektu oraz naruszyć przepisy prawa. Odpowiedzi sugerujące przeglądy co 3, 2 lub 4 lata mogą wynikać z błędnego zrozumienia przepisów dotyczących konserwacji instalacji. W rzeczywistości, krótsze interwały mogą prowadzić do niepotrzebnych kosztów i obciążeń administracyjnych, a jednocześnie niekoniecznie zwiększą poziom bezpieczeństwa. Warto zauważyć, że w przypadku wielu budynków, które są używane sporadycznie lub nie narażone na intensywne użytkowanie, przegląd co 5 lat jest wystarczający i zgodny z wymaganiami norm. Warto również pamiętać, że przegląd instalacji nie jest tylko formalnością, ale powinien obejmować szczegółowe badania techniczne. Użytkownicy mogą mylnie sądzić, że częstsze przeglądy są zawsze lepsze, co nie jest zgodne z zasadą efektywności kosztowej. Zbyt częste kontrole mogą być uciążliwe i generować dodatkowe wydatki, które niekoniecznie przynoszą wymierne korzyści w zakresie bezpieczeństwa. Kluczowe jest zrozumienie, że przeglądy powinny być zgodne z rzeczywistym stanem technicznym instalacji oraz intensywnością jej użytkowania, a nie narzucane bezrefleksyjnie.

Pytanie 11

Jak można podnieść moc bierną indukcyjną oddawaną do sieci przez działającą w elektrowni prądnicę synchroniczną przy niezmiennej mocy czynnej?

A. Zwiększając prąd wzbudzenia
B. Zmniejszając prąd wzbudzenia
C. Zwiększając moment napędowy
D. Zmniejszając moment napędowy
Zmniejszanie prądu wzbudzenia nie tylko nie pozwala na zwiększenie mocy biernej indukcyjnej, ale wręcz przeciwnie, może prowadzić do jej zmniejszenia. Przy niższym prądzie wzbudzenia strumień magnetyczny w wirniku zostaje osłabiony, co w konsekwencji ogranicza zdolność prądnicy do wytwarzania mocy biernej. Taki błąd myślowy wynika z nieporozumienia dotyczącego relacji między prądem wzbudzenia a mocą bierną. Często przyjmuje się, że zmniejszanie prądu wzbudzenia prowadzi do zmniejszenia obciążenia, co jest prawdą w kontekście mocy czynnej, jednak w przypadku mocy biernej działa to w odwrotny sposób. Podobnie, zmniejszanie momentu napędowego nie ma wpływu na zwiększenie mocy biernej, ponieważ moment napędowy jest związany z mocą czynną i obciążeniem maszyny. Zmniejszenie momentu napędowego może prowadzić do obniżenia prędkości obrotowej prądnicy, co może skutkować niewystarczającą produkcją zarówno mocy czynnej, jak i biernej. Zwiększanie momentu napędowego z kolei może być pomocne w innych kontekstach, ale sama w sobie nie dostarczy dodatkowej mocy biernej, jeśli nie zostanie skorelowane z odpowiednią regulacją prądu wzbudzenia. W związku z tym, kluczowe jest zrozumienie, że regulacja wzbudzenia jest decydującym czynnikiem w zarządzaniu mocą bierną w systemach elektroenergetycznych.

Pytanie 12

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 - U2 oraz V1 - V2.
B. przerwę w uzwojeniu U1 - U2.
C. zwarcie międzyzwojowe w uzwojeniu W1 - W2.
D. zwarcie między uzwojeniami U1 - U2 oraz W1 - W2.
Wyniki pomiarów rezystancji izolacji uzwojeń U1 - U2 oraz V1 - V2, które wynoszą 0 Ω, jednoznacznie wskazują na uszkodzenie izolacji tych uzwojeń. Zgodnie z normami branżowymi, rezystancja izolacji powinna być na poziomie minimum 1 MΩ, a wartość zerowa oznacza bezpośrednie zwarcie z obwodem ochronnym (PE). Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem oraz uszkodzenia urządzeń. W praktyce, przed uruchomieniem silników trójfazowych, zawsze należy przeprowadzać pomiary rezystancji izolacji, aby zapewnić ich prawidłowe funkcjonowanie oraz bezpieczeństwo. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić dokładne oględziny oraz ewentualną wymianę uszkodzonego uzwojenia. Regularne monitorowanie tych parametrów jest kluczowe dla minimalizacji ryzyka awarii i zapewnienia długoterminowej niezawodności sprzętu.

Pytanie 13

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. przerwa w obwodzie stojana
B. zwarcie międzyzwojowe w obwodzie wirnika
C. zwarcie międzyzwojowe w obwodzie stojana
D. przerwa w obwodzie wirnika
Zwarcie międzyzwojowe w obwodzie wirnika jest najczęstszą przyczyną nadmiernego iskrzenia na komutatorze silnika szeregowego prądu stałego. Tego typu zwarcia powodują nieprawidłowy przepływ prądu w uzwojeniach wirnika, co skutkuje dużymi prądami roboczymi, a w konsekwencji prowadzi do powstania intensywnych łuków elektrycznych na komutatorze. Iskrzenie to nie tylko obniża efektywność pracy silnika, ale także może prowadzić do szybszego zużycia elementów komutatora oraz wirnika. Przykładowo, w silnikach stosowanych w aplikacjach przemysłowych, takich jak napędy trakcyjne czy maszyny robocze, kluczowe jest monitorowanie stanu uzwojeń, aby zminimalizować ryzyko zwarć. Regularne inspekcje oraz stosowanie systemów diagnostycznych, takich jak termowizja czy analiza drgań, mogą pomóc w wczesnym wykryciu problemów z uzwojeniami, co jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu. Ponadto, zrozumienie efektów zwarć międzyzwojowych jest kluczowe dla inżynierów projektujących układy napędowe, aby mogli tworzyć bardziej niezawodne i trwałe systemy.

Pytanie 14

Podczas inspekcji silnika indukcyjnego klatkowego o mocy 11 kW, który działa bez obciążenia, można usłyszeć głośne stuki dochodzące z wnętrza urządzenia. Jaką przyczynę tej usterki można uznać za najbardziej prawdopodobną?

A. Zużyte łożyska kulkowe na wale silnika
B. Niestabilne przymocowanie silnika do podłoża
C. Zbyt wysoka temperatura urządzenia
D. Zanik napięcia w jednej z faz
Zbyt wysoka temperatura silnika zazwyczaj nie prowadzi do stuków, tylko do przegrzania i uszkodzenia izolacji uzwojeń. To sprawia, że silnik może tracić wydajność. Wpływ temperatury jest ważny, ale objawy z tym związane, jak przeciążenie, są bardziej subtelne i nie zawsze dają o sobie znać przez hałas. Jeżeli w jednej z faz napięcie zanika, to silnik może zacząć działać asymetrycznie i to może powodować drgania, ale to nie jest typowy powód stuków. Takie problemy częściej prowadzą do całkowitego zatrzymania silnika czy niestabilności, a nie do hałasu. Jeśli silnik nie jest stabilnie przymocowany do podłoża, to może to wpływać na jego działanie, ale nie ma to bezpośredniego związku z uderzeniami wewnętrznymi. Takie sytuacje mogą wywoływać wibracje, ale nie generują głośnych dźwięków, jak to ma miejsce przy zużytych łożyskach. W praktyce, szukanie przyczyn hałasu w silnikach wymaga zrozumienia, że wiele czynników może mieć wpływ na ich pracę. Często źle przeprowadzona analiza prowadzi do błędnych wniosków i nieefektywnej naprawy.

Pytanie 15

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zmniejszenie prędkości obrotowej wirnika silnika
B. Nawrót wirnika silnika
C. Zwiększenie prędkości obrotowej wirnika silnika
D. Uszkodzenie wirnika silnika
Analizując inne odpowiedzi, trzeba zauważyć, że zmniejszenie prędkości obrotowej wirnika silnika nie jest możliwe w kontekście zasilania go z wyższej częstotliwości. Gdyby silnik asynchroniczny był zasilany napięciem o częstotliwości 60 Hz, a jego konstrukcja zakładała 50 Hz, prędkość obrotowa wirnika z pewnością by wzrosła, co jest podstawowym zjawiskiem związanym z działaniem silników asynchronicznych. Zatem koncepcja zmniejszenia prędkości obrotowej wirnika jest błędna, ponieważ nie uwzględnia zasady, że prędkość synchroniczna rośnie w proporcji do częstotliwości zasilania. Z kolei stwierdzenie o uszkodzeniu wirnika również może wynikać z błędnego zrozumienia działania silnika. Chociaż zasilanie z wyższej częstotliwości może prowadzić do podwyższenia temperatury silnika z uwagi na zwiększone straty, nie można jednoznacznie stwierdzić, że dojdzie do uszkodzenia wirnika. Silnik może pracować w takich warunkach, ale jego żywotność zostanie skrócona. Wreszcie, nawrót wirnika to termin, który nie ma zastosowania w kontekście zasilania silnika asynchronicznego; wirnik nie „nawraca” w sensie jego prędkości obrotowej, a jedynie może zmienić kierunek obrotów po zmianie faz w zasilaniu. Dlatego istotne jest zrozumienie podstawowych zasad działania silników asynchronicznych i ich odpowiedzi na różne parametry zasilania.

Pytanie 16

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. impedancji pętli zwarcia instalacji
B. maksymalnego spadku częstotliwości w sieci zasilającej
C. maksymalnej współczynnika przepięć
D. mocy zainstalowanych urządzeń elektrycznych w instalacji
Odpowiedzi dotyczące maksymalnego współczynnika przepięć, mocy zainstalowanych urządzeń elektrycznych w instalacji oraz maksymalnego spadku częstotliwości w sieci zasilającej nie są związane z kluczowym zagadnieniem, jakim jest ocena skuteczności ochrony przeciwporażeniowej z wykorzystaniem samoczynnego wyłączenia zasilania. Współczynnik przepięć dotyczy ochrony przed przepięciami, które są zjawiskami związanymi z nagłymi wzrostami napięcia, a nie z bezpieczeństwem ludzi w przypadku uszkodzeń instalacji. Moc zainstalowanych urządzeń jest istotna dla obliczeń obciążenia, ale nie ma bezpośredniego wpływu na skuteczność wyłączania zasilania w przypadku zwarcia. Z kolei spadek częstotliwości w sieci zasilającej odnosi się do parametrów jakości energii elektrycznej, które są bardziej związane z charakterystyką zasilania niż z mechanizmami ochrony przeciwporażeniowej. Te odpowiedzi mogą sugerować, że ochronę przeciwporażeniową należy oceniać jedynie na podstawie wyspecyfikowanych parametrów związanych z instalacją, co jest błędne. Kluczowym aspektem oceny tej ochrony jest bowiem poprawne dobieranie zabezpieczeń na podstawie analizy impedancji pętli zwarcia, co zapewnia szybkie wyłączenie zasilania i minimalizuje ryzyko porażenia prądem. Ignorowanie tego elementu prowadzi do niebezpiecznych sytuacji, w których oszacowane parametry instalacji mogą nie spełniać wymogów bezpieczeństwa.

Pytanie 17

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 4 lata
B. 1 rok
C. 2 lata
D. 3 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 18

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm². W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm²?

A. Zmniejszą się o 100%
B. Zwiększą się o 40%
C. Zwiększą się o 100%
D. Zmniejszą się o 40%
Odpowiedzi, które sugerują zwiększenie strat mocy w przewodzie, nie uwzględniają podstawowych zasad dotyczących oporu elektrycznego oraz jego zależności od przekroju i długości przewodu. Zwiększenie przekroju przewodu skutkuje zmniejszeniem jego oporu, co prowadzi do obniżenia strat mocy. W przypadku odpowiedzi, które mówią o zwiększeniu strat o 40% lub 100%, można zauważyć typowy błąd myślowy polegający na braku zrozumienia związku między oporem a mocą. Niektórzy mogą mylnie zakładać, że większy przekrój przewodu oznacza większe straty, co jest całkowicie odwrotne do rzeczywistości. Rozumienie tego zjawiska jest kluczowe w kontekście projektowania systemów elektroenergetycznych, gdzie niewłaściwy dobór przekroju przewodów prowadzi do wyższych kosztów eksploatacji i potencjalnych zagrożeń. W kontekście praktycznym, w wielu instalacjach, gdzie ważne jest minimalizowanie strat energii, stosowanie przewodów o odpowiednich przekrojach zgodnych z normami jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania. Warto również pamiętać, że przy projektowaniu instalacji elektrycznych zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co z kolei może prowadzić do uszkodzeń izolacji i potencjalnych pożarów.

Pytanie 19

Jaką czynność konserwacyjną silnika prądu stałego można zrealizować podczas jego inspekcji w trakcie działania?

A. Wymiana uszkodzonego amperomierza w obwodzie zasilającym
B. Czyszczenie komutatora
C. Weryfikacja stanu osłon elementów wirujących
D. Weryfikacja stanu szczotkotrzymaczy
Wymiana uszkodzonego amperomierza w obwodzie zasilania, sprawdzenie stanu szczotkotrzymaczy i czyszczenie komutatora to rzeczy, które musimy robić tylko, gdy silnik jest wyłączony. Robiąc to podczas pracy silnika, można się narazić na porażenie prądem albo uszkodzenie innych elementów. Amperomierz monitoruje prąd w obwodzie, a jego zmiana w trakcie działania silnika mogłaby spowodować naprawdę niebezpieczne sytuacje, jak zwarcia czy zniszczenie obwodów. Szczotkotrzymacze i komutator są super ważne, jeśli chodzi o działanie silnika – więc ich sprawdzanie i czyszczenie powinno się odbywać, gdy maszyna jest wyłączona, żeby uniknąć uszkodzeń i dobrze przeprowadzić konserwację. Ignorowanie tych zasad nie jest mądre i może prowadzić do poważnych problemów, jak uszkodzenie sprzętu czy nawet kontuzje pracowników. Właściwie, takie podejście do konserwacji jest niezgodne z przepisami i odbiega od tego, co w branży uznaje się za najlepsze praktyki – czyli, że wszystkie prace konserwacyjne muszą być wykonywane w bezpiecznych warunkach.

Pytanie 20

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Brak ciągłości połączeń
B. Pogorszenie się stanu izolacji
C. Pogorszenie się stanu mechanicznego złącz i połączeń
D. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
Podczas analizy defektów instalacji elektrycznej w budynku mieszkalnym, niektóre odpowiedzi mogą wydawać się na pierwszy rzut oka poprawne, ale w rzeczywistości nie odnoszą się bezpośrednio do kwestii, które można zlokalizować podczas oględzin. Na przykład, pogorszenie stanu izolacji, choć istotne z perspektywy bezpieczeństwa, może być trudne do zidentyfikowania jedynie na podstawie wizualnych oględzin. Izolacja może wykazywać uszkodzenia, które nie są widoczne gołym okiem, co wymagałoby zastosowania specjalistycznych narzędzi pomiarowych, takich jak mierniki rezystancji izolacji. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego również nie jest czymś, co można w prosty sposób zlokalizować podczas standardowych oględzin. Wymaga to analizy działania urządzenia pod obciążeniem i oceny czasów reakcji wyłącznika, co przekracza zakres podstawowych oględzin. Brak ciągłości połączeń jest inną kwestią, która wymaga pomiarów technicznych, takich jak testy ciągłości, co również nie jest częścią typowych oględzin. W rzeczywistości, te aspekty wymagają bardziej zaawansowanych metod diagnostycznych, co może prowadzić do mylnych wniosków o ich wykrywalności podczas prostych inspekcji. Dlatego ważne jest, aby zrozumieć, że nie wszystkie problemy instalacji elektrycznej mogą być zidentyfikowane bez odpowiednich narzędzi i metod badawczych, co podkreśla znaczenie zastosowania specjalistycznych norm i procedur w praktyce inżynieryjnej.

Pytanie 21

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Brak jednej z faz zasilania.
B. Wzrost wartości napięcia z sieci zasilającej.
C. Zwiększenie częstotliwości napięcia zasilającego.
D. Przerwa w przewodzie ochronnym w sieci zasilającej.
Wzrost częstotliwości napięcia sieci zasilającej nie jest przyczyną spadku prędkości obrotowej trójfazowego silnika klatkowego. Zwiększenie częstotliwości zasilania prowadzi do wzrostu prędkości obrotowej silnika, zgodnie z zasadą działania silników asynchronicznych, które mają prędkość synchroniczną zależną od częstotliwości zasilania. Z kolei wzrost wartości napięcia zasilającego, chociaż może wpłynąć na moment obrotowy silnika, nie prowadzi bezpośrednio do spadku jego prędkości obrotowej. W rzeczywistości, zbyt wysokie napięcie może spowodować uszkodzenia izolacji i przeciążenia, zwiększając ryzyko awarii. Przerwa w przewodzie ochronnym sieci zasilającej, choć jest poważnym zagrożeniem z punktu widzenia bezpieczeństwa, również nie wpływa na spadek prędkości obrotowej silnika, a raczej naraża użytkownika na niebezpieczeństwo porażenia prądem. W praktyce, takie błędne rozumienie przyczyn problemów związanych z silnikami elektrycznymi może prowadzić do nieodpowiednich działań serwisowych i dalszych uszkodzeń sprzętu. Dlatego istotne jest, aby technicy i inżynierowie potrafili prawidłowo identyfikować objawy i przyczyny awarii, stosując zasady analizy przyczyn źródłowych, aby poprawić niezawodność operacyjną urządzeń elektrycznych.

Pytanie 22

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Trzech
B. Dwóch
C. Czterech
D. Jednego
Wybór większej liczby pracowników, jak czterech, trzech czy dwóch, wskazuje na nieporozumienie dotyczące zasadności liczby osób wymaganych do wykonania prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV. Często przyjmuje się, że większa liczba osób zwiększa bezpieczeństwo, co jest mylnym wnioskiem. Z punktu widzenia norm bezpieczeństwa, takich jak PN-IEC 60364, kluczowe jest, aby osoba wykonująca prace była odpowiednio wykwalifikowana i przeszkolona, a nie koniecznie, aby do wykonania prostych zadań występowało wiele osób. Więcej pracowników może wprowadzać dodatkowe ryzyko, takie jak chaos operacyjny, czy trudności w komunikacji, co może prowadzić do nieefektywności i potencjalnie zwiększać ryzyko wypadków. W praktyce, w wielu sytuacjach, standardowe procedury operacyjne przewidują, że jedna osoba jest wystarczająca do wykonania prób i pomiarów, o ile posiada odpowiednie uprawnienia. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi to nadmierne skupienie na liczbie osób zamiast na ich kwalifikacjach oraz zrozumieniu specyfiki wykonywanych prac. Takie podejście może podważać efektywność działań i prowadzić do niepotrzebnych kosztów związanych z zatrudnieniem większej liczby pracowników.

Pytanie 23

Które z poniższych stwierdzeńnie jest rezultatem przeglądu instalacji elektrycznej?

A. W instalacji nie stwierdzono widocznych uszkodzeń, które mogłyby deteriorować bezpieczeństwo
B. Na podstawie danych dostarczonych przez producenta, oznaczeń oraz certyfikatów, elementy instalacji są zgodne z normami bezpieczeństwa
C. Elementy instalacji zostały odpowiednio dobrane i poprawnie zainstalowane
D. Zachowana jest ciągłość przewodów ochronnych oraz połączeń wyrównawczych
Wnioskowanie na podstawie dostarczonych informacji dotyczących oznakowań, świadectw i oceny wizualnej elementów instalacji elektrycznej wymaga głębszego zrozumienia ich kontekstu i znaczenia. Wskazanie, że elementy instalacji spełniają wymagania bezpieczeństwa, jest niewystarczające bez potwierdzenia ich rzeczywistego stanu i sposobu użytkowania. Po pierwsze, informacje producentów mogą być nieaktualne lub nieprawdziwe w kontekście konkretnej instalacji. Sytuacje, w których elementy instalacji są zainstalowane zgodnie z wymaganiami, nie zawsze zapewniają ich długotrwałą funkcjonalność. W praktyce, nawet jeśli brak widocznych uszkodzeń może sugerować dobry stan techniczny, nie oznacza to automatycznie, że instalacja jest wolna od ukrytych wad. Zdarza się, że uszkodzenia są niewidoczne na pierwszy rzut oka, co może prowadzić do poważnych problemów eksploatacyjnych w przyszłości. Ponadto, każdy element instalacji elektrycznej powinien być regularnie poddawany przeglądom i testom, aby potwierdzić jego integralność. Ważnym aspektem jest także interpretacja wyników pomiarów, które mogą dostarczyć bardziej szczegółowych informacji o ciągłości przewodów ochronnych. Kluczowe jest, aby nie polegać wyłącznie na wnioskach wizualnych i dokumentacyjnych, lecz przeprowadzać systematyczne badania i inspekcje w celu zapewnienia najwyższych standardów bezpieczeństwa, zgodnych z normami takimi jak PN-EN 50110-1, które kładą nacisk na odpowiednie użytkowanie oraz konserwację instalacji elektrycznych.

Pytanie 24

Tabela zawiera zalecane okresy pomiarów eksploatacyjnych urządzeń i instalacji elektrycznych pracujących w różnych warunkach środowiskowych. Jak często należy dokonywać pomiaru wyłącznika RCD oraz rezystancji izolacji instalacji zasilającej piec chlebowy w piekarni?

Rodzaj pomieszczeniaOkres pomiędzy kolejnymi sprawdzeniami
skuteczności ochrony przeciwporażeniowejrezystancji izolacji instalacji
O wyziewach żrącychnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Zagrożone wybuchemnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Otwarta przestrzeńnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Bardzo wilgotne o wilgotności ok. 100% i wilgotne przejściowo od 75% do 100%nie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Gorące o temperaturze powietrza ponad 35 °Cnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Zagrożone pożaremnie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Stwarzające zagrożenie dla ludzi (ZL I, ZL II, ZL III)nie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Zapylonenie rzadziej niż co 5 latnie rzadziej niż co 5 lat
A. Wyłącznik RCD co 1 rok; rezystancja izolacji co 1 rok.
B. Wyłącznik RCD co 5 lat; rezystancja izolacji co 1 rok.
C. Wyłącznik RCD co 1 rok; rezystancja izolacji co 5 lat.
D. Wyłącznik RCD co 5 lat; rezystancja izolacji co 5 lat.
Kontrola wyłącznika RCD to naprawdę ważna sprawa, szczególnie w miejscach, gdzie jest sporo wilgoci, jak w piekarni. Z tego co wiem, powinna być przeprowadzana co roku, bo to może pomóc uniknąć porażenia prądem. RCD ma za zadanie wychwytywać różnice prądów, które mogą wskazywać na problemy z izolacją. A jeśli chodzi o sprawdzanie rezystancji izolacji pieca chlebowego, to przynajmniej co 5 lat to dobry pomysł. Takie coś jest zgodne z normami jak PN-IEC 60364, które mówią, jak często trzeba robić pomiary, żeby było bezpiecznie. W piekarni, gdzie wilgotność osiąga prawie 100%, regularne badania izolacji są niezbędne, żeby unikać kłopotów. To nie tylko spełnia wymagania, ale też chroni pracowników oraz sprzęt przed niebezpieczeństwami związanymi z uszkodzoną izolacją elektryczną.

Pytanie 25

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L1
B. Przewód N
C. Przewód L3
D. Przewód L2
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 26

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. C.
B. D.
C. A.
D. B.
Wybór nieprawidłowych przewodów do instalacji gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S może prowadzić do wielu problemów związanych z bezpieczeństwem oraz niezawodnością systemu. Przy wyborze przewodów należy uwzględnić ich obciążalność, co oznacza, że muszą one być w stanie przewodzić prąd o określonym natężeniu bez ryzyka ich przegrzania. Wiele osób może mylnie uważać, że przewody o mniejszej średnicy będą wystarczające, jednak to prowadzi do poważnych zagrożeń, takich jak pożar instalacji elektrycznej. Na przykład, użycie przewodu o obciążalności mniejszej niż 16A skutkuje ryzykiem, że w przypadku przeciążenia przewód nagrzeje się, co z kolei może prowadzić do jego uszkodzenia oraz uszkodzenia izolacji. Kolejnym błędem jest niedocenienie znaczenia norm, takich jak PN-IEC 60364, które jasno określają zasady dotyczące doboru przewodów według ich zastosowania. Nieprzestrzeganie tych zasad może skutkować nie tylko niewłaściwym działaniem urządzeń, ale także stwarza poważne zagrożenia dla zdrowia i życia użytkowników. Dlatego tak istotne jest, aby każdy projektant i wykonawca instalacji elektrycznych miał pełną świadomość przepisów oraz standardów branżowych, a także wykazywał staranność w doborze komponentów instalacji.

Pytanie 27

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Synchroniczna
B. Prądu stałego
C. Dwufazowa z wirnikiem klatkowym
D. Dwufazowa z wirnikiem kubkowym
Odpowiedzi, które wskazały na tachoprądnice synchroniczne, dwufazowe z wirnikiem klatkowym i z wirnikiem kubkowym są błędne, bo te urządzenia działają na innych zasadach. Tachoprądnice synchroniczne mogą mierzyć prędkość, ale nie rozróżniają kierunku obrotów. Działa to tak, że są zasilane prądem AC i nie mają możliwości uzyskania polaryzacji sygnału wyjściowego. Jeśli chodzi o tachoprądnice dwufazowe z wirnikiem klatkowym, to ich mechanizm pomiarowy bazuje na wirniku kaskadowym i też nie odróżnia kierunków obrotów, bo sygnał wyjściowy dostajemy tylko w kontekście prędkości. Podobnie jest z tachoprądnicami dwufazowymi z wirnikiem kubkowym, bo ich sygnały są symetryczne i nie dają informacji o kierunku obrotów. Zrozumienie, że do pomiaru kierunku obrotów potrzeba specyficznej konstrukcji, jest istotne przy doborze urządzeń do zastosowań przemysłowych. Często myli się funkcje pomiarowe różnych tachoprądnic, co prowadzi do nieporozumień.

Pytanie 28

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Realizowanie pracy w zespole
B. Ogrodzenie terenu, na którym prowadzone są prace
C. Przyłączenie wyłączonej linii do uziemienia
D. Używanie sprzętu izolacyjnego
Wykonywanie prac zespołowo, ogrodzenie miejsca wykonywania pracy oraz uziemienie wyłączonej linii to kluczowe środki ostrożności, które są istotne w kontekście bezpieczeństwa przy pracach przy linii napowietrznej. Pracowanie w zespole pozwala na lepszą koordynację działań oraz szybszą reakcję w sytuacjach awaryjnych, co jest niezbędne w okolicznościach, gdzie ryzyko wypadku jest wyższe. Ogrodzenie miejsca pracy jest podstawowym działaniem w celu zabezpieczenia obszaru, co zapobiega nieautoryzowanemu dostępowi osób trzecich oraz minimalizuje ryzyko przypadkowych incydentów. Uziemienie wyłączonej linii jest fundamentalną praktyką, gdyż pozwala na odprowadzenie wszelkich ładunków elektrycznych, które mogą występować na linii, co znacząco zwiększa bezpieczeństwo pracowników. Ignorowanie tych praktyk może prowadzić do tragicznych konsekwencji, dlatego też każdy pracownik powinien być odpowiednio przeszkolony w zakresie zastosowania tych środków. W branży energetycznej nieprzestrzeganie zasad BHP i standardów, takich jak normy IEC, może skutkować poważnymi wypadkami, dlatego tak istotne jest, aby każdy pracownik był świadomy i przestrzegał ustalonych procedur.

Pytanie 29

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
B. Natychmiastowe wyłączenie zasilania
C. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
D. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 30

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wcześniejszego zweryfikowania efektywności ochrony w instalacji
B. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
C. zasilania ich z gniazd z ochronnym bolcem uziemiającym
D. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
Zasilanie urządzeń elektrycznych klasy 0 z gniazd wyposażonych w ochronny bolec uziemiający jest podejściem błędnym, ponieważ sama obecność bolca nie zapewnia ochrony przed porażeniem, gdyż urządzenia te nie posiadają żadnej formy ochrony izolacyjnej. Klasa 0 oznacza, że urządzenie nie ma dodatkowej izolacji ani zabezpieczeń, co czyni je narażonym na porażenie elektryczne w przypadku uszkodzenia. Zastosowanie nadzoru technicznego ze strony dostawcy energii elektrycznej również nie gwarantuje bezpieczeństwa, ponieważ jest to odpowiedzialność użytkownika, aby zapewnić odpowiednie warunki eksploatacyjne. Ponadto wcześniejsze sprawdzenie skuteczności ochrony w instalacji nie ma zastosowania, jeśli urządzenia nie są zaprojektowane z myślą o ochronie przed porażeniem. Stosunek do wymagań zawartych w polskich normach budowlanych oraz wytycznych dotyczących użytkowania urządzeń elektrycznych jest kluczowy - błędne założenia mogą prowadzić do poważnych wypadków. Dlatego istotne jest, aby przed użyciem urządzeń klasy 0, bardzo dokładnie ocenić ich stan oraz warunki użytkowania, a nie polegać na nieadekwatnych metodach ochrony.

Pytanie 31

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
B. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane o niniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna, ponieważ wynika to z zasady działania transformatorów. W transformatorze jednofazowym, stosunek napięcia do liczby zwojów jest kluczowy dla jego właściwej funkcji. Uzwojenie pierwotne, które jest zasilane napięciem sieciowym (230 V), ma więcej zwojów niż uzwojenie wtórne, co pozwala na uzyskanie niższego napięcia wtórnego (14,6 V). Przykładowo, jeśli przyjmiemy, że uzwojenie wtórne ma 10 zwojów, to uzwojenie pierwotne powinno mieć co najmniej 157 zwojów, aby zachować odpowiedni stosunek napięcia. W praktyce, większa liczba zwojów w uzwojeniu pierwotnym przy jednoczesnym zachowaniu średnicy drutu pozwala na lepsze zarządzanie prądem i ciepłem, co jest kluczowe dla efektywności transformatora oraz jego bezawaryjnego działania. Dodatkowo, stosowanie odpowiednich norm, takich jak IEC 60076, zapewnia zgodność z międzynarodowymi standardami w zakresie projektowania i budowy transformatorów.

Pytanie 32

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zmniejszenie prędkości obrotowej
B. zatrzymanie wirnika
C. zwiększenie prędkości obrotowej
D. zmianę kierunku obrotu
Kierunek wirowania silnika indukcyjnego zależy od fazy zasilania oraz układu połączeń uzwojeń, a sama zmiana liczby par biegunów nie wpływa na tę charakterystykę. Przełączenie cewek w silniku indukcyjnym nie może spowodować zmiany kierunku obrotów, chyba że reinterpretujemy układ połączeń w sposób, który to umożliwia. Niezrozumienie tego aspektu prowadzi do błędnego wniosku, że kierunek obrotów zmienia się w wyniku zwiększenia liczby par biegunów. Z kolei stwierdzenie, że zmiana ta mogłaby spowodować zwiększenie prędkości obrotowej, jest również nieprawidłowe. W rzeczywistości, przy stałej częstotliwości zasilania, im więcej par biegunów, tym mniejsza prędkość obrotowa. W odniesieniu do pojęcia zatrzymania się wirnika, zmiana liczby par biegunów sama w sobie nie prowadzi do zatrzymania, chyba że towarzyszą temu inne czynniki, jak przerwy w zasilaniu czy zbyt duże obciążenie. W praktyce, zrozumienie zasad pracy silników indukcyjnych, w tym zależności między prędkością a liczbą par biegunów, jest kluczowe dla właściwego projektowania i eksploatacji tych urządzeń. Ignorując te zasady, można łatwo wprowadzić się w błąd, co może prowadzić do poważnych konsekwencji w aplikacjach przemysłowych.

Pytanie 33

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Separacja elektryczna
B. Obwody PELV
C. Obwody SELV
D. Izolowanie stanowiska
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 34

Jakie powinno być napięcie pomiarowe przy ocenie rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V, w których brak jest ochrony przed przepięciami?

A. 250 V
B. 1 000 V
C. 750 V
D. 500 V
Wynik 500 V jako wymagane napięcie pomiarowe przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V bez ochrony przeciwprzepięciowej jest zgodny z zaleceniami normy PN-EN 61557-2, która określa metody pomiaru rezystancji izolacji. Użycie napięcia 500 V pozwala na uzyskanie wiarygodnych wyników pomiarów, ponieważ jest wystarczające do wykrycia potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć lub innych awarii. W praktyce, pomiar 500 V jest standardowo stosowany zarówno w budynkach mieszkalnych, jak i przemysłowych, co zapewnia bezpieczeństwo użytkowników oraz niezawodność instalacji. Ważne jest, aby pomiar był przeprowadzany w odpowiednich warunkach, a urządzenia pomiarowe były regularnie kalibrowane. Przykładem zastosowania może być ocena stanu izolacji w trakcie przeglądów okresowych instalacji, co pozwala na wczesne wykrycie problemów, zanim dojdzie do poważnych awarii lub zagrożeń.

Pytanie 35

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
B. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
D. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
Zmniejszenie napięcia zasilającego silnik indukcyjny prowadzi do obniżenia momentu obrotowego, co skutkuje zmniejszeniem przeciążalności silnika. Tego rodzaju silniki są projektowane w taki sposób, aby pracować w określonym zakresie napięcia. Obniżenie napięcia wpływa negatywnie na wydajność silnika, co może prowadzić do błędnego założenia, że przeciążalność wzrośnie. Odpowiedzi, które sugerują zwiększenie przeciążalności silnika, wynikają z nieporozumienia dotyczącego charakterystyki pracy silników indukcyjnych. Zwiększenie prądu pobieranego z sieci nie jest w rezultacie zjawiskiem korzystnym, gdyż może prowadzić do przegrzewania się uzwojeń i uszkodzenia izolacji. Producenci silników podkreślają, że przy spadku napięcia musimy też brać pod uwagę spadek sprawności samego urządzenia. Zmniejszenie napięcia nie tylko wpływa na prąd, ale również na aspekty termiczne silnika, co jest szczególnie istotne w kontekście standardów bezpieczeństwa. W praktyce, przy obciążeń przekraczających nominalne, silnik nie jest w stanie przenieść momentu obrotowego, co prowadzi do ryzyka jego uszkodzenia. W branżach, gdzie wymagane są precyzyjne parametry pracy, takie jak przemysł spożywczy czy chemiczny, zachowanie odpowiednich wartości napięcia zasilania jest kluczowe dla bezpieczeństwa i efektywności procesów produkcyjnych.

Pytanie 36

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 1,2
B. 2,0
C. 1,1
D. 0,9
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 37

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Izolowanie stanowiska
B. Bardzo niskie napięcie PELV
C. Bardzo niskie napięcie SELV
D. Izolacja wzmocniona
Bardzo niskie napięcie PELV, izolacja wzmocniona oraz bardzo niskie napięcie SELV to metody ochrony, które, choć mają swoje zastosowanie, nie są właściwe w kontekście pracy pod nadzorem osób wykwalifikowanych przy uszkodzeniu instalacji elektrycznej. PELV (Protective Extra Low Voltage) to system, który zapewnia bezpieczeństwo dzięki zastosowaniu niskiego napięcia, jednak jego stosowanie nie wyklucza konieczności nadzoru. Izolacja wzmocniona odnosi się do zastosowania materiałów o podwyższonej odporności dielektrycznej, ale nie eliminuje możliwości wystąpienia niebezpiecznych napięć, zwłaszcza w przypadku uszkodzeń. Z kolei SELV (Separated Extra Low Voltage) to system, który zapewnia separację od wysokich napięć, ale jego efektywność polega na odpowiedniej konstrukcji instalacji i nie zastępuje bezpiecznych praktyk, takich jak stały nadzór wykwalifikowanych osób. W kontekście uszkodzenia instalacji, te metody ochrony mogą być niedostateczne, gdyż mogą nie zapewnić wystarczającego bezpieczeństwa w sytuacjach awaryjnych. Typowym błędem myślowym jest założenie, że niskie napięcia eliminują ryzyko, co jest niezgodne z rzeczywistością, szczególnie gdy instalacja wykazuje oznaki uszkodzenia. W takim przypadku kluczowe jest zapewnienie dodatkowych środków ochrony, takich jak izolowanie stanowiska, które pozwala na bezpieczne i profesjonalne podejście do naprawy oraz konserwacji instalacji elektrycznych.

Pytanie 38

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. żarówki
B. lampy rtęciowe
C. lampy sodowe
D. świetlówki
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 39

Zabezpieczenie bezpiecznej pracy grzejnika trójfazowego zapewnia

A. regulacja mocy grzejnej
B. wymuszony obieg powietrza
C. wyprowadzenie punktu neutralnego elementów grzejnych
D. osłona elementów grzejnych
Wymuszony obieg powietrza, regulacja mocy grzejnej oraz wyprowadzenie punktu neutralnego elementów grzejnych to koncepcje, które choć mogą być istotne w kontekście efektywności energetycznej i funkcjonowania grzejnika, nie zapewniają same w sobie wystarczających środków bezpieczeństwa. Wymuszony obieg powietrza poprawia wydajność ogrzewania, ale nie eliminuje ryzyka poparzeń, które stanowi poważne zagrożenie w przypadku braku odpowiednich osłon. Regulacja mocy grzejnej jest ważna dla dostosowania temperatury do potrzeb użytkownika, jednak sama w sobie nie chroni przed niebezpieczeństwem kontaktu z gorącymi elementami. Ponadto, wyprowadzenie punktu neutralnego elementów grzejnych odnosi się bardziej do poprawy działania urządzenia oraz zabezpieczenia przed przeciążeniem, a nie bezpośrednio do bezpieczeństwa użytkowników. W praktyce, wiele osób błędnie zakłada, że poprawne funkcjonowanie grzejnika automatycznie oznacza jego bezpieczeństwo, co prowadzi do zignorowania kluczowych zasad związanych z ochroną przed poparzeniami. Bezpieczna eksploatacja grzejnika trójfazowego wymaga zatem zastosowania osłon, które nie tylko chronią użytkowników, ale również spełniają wymogi norm bezpieczeństwa, co jest podstawą każdej instalacji elektrycznej.

Pytanie 40

Który przewód powinien być zastosowany do połączenia z siecią 230 V transformatora znajdującego się w metalowej obudowie centralki alarmowej?

A. OMY 3×0,75 mm2
B. YTDY 4×0,5 mm2
C. YTDY 2×0,5 mm2
D. OMY 2×0,75 mm2
Odpowiedź OMY 3×0,75 mm2 jest poprawna, ponieważ przewód ten charakteryzuje się odpowiednią konstrukcją i parametrami technicznymi do wykorzystania w instalacjach zasilających urządzenia wymagające podłączenia do sieci 230 V. Przewód OMY jest przewodem w gumie, co zapewnia mu elastyczność i odporność na różne czynniki atmosferyczne oraz mechaniczne, co jest kluczowe w kontekście instalacji w metalowej obudowie centralki alarmowej. Wybór przewodu o przekroju 0,75 mm2 jest uzasadniony dla aplikacji o średnim poborze mocy, co jest typowe w systemach alarmowych. Dodatkowo, OMY 3×0,75 mm2 zawiera trzy żyły, co umożliwia nie tylko zasilanie, ale także podłączenie dodatkowych funkcji, takich jak sygnalizacja. Stosowanie przewodów zgodnych z normami PN-EN 60228 oraz PN-EN 50525 jest zgodne z zaleceniami dobrych praktyk elektrycznych, co zapewnia bezpieczeństwo i niezawodność w eksploatacji.