Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 10 lutego 2026 16:45
  • Data zakończenia: 10 lutego 2026 17:11

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. DC
B. AC
C. X/Y
D. X/T
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 2

Olej hydrauliczny klasy HL to olej

A. o polepszonych parametrach lepkości i temperatury
B. mineralny bez dodatków uszlachetniających
C. mineralny posiadający właściwości antykorozyjne
D. syntetyczny
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.

Pytanie 3

Na podstawie wskazania mikrometru wynik pomiaru wynosi

Ilustracja do pytania
A. 22,14 mm
B. 21,14 mm
C. 22,16 mm
D. 21,64 mm
Odpowiedź 21,64 mm jest prawidłowa, ponieważ wynika z dokładnego odczytu z mikrometru. Mikrometr składa się z dwóch skali: głównej i pomocniczej. W tym przypadku odczyt z głównej skali wynosi 21,5 mm, co oznacza, że wskazanie jest już na poziomie 21 mm. Następnie, aby uzyskać precyzyjny wynik, należy dodać wartość z skali pomocniczej, która wynosi 0,14 mm. Sumując te wartości (21,5 mm + 0,14 mm), uzyskujemy dokładny wynik 21,64 mm. Użycie mikrometru w takich pomiarach jest zgodne z najlepszymi praktykami pomiarowymi w inżynierii, gdzie dokładność i precyzja mają kluczowe znaczenie. Mikrometry są powszechnie stosowane w produkcji oraz kontroli jakości, gdzie wymagana jest wysoka dokładność w pomiarach wymiarowych. Wiedza na temat odczytu mikrometru jest niezbędna w wielu dziedzinach inżynierii, w tym mechanice, elektronice i inżynierii materiałowej, gdzie wymiary elementów muszą być ściśle kontrolowane.

Pytanie 4

Moc wyjściowa zasilacza przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 12 W
B. 120 W
C. 240 W
D. 24 W
Moc wyjściowa zasilacza wynosi 120 W, co można obliczyć przy użyciu wzoru P = U x I, gdzie P to moc, U to napięcie, a I to natężenie prądu. W tym przypadku mamy zasilacz o napięciu wyjściowym 12 V i natężeniu 10 A. Po podstawieniu wartości otrzymujemy P = 12 V x 10 A = 120 W. Zrozumienie tej zależności jest kluczowe w praktyce, szczególnie w kontekście zastosowań elektronicznych, gdzie dobór odpowiedniego zasilacza ma istotne znaczenie dla stabilności pracy urządzeń. W przemyśle elektronicznym stosuje się standardy, takie jak IEC 61000, które regulują kwestie związane z zasilaniem urządzeń. Prawidłowy dobór mocy zasilacza pozwala na uniknięcie uszkodzeń urządzeń oraz zapewnia ich wydajną pracę. Wysokiej jakości zasilacze są niezbędne w projektach, gdzie stabilność zasilania jest kluczowa, na przykład w systemach audio czy komputerowych.

Pytanie 5

Który z podanych elementów przedstawiono na rysunku?

Ilustracja do pytania
A. Pompę hydrauliczną.
B. Silnik pneumatyczny.
C. Silnik hydrauliczny.
D. Sprężarkę powietrza.
Silnik hydrauliczny to urządzenie, które przetwarza energię hydrauliczną na energię mechaniczną, a jego działanie opiera się na zjawisku przepływu cieczy pod ciśnieniem. Na przedstawionym rysunku widoczne są charakterystyczne wejścia zasilające oraz solidna konstrukcja, co jest typowe dla silników hydraulicznych. W branży hydrauliki, silniki te znajdują zastosowanie w różnych maszynach, takich jak koparki, dźwigi czy wózki widłowe, gdzie wymagane jest dostarczenie dużej mocy przy stosunkowo kompaktowych rozmiarach. Dobrą praktyką w projektowaniu systemów hydraulicznych jest wykorzystanie silników hydraulicznych w aplikacjach, które wymagają dużych momentów obrotowych. Warto również zauważyć, że silniki te muszą być odpowiednio dobierane do specyfiki zastosowania, co pozwala na osiągnięcie optymalnej efektywności energetycznej oraz wydajności operacyjnej. Dodatkowo, zrozumienie różnic między silnikiem a pompą hydrauliczną jest kluczowe, ponieważ silniki przekształcają energię, podczas gdy pompy ją generują, co jest istotne w budowie i funkcjonowaniu złożonych systemów hydraulicznych.

Pytanie 6

Którym medium roboczym jest zasilany element o symbolu graficznym przedstawionym na rysunku zastosowany w urządzeniu mechatronicznym?

Ilustracja do pytania
A. Prądem przemiennym.
B. Prądem stałym.
C. Cieczą hydrauliczną.
D. Sprężonym powietrzem.
Odpowiedź "Cieczą hydrauliczną" jest poprawna, ponieważ symbol graficzny przedstawia siłownik hydrauliczny, który jest kluczowym elementem w systemach hydraulicznych. Siłowniki hydrauliczne wykorzystują energię ciśnienia cieczy do wytwarzania ruchu liniowego, co jest niezwykle istotne w aplikacjach wymagających dużej siły, takich jak maszyny budowlane, prasy hydrauliczne czy systemy automatyki przemysłowej. W praktyce, zastosowanie siłowników hydraulicznych pozwala na precyzyjne sterowanie ruchem oraz osiąganie bardzo dużych obciążeń przy stosunkowo niewielkich rozmiarach komponentów. Warto zaznaczyć, że w hydraulice istotne są także standardy dotyczące projektowania i doboru elementów, takie jak normy ISO, które określają wymagania dotyczące wydajności oraz bezpieczeństwa systemów hydraulicznych. Dobrze zaprojektowane układy hydrauliczne są bardziej efektywne i niezawodne, co przekłada się na dłuższy czas eksploatacji urządzeń mechatronicznych.

Pytanie 7

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
B. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
C. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. oblać dłoń wodą utlenioną i nałożyć opatrunek
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 8

Który zawór należy zastosować w układzie pneumatycznym, aby zabezpieczyć obciążony podnośnik przed opadaniem spowodowanym chwilowym spadkiem ciśnienia zasilania?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Zastosowanie zaworu zwrotnego z blokadą w układzie pneumatycznym jest kluczowe dla zapewnienia bezpieczeństwa w przypadku obciążonych podnośników. Zawór ten, jak przedstawiono na zdjęciu, pozwala na swobodny przepływ medium w jednym kierunku, jednocześnie blokując go w przeciwnym kierunku, co zabezpiecza system przed niekontrolowanym opadaniem. W momencie spadku ciśnienia zasilania, mechanizm zaworu automatycznie zamyka dostęp do medium, zapobiegając nagłemu ruchowi podnośnika. Przykładem zastosowania tego rozwiązania może być przemysł motoryzacyjny, gdzie podnośniki hydrauliczne są używane do podnoszenia pojazdów w warsztatach. Stosowanie odpowiednich zaworów zwrotnych z blokadą jest zgodne z normami bezpieczeństwa, takimi jak ISO 4414 oraz EN 983, które podkreślają znaczenie stosowania odpowiednich zabezpieczeń w systemach pneumatycznych. W efekcie, wybór zaworu D jest nie tylko poprawny, ale i zgodny z najlepszymi praktykami w branży.

Pytanie 9

W siłowniku zakwalifikowanym do naprawy z powodu obniżenia się jego sprawności należy w pierwszej kolejności wymienić

Ilustracja do pytania
A. pokrywę tylną.
B. uszczelnienie tłoka.
C. magnes.
D. tłoczysko.
Uszczelnienie tłoka jest kluczowym elementem w układzie siłownika hydraulicznego, którego zadaniem jest zapewnienie szczelności oraz prawidłowego ciśnienia w systemie. W przypadku obniżenia sprawności siłownika, często pierwszym krokiem diagnostycznym jest sprawdzenie stanu uszczelnień. Uszczelnienia tłoka mają na celu zapobieganie wyciekom medium roboczego, które w większości przypadków jest olejem hydraulicznym. Wycieki te mogą prowadzić do znacznego spadku efektywności siłownika, co z kolei może wpływać negatywnie na cały system hydrauliczny, prowadząc do jego awarii. Wymiana uszczelnienia tłoka powinna być przeprowadzana zgodnie z zaleceniami producenta oraz standardami branżowymi, aby zapewnić długotrwałą i niezawodną pracę siłownika. Dodatkowo, regularna konserwacja i kontrola uszczelnień mogą znacznie wydłużyć żywotność siłowników oraz zapobiec poważniejszym awariom, co jest zgodne z najlepszymi praktykami w zakresie utrzymania ruchu.

Pytanie 10

Który materiał o właściwościach podanych w tabeli należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
Materiał 1.2,7040
Materiał 2.2,75320
Materiał 3.7,70320
Materiał 4.8,8535
A. Materiał 3.
B. Materiał 2.
C. Materiał 4.
D. Materiał 1.
Materiał 2 jest najodpowiedniejszym wyborem do konstrukcji lekkiej i odpornej na odkształcenia, co wynika z jego korzystnych właściwości fizycznych. Gęstość materiału wynosząca 2,75 g/cm3 oznacza, że jest on stosunkowo lekki w porównaniu do innych materiałów, co jest kluczowe w projektach wymagających mobilności i łatwego transportu. Wysoka granica plastyczności na poziomie 320 MPa zapewnia, że materiał ten może wytrzymać znaczące obciążenia bez deformacji, co jest niezbędne w kontekście zastosowań mechatronicznych, gdzie precyzja i niezawodność są kluczowe. Przykłady zastosowania Materiału 2 obejmują elementy konstrukcyjne w robotyce, gdzie wymagana jest zarówno lekkość, jak i wytrzymałość, jak również w produkcji różnych komponentów w systemach automatyki. Wybór odpowiednich materiałów jest zgodny z dobrymi praktykami inżynieryjnymi, gdzie zawsze należy dążyć do optymalizacji masy i wytrzymałości, co pozwala na zwiększenie efektywności energetycznej i poprawę wydajności całego systemu.

Pytanie 11

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Proszek
B. Pastę
C. Olej
D. Silikon
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 12

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Nitowane
B. Wpustowe
C. Wciskowe
D. Sworzniowe
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 13

Który z przedstawionych na rysunkach podzespołów urządzenia pneumatycznego zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania sprężonym powietrzem?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź B jest poprawna, ponieważ filtr z regulatorem ciśnienia pełni kluczową rolę w układzie zasilania sprężonym powietrzem. Filtr usuwa zanieczyszczenia, takie jak cząstki stałe, krople wody i oleju, co jest istotne dla zachowania prawidłowego funkcjonowania urządzeń pneumatycznych. Regulacja ciśnienia jest niezbędna, aby uniknąć uszkodzeń systemu spowodowanych nadmiernym ciśnieniem. Przykładem praktycznego zastosowania jest przemysł motoryzacyjny, gdzie sprężone powietrze wykorzystuje się do zasilania narzędzi pneumatycznych. W tym kontekście, filtr z regulatorem ciśnienia zapewnia nie tylko bezpieczeństwo, ale także efektywność operacyjną, redukując ryzyko awarii sprzętu. Normy takie jak ISO 8573-1 definiują wymagania jakości powietrza sprężonego, co potwierdza znaczenie filtracji i regulacji w każdym systemie pneumatycznym. Przestrzeganie dobrych praktyk w zakresie konserwacji tych elementów pozwala na dłuższą żywotność i niezawodność urządzeń.

Pytanie 14

Jaki rodzaj łożyska został przedstawiony na rysunku?

Ilustracja do pytania
A. Walcowe.
B. Stożkowe.
C. Igiełkowe.
D. Baryłkowe.
Wybór odpowiedzi dotyczącej łożysk walcowych, baryłkowych czy igiełkowych jest wynikiem nieporozumienia w kwestii ich konstrukcji oraz zastosowań. Łożyska walcowe, choć również efektywne w przenoszeniu obciążeń promieniowych, nie są w stanie efektywnie przenosić obciążeń osiowych, co ogranicza ich użyteczność w wielu aplikacjach, gdzie wymagana jest taka funkcjonalność. Z kolei łożyska baryłkowe, podobnie jak walcowe, są zaprojektowane do przenoszenia obciążeń radialnych, ale ich konstrukcja i zastosowanie są inne. Zwykle stosowane są w aplikacjach, gdzie przestrzeń jest ograniczona, lecz nie przenoszą obciążeń osiowych z taką wydajnością jak łożyska stożkowe. Łożyska igiełkowe, z drugiej strony, posiadają długie i cienkie elementy toczne, co również czyni je nieodpowiednimi do zastosowań wymagających przenoszenia dużych obciążeń osiowych i promieniowych. Wybierając niewłaściwy typ łożyska, można narazić maszynę na szybkie zużycie lub nawet awarię, co jest sprzeczne z najlepszymi praktykami inżynieryjnymi. Dlatego tak ważne jest zrozumienie różnic między typami łożysk oraz ich właściwych zastosowań, aby uniknąć nieefektywności i problemów w działaniu systemów mechanicznych.

Pytanie 15

Który rodzaj prądów i napięć można zmierzyć miernikiem przedstawionym na rysunku?

Ilustracja do pytania
A. Prąd tylko zmienny, napięcia stałe i zmienne.
B. Prąd tylko zmienny, napięcia tylko zmienne.
C. Prąd stały i zmienny, napięcia stałe i zmienne.
D. Prąd stały i zmienny, napięcia tylko zmienne.
Ten miernik, który widzisz na zdjęciu, to cęgowy miernik prądu. Jest naprawdę praktyczny, bo pozwala na pomiar prądów zmiennych oraz napięć, zarówno stałych, jak i zmiennych. Dzięki zastosowaniu cęgów, możesz zmierzyć natężenie prądu bez stykania się z przewodami, co znacznie poprawia bezpieczeństwo. Z tego, co widzę na oznaczeniach, możesz używać go do pomiaru prądu w trybie AC, co jest super przydatne, zwłaszcza w elektryce, gdzie prąd zmienny to norma. Dodatkowo, jego funkcje pomiaru napięcia, zarówno stałego, jak i zmiennego, sprawiają, że nadaje się do różnych zastosowań, na przykład w diagnostyce urządzeń elektronicznych czy przy pracach instalacyjnych. Pamiętaj tylko, żeby zawsze ustawiać miernik prawidłowo przed pomiarem i trzymać się zasad bezpieczeństwa. Uważam, że ten miernik to must-have dla każdego elektryka i technika zajmującego się instalacjami elektrycznymi.

Pytanie 16

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. dotknięcia odizolowanych części będących pod napięciem
B. dotknięcia elementów urządzenia elektrycznego mających uziemienie
C. pojawu przerwy w obwodzie elektrycznym
D. wystąpienia zwarcia doziemnego
Dotknięcie odizolowanych elementów znajdujących się pod napięciem stanowi poważne zagrożenie dla zdrowia i życia ludzi. Elementy te, jeśli są odizolowane, mogą wydawać się bezpieczne, jednak w momencie, gdy dojdzie do naruszenia izolacji, stają się źródłem niebezpiecznego napięcia elektrycznego. Przykładem może być uszkodzona wtyczka lub przewód, w którym izolacja została przerwana, a przewodnik stał się dostępny. W takich sytuacjach, dotykając odizolowanego elementu, osoba może stać się drogą, przez którą prąd elektryczny przepływa do ziemi, co może prowadzić do porażenia elektrycznego. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61140, urządzenia elektryczne powinny być projektowane z myślą o minimalizowaniu ryzyka kontaktu z elementami pod napięciem. Regularne przeglądy oraz stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowo-prądowe, mogą znacznie zredukować to ryzyko. Odpowiednia edukacja użytkowników i pracowników w zakresie bezpieczeństwa elektrycznego jest kluczowa dla zapobiegania wypadkom.

Pytanie 17

Jakie metody wykorzystuje się do produkcji prętów?

A. wytłaczanie
B. walcowanie
C. tłoczenie
D. odlewanie
Odpowiedzi takie jak odlewanie, wytłaczanie i tłoczenie, choć są powszechnie stosowane w przemyśle metalowym, nie są odpowiednie dla procesu produkcji prętów. Odlewanie polega na wlewaniu ciekłego metalu do form, gdzie stwardnieje w pożądanym kształcie. Ta metoda, choć efektywna dla produkcji części o skomplikowanych kształtach, nie zapewnia wymaganego stopnia jednorodności ani kontrolowanej struktury mikro w prętach, co jest kluczowe dla ich późniejszego zastosowania. Wytłaczanie, z drugiej strony, polega na formowaniu metalu poprzez przepychanie go przez matrycę; chociaż jest to skuteczna technika dla tworzenia długich elementów, pręty wymagają specyficznych wymiarów i właściwości mechanicznych, które lepiej osiągnąć poprzez walcowanie. Tłoczenie, będące procesem kształtowania blachy lub cienkowarstwowych materiałów poprzez użycie nacisku, nie jest także odpowiednie do produkcji prętów, które wymagają szczególnej precyzji w grubości i długości. Zrozumienie różnicy między tymi metodami obróbki jest kluczowe dla wyboru odpowiedniego procesu w zależności od zamierzonych zastosowań prętów. Typowym błędem myślowym jest traktowanie wszystkich metod obróbczych jako równoważnych, bez uwzględnienia ich specyfiki oraz wymagań technicznych danego produktu. Właściwe podejście do wyboru technologii obróbczej ma kluczowe znaczenie dla jakości i wydajności produkcji.

Pytanie 18

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
B. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
C. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
D. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 19

W instalacji pneumatycznej przedstawionej na rysunku przewód główny, do którego podłącza się m.in. kolejne układy sterowania pneumatycznego zainstalowany, jest ze spadkiem 1% w celu

Ilustracja do pytania
A. spowolnienia przepływu.
B. umożliwienia spływu kondensatu.
C. poprawy szczelności.
D. przyspieszenia przepływu.
Spadek przewodu głównego w instalacji pneumatycznej, taki na poziomie 1%, to naprawdę ważna rzecz, jeśli chodzi o sprawne odprowadzanie kondensatu, który powstaje z chłodzenia sprężonego powietrza. Jak wiadomo, para wodna w sprężonym powietrzu skrapla się i potem gromadzi w dolnych częściach przewodu. To może być naprawdę problematyczne, bo może prowadzić do korozji i zanieczyszczenia różnych elementów w systemie pneumatycznym. Dlatego trzeba zadbać o to, żeby kondensat miał gdzie spływać, na przykład do zespołu przygotowania powietrza. To zgodne z dobrymi praktykami, które mówią, że każda instalacja pneumatyczna powinna mieć dobrze zaprojektowane systemy do odprowadzania skroplin. Z tego, co widzę, to pomaga utrzymać system w dobrym stanie i zmniejsza ryzyko awarii. A to przecież jest kluczowe, żeby procesy przemysłowe mogły działać bez zakłóceń. No i nie można zapominać, że regularne kontrole i konserwacja tych systemów są absolutnie niezbędne, żeby wszystko działało jak należy i spełniało normy bezpieczeństwa.

Pytanie 20

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Obtoczyć oraz przeszlifować komutator
B. Znormalizować nacisk szczotek
C. Zamienić łożyska
D. Ustawić szczotki w strefie neutralnej
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 21

Jakie elementy należy zweryfikować podczas kontroli smarownicy w zespole przygotowania powietrza w systemie pneumatycznym?

A. Ciśnienie w systemie
B. Poziom oleju
C. Spust kondensatu
D. Wilgotność powietrza
Poziom oleju w smarownicy jest kluczowym parametrem, który należy kontrolować, aby zapewnić prawidłowe funkcjonowanie systemu pneumatycznego. Olej jest niezbędny do smarowania ruchomych elementów maszyn oraz do redukcji tarcia, co bezpośrednio wpływa na ich żywotność oraz efektywność pracy. Zbyt niski poziom oleju może prowadzić do nadmiernego zużycia komponentów, a w skrajnych przypadkach do ich uszkodzenia. W praktyce, regularne kontrole poziomu oleju powinny być częścią rutynowego przeglądu technicznego instalacji pneumatycznej, zgodnie z zaleceniami producentów urządzeń oraz normami branżowymi, takimi jak ISO 8573. Konsekwentne monitorowanie poziomu oleju oraz jego jakości w smarownicach przyczynia się do zwiększenia niezawodności systemów pneumatycznych, co jest kluczowe w procesach przemysłowych, gdzie ciągłość produkcji jest priorytetem.

Pytanie 22

Którego narzędzia należy użyć do demontażu bezpiecznika z urządzenia, którego fragment przedstawiono na rysunku?

Ilustracja do pytania
A. Odsysacza.
B. Klucza imbusowego.
C. Pęsety.
D. Lutownicy transformatorowej.
Wybór narzędzi do demontażu bezpiecznika jest kluczowy dla zapewnienia prawidłowego i bezpiecznego działania urządzenia elektronicznego. Klucz imbusowy, choć użyteczny w wielu aplikacjach mechanicznych, nie będzie odpowiedni do pracy z małymi komponentami, takimi jak bezpieczniki, ponieważ jego konstrukcja jest dostosowana do odkręcania śrub z łbem sześciokątnym, a nie do manipulacji delikatnymi elementami elektronicznymi. Użycie klucza imbusowego do tego celu mogłoby prowadzić do uszkodzenia płytki drukowanej lub innych komponentów. Odsysacz, który jest narzędziem służącym do usuwania nadmiaru cyny z połączeń lutowniczych, również nie ma zastosowania w procesie demontażu bezpiecznika, ponieważ jego funkcja jest zupełnie inna i nie obejmuje chwycenia lub wyciągania elementów. Lutownica transformatorowa, z kolei, jest instrumentem stosowanym do lutowania oraz rozlutowywania komponentów, co sprawia, że nie jest odpowiednia do prostego wyciągania bezpiecznika. Użycie nieodpowiednich narzędzi prowadzi nie tylko do utraty efektywności, ale także do ryzyka uszkodzenia urządzenia. Zrozumienie funkcji i zastosowań narzędzi w kontekście elektroniki jest istotne dla każdego, kto zajmuje się naprawą lub serwisowaniem sprzętu elektronicznego, a stosowanie właściwych narzędzi jest kluczowe dla osiągnięcia najlepszych rezultatów.

Pytanie 23

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. transoptora.
B. fotodiody.
C. fototyrystora.
D. optotriaka.
Symbol przedstawiony na rysunku rzeczywiście reprezentuje transoptor, który jest kluczowym elementem w wielu zastosowaniach elektronicznych. Transoptor, inaczej zwany optoizolator, jest urządzeniem stosowanym do zapewnienia izolacji galwanicznej pomiędzy dwoma obwodami, co jest istotne w przypadku, gdy sygnały muszą być przesyłane w sposób bezpieczny, a jednocześnie efektywny. Przykładem zastosowania transoptorów są układy sterujące w automatyce przemysłowej, gdzie niebezpieczne napięcia muszą być przekazywane do układów kontrolnych o niższych napięciach. Dzięki zastosowaniu transoptorów, można zminimalizować ryzyko uszkodzenia wrażliwych komponentów elektronicznych. Dodatkowo, transoptory są wykorzystywane w systemach komunikacji optycznej oraz w układach zasilania, gdzie zapewniają separację między różnymi sekcjami obwodów, co jest zgodne z dobrymi praktykami inżynieryjnymi. Warto również zauważyć, że transoptory są szeroko stosowane w układach z mikroprocesorami, gdzie wymagane jest zapewnienie bezpieczeństwa i niezawodności przesyłu sygnałów.

Pytanie 24

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. buty na gumowej podeszwie
B. kask ochronny
C. fartuch ochronny
D. okulary ochronne
Buty na gumowej podeszwie stanowią kluczowy element ochrony w środowisku pracy z urządzeniami pneumatycznymi, które mogą generować drgania. Te drgania mogą przenikać przez podłogę, co w dłuższym czasie może prowadzić do uszkodzenia stóp oraz stawów pracownika. Obuwie o gumowej podeszwie zapewnia lepszą przyczepność i amortyzację, co jest istotne w pracy z maszynami wytwarzającymi drgania. Przykładem zastosowania takiego obuwia może być praca w magazynach, gdzie używa się wózków widłowych – gumowe podeszwy pomagają w stabilności oraz redukują ryzyko poślizgnięcia. Zgodnie z normą PN-EN ISO 20345, obuwie robocze powinno być dostosowane do specyficznych warunków pracy, a wybór odpowiedniego obuwia może znacząco wpłynąć na bezpieczeństwo oraz komfort pracy. Dlatego istotne jest, aby pracownicy byli świadomi znaczenia odpowiedniego obuwia.

Pytanie 25

Jak nazywa się element przedstawiony na rysunku?

Ilustracja do pytania
A. Śruba.
B. Mimośród.
C. Blachowkręt.
D. Konfirmat.
Element przedstawiony na rysunku to konfirmat, który jest kluczowym elementem w branży meblarskiej, szczególnie w kontekście łączenia płyt wiórowych oraz MDF. Konfirmaty są używane w produkcji mebli oraz w konstrukcjach, gdzie wymagana jest wysoka wytrzymałość połączenia. Dzięki swojej budowie, konfirmaty charakteryzują się szeroką główką z gniazdem na klucz imbusowy oraz gwintem na całej długości, co zapewnia stabilne i mocne połączenie. W praktyce, konfirmaty stosuje się do łączenia elementów mebli, takich jak blaty, boki czy tylne ściany szafek, co pozwala na uzyskanie estetycznego i trwałego efektu. Ich stosowanie jest zgodne z dobrymi praktykami branżowymi oraz standardami jakości produkcji mebli. Ponadto, konfirmaty mogą być używane w połączeniu ze specjalnymi kołkami, co dodatkowo zwiększa ich wytrzymałość i odporność na odkształcenia. Wiedza na temat konfirmatów jest istotna dla wszystkich, którzy zajmują się konstrukcją mebli, a ich właściwy dobór i zastosowanie wpływa na jakość końcowego produktu.

Pytanie 26

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. szlifierki narzędziowej
B. frezarki uniwersalnej
C. prasy krawędziowej
D. przecinarki plazmowej
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 27

Zadaniem czujnika kontaktronowego zamontowanego na siłowniku jest sygnalizacja

Ilustracja do pytania
A. miejsca nieszczelności siłownika.
B. przekroczenia wartości ciśnienia roboczego.
C. przekroczenia wartości temperatury cylindra.
D. położenia tłoka siłownika.
Czujnik kontaktronowy zamontowany na siłowniku pełni kluczową rolę w sygnalizacji położenia tłoka, co jest istotne w wielu aplikacjach automatyzacji i mechaniki. Działa na zasadzie reakcji na pole magnetyczne, które generowane jest przez magnes umieszczony na tłoku. Gdy tłok przesuwa się wzdłuż cylindra, magnes zbliża się do kontaktronu, co powoduje zamknięcie lub otwarcie obwodu elektrycznego, sygnalizując tym samym aktualne położenie tłoka. Dzięki zastosowaniu czujników kontaktronowych, operatorzy maszyn mogą zdalnie monitorować położenie tłoka, co zwiększa bezpieczeństwo i efektywność procesów przemysłowych. Przykładem praktycznego zastosowania są systemy automatyki przemysłowej, gdzie precyzyjne pozycjonowanie tłoków jest kluczowe dla synchronizacji ruchu różnych elementów maszyn. Standardy branżowe, takie jak ISO 13849 dotyczące bezpieczeństwa maszyny, podkreślają znaczenie monitorowania położenia elementów roboczych w kontekście bezpieczeństwa operacji, co czyni czujniki kontaktronowe niezbędnym elementem nowoczesnych systemów automatyki.

Pytanie 28

Jakiego rodzaju sprzęgła należy użyć do połączenia dwóch wałów przedstawionych na rysunku?

Ilustracja do pytania
A. Tulejowego.
B. Oldhama.
C. Łubkowego.
D. Kołnierzowego.
Sprzęgło Oldhama jest idealnym rozwiązaniem do połączenia wałów, które mogą być przesunięte względem siebie osiowo, co jest kluczowe w wielu zastosowaniach inżynieryjnych i przemysłowych. Jego konstrukcja pozwala na przenoszenie momentu obrotowego przy jednoczesnym zminimalizowaniu skutków przesunięcia osiowego. W praktyce, sprzęgła Oldhama znajdują zastosowanie w napędach, gdzie wały mogą być ustawione w różnych płaszczyznach, na przykład w robotyce czy automatyce. Ponadto, sprzęgła te charakteryzują się niskim zużyciem, co zwiększa ich trwałość oraz redukuje potrzebę konserwacji. Dobre praktyki inżynieryjne zalecają ich użycie w systemach, gdzie występują wibracje lub cykliczne obciążenia, ponieważ ich konstrukcja umożliwia tłumienie drgań. Przykładowo, w systemach napędowych samochodów elektrycznych czy maszyn CNC, sprzęgła Oldhama są powszechnie stosowane, co potwierdza ich wszechstronność i efektywność w różnych aplikacjach przemysłowych.

Pytanie 29

Której końcówki należy użyć do montażu elementów za pomocą śrub torx?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Końcówka B jest właściwym wyborem do montażu elementów za pomocą śrub Torx ze względu na jej specyficzny kształt, który idealnie pasuje do gwiazdkowego profilu śrub Torx. Śruby te są szeroko stosowane w przemyśle motoryzacyjnym, elektronice oraz w meblarstwie, gdzie zapewniają lepsze trzymanie i odporność na poślizg w porównaniu do tradycyjnych śrub z łbem płaskim czy krzyżowym. Użycie odpowiedniej końcówki jest kluczowe dla uniknięcia uszkodzeń zarówno samej śruby, jak i narzędzia. W praktyce, końcówki Torx oznaczone są literami i numerami, co ułatwia ich rozpoznanie. Warto również zwrócić uwagę na to, że stosowanie nieodpowiednich końcówek może prowadzić do uszkodzenia śruby, co w konsekwencji może wymusić wymianę całego elementu. Z tego powodu, w branży inżynieryjnej oraz produkcyjnej, stosowanie właściwych narzędzi jest zgodne z najlepszymi praktykami i normami jakości, co przyczynia się do zwiększenia wydajności oraz bezpieczeństwa pracy.

Pytanie 30

Wartość mocy czynnej wskazywana przez watomierz wynosi

Ilustracja do pytania
A. 325 W
B. 500 W
C. 65 W
D. 130 W
Odpowiedź 325 W jest prawidłowa, ponieważ wartość mocy czynnej wskazywana przez watomierz jest bezpośrednio związana z położeniem wskazówki na skali przyrządu. W tym przypadku wskazówka znajduje się między wartościami 30 a 40, co sugeruje, że wartość mocy jest bliska 32,5. Każda jednostka na skali odpowiada 10 W, dlatego należy pomnożyć oszacowaną wartość przez 10, co daje nam wynik 325 W. Moc czynna, którą wskazuje watomierz, jest kluczowym parametrem w systemach elektroenergetycznych, ponieważ określa rzeczywistą moc zużywaną przez urządzenia elektryczne. Zrozumienie działania watomierza i umiejętność interpretacji jego wskazań jest fundamentalne dla inżynierów i techników pracujących w dziedzinie energetyki oraz automatyki przemysłowej. W praktyce, analiza mocy czynnej pozwala na optymalizację zużycia energii, co jest zgodne z najlepszymi praktykami zarządzania energią. Właściwe pomiary mocy czynnej są także niezbędne przy projektowaniu instalacji elektrycznych, co może wpływać na ich efektywność i bezpieczeństwo.

Pytanie 31

Ile wynosi wartość pojemności kondensatora, przedstawionego na ilustracji?

Ilustracja do pytania
A. 470 nF
B. 474 nF
C. 470 μF
D. 474 μF
Odpowiedź 470 nF jest poprawna, ponieważ oznaczenie "474" na kondensatorze interpretuje się zgodnie z systemem kodowania wartości kondensatorów. Pierwsze dwie cyfry, czyli "47", oznaczają wartość podstawową, a ostatnia cyfra, "4", wskazuje mnożnik, który w tym przypadku wynosi 10^4 pF. Dlatego, przeliczając, otrzymujemy 470000 pF, co równa się 470 nF. W praktyce kondensatory takie jak ten znajdują zastosowanie w filtrach, rezonatorach czy układach czasowych. Znajomość sposobu odczytywania wartości kondensatorów jest kluczowa dla inżynierów elektroniki, ponieważ umożliwia właściwe dobieranie elementów w układach elektronicznych. Warto zaznaczyć, że zgodnie z normą IEC 60384, odpowiednie oznakowanie wartości kondensatorów jest standardem, co ułatwia ich identyfikację i zastosowanie w różnych projektach.

Pytanie 32

Demontaż przekładni pasowej zaczyna się od

A. poluzowania naciągu pasów
B. zdemontowania koła pasowego o większej średnicy
C. zdemontowania koła pasowego o mniejszej średnicy
D. demontażu wałów
Poluzowanie naciągu pasów jest kluczowym krokiem w demontażu przekładni pasowych, ponieważ pozwala na swobodne odłączenie elementów układu. W praktyce, zanim przystąpimy do demontażu, ważne jest, aby zminimalizować napięcie w pasach, co zapewnia łatwe usunięcie kół pasowych, zarówno większych, jak i mniejszych. Podczas pracy z przekładniami pasowymi, zgodnie z normami branżowymi, należy zawsze rozpoczynać demontaż od poluzowania naciągu, aby uniknąć uszkodzeń komponentów oraz zapewnić bezpieczeństwo. Przykładowo, w wielu zakładach przemysłowych, przed demontażem przekładni, technicy wykonują inspekcję stanu pasów oraz kół pasowych, aby upewnić się, że nie ma widocznych uszkodzeń. Taki proces pozwala na uniknięcie niepotrzebnych kosztów związanych z wymianą uszkodzonych elementów, a także przyspiesza proces konserwacji maszyn. Dlatego, poluzowanie naciągu pasów jest nie tylko procedurą techniczną, ale także praktycznym podejściem do zarządzania zasobami w zakładzie.

Pytanie 33

Zawór 1V1 przełączany jest z pozycji b na a

Ilustracja do pytania
A. ręcznie, przyciskiem załącz.
B. po zadziałaniu wyłącznika krańcowego.
C. ręcznie, przyciskiem wyłącz.
D. po zadziałaniu wyłącznika ciśnieniowego.
Odpowiedź jest prawidłowa, ponieważ zawór 1V1 jest przełączany ręcznie przy użyciu przycisku oznaczonego jako S1, który pełni funkcję załączania. W kontekście automatyzacji procesów przemysłowych, przyciski załączające są kluczowe dla kontrolowania urządzeń i systemów. Użycie przycisku S1, zgodnie z dokumentacją techniczną, umożliwia operatorowi bezpośrednią interakcję ze sprzętem, co jest zgodne z dobrymi praktykami w zakresie obsługi i utrzymania urządzeń. Zawory, takie jak 1V1, są często stosowane w instalacjach hydraulicznych i pneumatycznych, a ich poprawne uruchamianie ma kluczowe znaczenie dla zapewnienia bezpieczeństwa operacyjnego oraz efektywności procesów. Dobrą praktyką jest również przeprowadzanie regularnych szkoleń dla operatorów, aby zapewnić, że są oni zaznajomieni z obsługą przycisków i zasadami ich działania w różnych scenariuszach. W kontekście norm przemysłowych, zastosowanie przycisków manualnych jako metody załączania jest zgodne z normami bezpieczeństwa, które kładą nacisk na możliwość szybkiego zatrzymania procesów w nagłych przypadkach.

Pytanie 34

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0
A. HR
B. HL
C. HM
D. HH
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 35

Zawór dławiąco-zwrotny 1V2 układu pneumatycznego przedstawionego na schemacie umożliwia powolne

Ilustracja do pytania
A. wsunięcie tłoczyska siłownika metodą dławienia na wypływie.
B. wysunięcie tłoczyska siłownika metodą dławienia na dopływie.
C. wysunięcie tłoczyska siłownika metodą dławienia na wypływie.
D. wsunięcie tłoczyska siłownika metodą dławienia na dopływie.
Niepoprawne odpowiedzi wynikają z niepełnego zrozumienia działania zaworu dławiąco-zwrotnego. W kontekście układu pneumatycznego, dławienie na wypływie oznacza kontrolowanie prędkości wysuwania tłoczyska. Jeśli uważasz, że zawór ten ma wpływ na wsunięcie tłoczyska, to może to prowadzić do nieporozumienia. Istotne jest, aby zrozumieć, że zawór dławiąco-zwrotny działa na zasadzie ograniczania przepływu medium, co w efekcie wpływa na prędkość ruchu siłownika. Stąd, stwierdzenie, że zawór ten umożliwia wsunięcie tłoczyska na wypływie, jest błędne. Odpowiedzi sugerujące, że dławienie odbywa się na dopływie również nie są trafne, ponieważ w takim przypadku mielibyśmy do czynienia z innym efektem, w którym tłoczysko byłoby wysuwane szybciej, co w praktyce nie jest pożądane w sytuacjach wymagających precyzyjnego sterowania. Zrozumienie zasady działania tego zaworu jest kluczowe dla skutecznego projektowania układów pneumatycznych. Błędy myślowe związane z niewłaściwym kojarzeniem dławienia z kierunkiem ruchu tłoczyska mogą prowadzić do niewłaściwego doboru komponentów oraz nieefektywnego działania całego systemu. Warto przy tym zaznaczyć, że w branży pneumatycznej, zastosowanie zaworów dławiąco-zwrotnych jest ściśle powiązane z zasadami bezpieczeństwa i efektywności, co wymaga odpowiedniego przeszkolenia i zrozumienia ich funkcji.

Pytanie 36

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik pojemnościowy
B. Czujnik ultradźwiękowy
C. Czujnik pływakowy
D. Czujnik hydrostatyczny
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 37

Aby z dużą precyzją identyfikować jedynie obiekty metalowe w odległości do 5 mm, należy zastosować czujnik

A. indukcyjny
B. mechaniczny
C. ultradźwiękowy
D. temperatury
Czujniki indukcyjne są idealnym rozwiązaniem do wykrywania obiektów metalowych, zwłaszcza w bardzo małych odległościach, takich jak 5 mm. Działają na zasadzie indukcji elektromagnetycznej, co pozwala im na detekcję zmian w polu elektromagnetycznym wywołanych obecnością metalu. Dzięki swojej wysokiej czułości i precyzji, czujniki te są szeroko stosowane w automatyce przemysłowej, na przykład w aplikacjach związanych z detekcją obecności części metalowych na liniach montażowych, a także w systemach zabezpieczeń. Standardy branżowe zalecają stosowanie czujników indukcyjnych w sytuacjach, gdzie wymagane jest szybkie i niezawodne wykrywanie metalowych obiektów, co jest szczególnie istotne w środowiskach produkcyjnych. Ich odporność na zanieczyszczenia i działanie czynników zewnętrznych czyni je idealnym wyborem w trudnych warunkach przemysłowych. Ponadto, czujniki te charakteryzują się długą żywotnością oraz niskimi kosztami eksploatacyjnymi, co czyni je bardzo efektywnym rozwiązaniem.

Pytanie 38

Przedstawiony element to

Ilustracja do pytania
A. szybkozłączka elektryczna.
B. szybkozłączka optyczna.
C. złącze grzybkowe.
D. szybkozłączka pneumatyczna.
Szybkozłączka pneumatyczna to element układów pneumatycznych, który umożliwia szybkie i beznarzędziowe łączenie oraz rozłączanie węży i narzędzi pneumatycznych. Jej metalowa konstrukcja oraz obecność gwintów pozwalają na solidne i trwałe połączenie, co jest kluczowe w aplikacjach przemysłowych. Ten typ złącza jest powszechnie stosowany w różnych branżach, takich jak przemysł motoryzacyjny czy budowlany, gdzie wykorzystywane są narzędzia pneumatyczne do wykonywania prac. Zastosowanie szybkozłączek pneumatycznych przyczynia się nie tylko do zwiększenia efektywności pracy, ale także do poprawy bezpieczeństwa operacji, ponieważ umożliwiają one łatwe i szybkie odłączenie narzędzi w razie potrzeby. Dobry dobór szybko złączek w systemie pneumatycznym, zgodny z normami branżowymi, zapewnia optymalną wydajność oraz niezawodność pracy urządzeń.

Pytanie 39

Którą metodę kontroli temperatury pracy silnika przedstawiono na rysunku?

Ilustracja do pytania
A. Segera.
B. Termowizyjną.
C. Ultradźwiękową.
D. Termometryczną.
Odpowiedź "Termowizyjna" jest poprawna, ponieważ na zdjęciu przedstawiony jest aparat termowizyjny, który jest wykorzystywany do pomiaru temperatury w sposób bezkontaktowy. Technologia ta polega na detekcji promieniowania podczerwonego emitowanego przez obiekty, co pozwala na uzyskanie obrazu termicznego. Dzięki temu rozwiązaniu można w szybki sposób ocenić temperaturę różnych części silnika, co jest niezwykle istotne dla zapewnienia jego prawidłowego funkcjonowania oraz zapobiegania awariom. Metoda ta jest szczególnie przydatna w zastosowaniach przemysłowych, gdzie monitorowanie temperatury w czasie rzeczywistym pozwala na wczesne wykrywanie problemów, takich jak przegrzewanie się komponentów. Użycie kamer termograficznych jest zgodne z najlepszymi praktykami w dziedzinie diagnostyki maszyn, co czyni ją standardem w przemyśle wytwórczym i eksploatacyjnym. Przykłady zastosowań obejmują inspekcje w zakładach energetycznych, motoryzacyjnych czy w przemyśle lotniczym.

Pytanie 40

Na rysunku przedstawiono siłownik hydrauliczny

Ilustracja do pytania
A. jednostronnego działania, o mocowaniu gwintowym.
B. dwustronnego działania, o mocowaniu gwintowym.
C. jednostronnego działania, o mocowaniu przegubowym.
D. dwustronnego działania, o mocowaniu przegubowym.
Wybrana odpowiedź jest poprawna, ponieważ siłownik przedstawiony na rysunku ma mocowanie przegubowe. Przeguby znajdują się na obu końcach siłownika, co pozwala na swobodny ruch w różnych kierunkach, co jest istotne w aplikacjach, gdzie wymagane jest precyzyjne sterowanie ruchem. Dodatkowo, siłownik działa jednostronnie, co oznacza, że płyn hydrauliczny wpływa tylko z jednej strony tłoka, co jest potwierdzone brakiem przewodów hydraulicznych po obu stronach. Tego typu siłowniki są powszechnie stosowane w maszynach budowlanych oraz w systemach automatyki, gdzie precyzyjne ruchy są kluczowe. Przykłady obejmują manipulatorów w robotyce czy mechanizmy podnoszące w dźwigach. Dobrą praktyką w projektowaniu siłowników jest uwzględnienie ich zastosowania, co pozwala na optymalizację ich właściwości oraz wydajności.