Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:47
  • Data zakończenia: 7 grudnia 2025 11:04

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór innych rysunków może wynikać z nieporozumienia co do roli pierścieni ślizgowych w konstrukcji silników elektrycznych. Rysunki, które nie przedstawiają pierścieni, mogą pokazywać inne istotne elementy silnika, takie jak wirnik czy stojan, ale nie są one odpowiednie w kontekście zadania. Niezrozumienie funkcji pierścieni ślizgowych często prowadzi do błędnej interpretacji ich lokalizacji i roli. Pierścienie ślizgowe są integralną częścią konstrukcji, umożliwiającą przekazywanie prądu do wirnika, co jest kluczowe dla funkcjonowania silnika. Wybierając rysunki, które nie pokazują tych elementów, można mylnie przyjąć, że inne części silnika pełnią tę funkcję, co jest niezgodne z rzeczywistością. Dodatkowo, w kontekście standardów branżowych, każdy element silnika ma swoją specyfikę i funkcję, co jest kluczowe w projektowaniu i eksploatacji. Ignorowanie tej zasady może prowadzić do nieprawidłowego działania maszyny, a w konsekwencji do poważnych awarii. Dlatego znajomość konstrukcji silników oraz poszczególnych komponentów jest niezbędna dla każdego inżyniera zajmującego się automatyką lub energetyką.

Pytanie 2

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
B. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
C. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
D. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 3

Na rysunku przedstawiono sposób podłączenia miernika MZC-201 do pomiaru

Ilustracja do pytania
A. rezystancji uziomu.
B. ciągłości połączeń ochronnych.
C. impedancji pętli zwarcia.
D. rezystancji izolacji.
Zrozumienie różnych rodzajów pomiarów elektrycznych jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Odpowiedzi dotyczące ciągłości połączeń ochronnych, rezystancji izolacji oraz impedancji pętli zwarcia są związane z innymi ważnymi aspektami, ale nie dotyczą pomiaru rezystancji uziomu w sposób przedstawiony na rysunku. Ciągłość połączeń ochronnych dotyczy sprawdzenia, czy wszystkie elementy systemu ochrony są właściwie połączone, co jest istotne dla skuteczności ochrony przed porażeniem prądem, ale nie oblicza bezpośrednio wartości rezystancji uziomu. Rezystancja izolacji odnosi się do zdolności materiałów izolacyjnych do minimalizowania niepożądanych prądów, co również nie jest przedmiotem tego pomiaru. Z kolei impedancja pętli zwarcia dotyczy analizy skuteczności zabezpieczeń przed zwarciami w instalacji, co jest zupełnie innym zagadnieniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują mylenie różnych rodzajów pomiarów oraz brak zrozumienia kontekstu zastosowania miernika MZC-201. Właściwe podejście do pomiaru rezystancji uziomu jest fundamentem dla zapewnienia bezpieczeństwa oraz zgodności z obowiązującymi normami i praktykami w branży elektrycznej.

Pytanie 4

Przedstawiony na rysunku przyrząd umożliwia

Ilustracja do pytania
A. pomiar rezystancji żył przewodów ochronnych.
B. określenie parametrów pętli zwarciowej.
C. testowanie zabezpieczeń nadprądowych.
D. testowanie działania wyłączników różnicowoprądowych.
Wybór odpowiedzi dotyczącej określenia parametrów pętli zwarciowej jest przykładem nieporozumienia dotyczącego funkcji, jakie pełnią testery w instalacjach elektrycznych. Pętla zwarciowa jest kluczowym elementem w analizie zabezpieczeń przeciążeniowych, jednak urządzenie Megger RCDT320 nie jest przeznaczone do tego celu. Testowanie parametrów pętli zwarciowej wymaga innego sprzętu, typowo multimetru lub specjalnych testerów pętli, które mierzą impedancję pętli i czas reakcji zabezpieczeń. Ponadto, błędne jest myślenie, że urządzenie RCDT320 może zastąpić narzędzia do analizy pętli w sytuacjach, gdy niezbędne jest sprawdzenie, czy zabezpieczenia nadprądowe właściwie reagują na zwarcia. Zrozumienie różnicy między tymi dwoma technologiami jest podstawą do właściwego doboru sprzętu w codziennej pracy elektryka. Odpowiedzi dotyczące testowania zabezpieczeń nadprądowych oraz pomiaru rezystancji żył przewodów ochronnych również nie są trafne, ponieważ wymagają one różnych metodologii i sprzętu. Błędne przypisanie funkcji testerowi RCDT320 prowadzi do nieefektywnego i potencjalnie niebezpiecznego użytkowania narzędzi, co jest sprzeczne z najlepszymi praktykami w branży elektrycznej, które podkreślają konieczność stosowania odpowiednich urządzeń do specyficznych zadań testowych.

Pytanie 5

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
B. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
C. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
D. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
Wybrana odpowiedź jest poprawna, ponieważ prawidłowo odzwierciedla kolejność zamontowanych aparatów elektrycznych w rozdzielnicy. Wyłącznik różnicowoprądowy, umieszczony jako pierwszy, ma kluczowe znaczenie dla ochrony użytkowników przed porażeniem prądem, wykrywając różnicę w prądzie między przewodami fazowymi a neutralnym. Następnie, wyłącznik nadprądowy chroni instalację przed przeciążeniem i zwarciami. Lampka kontrolna, jako trzeci element, pełni funkcję sygnalizacyjną, informując o stanie działania urządzeń. Na końcu znajduje się przekaźnik bistabilny, który służy do sterowania obwodami z wykorzystaniem małej mocy. Taka sekwencja jest zgodna z najlepszymi praktykami przy projektowaniu rozdzielnic, gdzie bezpieczeństwo i efektywność są priorytetem. Przy projektowaniu instalacji elektrycznych warto uwzględniać normy PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Wiedza na temat rozmieszczenia aparatów w rozdzielnicach jest kluczowa dla zapewnienia niezawodności oraz bezpieczeństwa systemów elektrycznych.

Pytanie 6

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,5 MΩ
B. 0,5 MΩ
C. 1,0 MΩ
D. 2,0 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 7

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Neutralny.
B. Wyrównawczy.
C. Ochronny.
D. Uziemiający.
Niepoprawne odpowiedzi mogą wynikać z błędnych skojarzeń dotyczących funkcji i oznaczeń przewodów w instalacjach elektrycznych. Odpowiedź "Uziemiający" może być mylnie wybrana przez osoby, które nie rozróżniają pomiędzy funkcjami przewodów. Uziemiający przewód rzeczywiście ma na celu odprowadzenie prądu do ziemi, jednak jego oznaczenie jest inne i nie jest to samo co przewód ochronny PE. Warto zaznaczyć, że przewód neutralny, oznaczany często jako N, służy do prowadzenia prądu powracającego do źródła, a jego rola jest zupełnie inna – nie ma on funkcji ochronnej. Wybór odpowiedzi "Wyrównawczy" również może wprowadzać w błąd, gdyż przewody wyrównawcze mają na celu wyrównanie potencjałów w różnych częściach instalacji, co nie odpowiada funkcji przewodu ochronnego, który ma chronić przed porażeniem. Typowe błędy myślowe obejmują mylenie funkcji przewodów oraz brak znajomości standardów dotyczących oznaczeń. Dlatego ważne jest, aby dokładnie zapoznać się z normami branżowymi i edukować się w zakresie oznaczeń, co przyczyni się do lepszego zrozumienia instalacji elektrycznych oraz zwiększy bezpieczeństwo ich użytkowania.

Pytanie 8

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 2,30 Ω
B. 1,15 Ω
C. 3,83 Ω
D. 0,56 Ω
Wybór błędnych wartości impedancji pętli zwarcia może wynikać z niewłaściwego zrozumienia zasad działania wyłączników nadprądowych oraz ich charakterystyk. Na przykład, 0,56 Ω i 1,15 Ω to wartości znacznie zbyt niskie, co może sugerować, że osoba odpowiedzialna za projektowanie lub pomiar nie uwzględniała wymaganych parametrów dla wyłącznika B20. Tego rodzaju wartości mogą prowadzić do nieefektywnej ochrony, gdyż w przypadku zwarcia obwód może zadziałać zbyt szybko, zanim układ zabezpieczeń zdąży dopełnić swojej funkcji. Wartości 3,83 Ω również są nieprawidłowe, ponieważ przekraczają dopuszczalny limit. W praktyce, zbyt wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być niewystarczający, aby wyzwolić zabezpieczenie. Należy zauważyć, że zgodnie z normami, takimi jak PN-IEC 60364, odpowiednie wartości impedancji są kluczowe dla działania systemów zabezpieczeń. Dlatego ważne jest, aby przy projektowaniu oraz ocenie instalacji elektrycznych przestrzegać wytycznych, by zapewnić odpowiedni poziom bezpieczeństwa, eliminując słabe punkty, które mogą prowadzić do niebezpiecznych sytuacji.

Pytanie 9

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Grupowy.
B. Szeregowy.
C. Jednobiegunowy.
D. Dwubiegunowy.
Wybór odpowiedzi niepoprawnej może wynikać z nieporozumienia dotyczącego klasyfikacji łączników elektrycznych. Odpowiedź sugerująca łącznik szeregowy jest błędna, ponieważ łącznik ten nie ma zastosowania w kontekście symbolu przedstawionego na schemacie. Łącznik szeregowy charakteryzuje się innym symbolem graficznym i służy do łączenia obwodów w sposób, który pozwala na przepływ prądu przez wszystkie połączone elementy. Z kolei wybór łącznika jednobiegunowego jest mylny, gdyż odnosi się do elementu, który kontroluje przepływ prądu tylko w jednym obwodzie, co nie odpowiada dwubiegunowemu zastosowaniu. W odpowiedzi na łącznik grupowy, warto zaznaczyć, że jest to termin odnoszący się do grupowania kilku urządzeń pod jednym łącznikiem, co również nie ma związku z zadanym pytaniem. Każdy z tych wyborów pomija kluczowy aspekt rozpoznawania symboli na schematach, który jest podstawą dobrze zaplanowanej instalacji elektrycznej. Właściwe zrozumienie symboliki i funkcji łączników ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności systemów elektrycznych, co potwierdzają obowiązujące normy i praktyki branżowe.

Pytanie 10

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,69
C. 0,57
D. 0,99
Aby zrozumieć, dlaczego pozostałe odpowiedzi są niewłaściwe, ważne jest, aby przeanalizować proces obliczania współczynnika mocy. Wiele osób myli pojęcia związane z mocą czynną, mocą bierną i mocą pozorną. Odpowiedzi takie jak 0,69, 0,99 czy 0,57 mogą wynikać z błędnych założeń dotyczących tego, co oznacza współczynnik mocy. Na przykład, wartość 0,99 sugeruje praktycznie idealny współczynnik mocy, co rzadko zdarza się w rzeczywistych aplikacjach przemysłowych, szczególnie w przypadku silników indukcyjnych, które nie osiągają tak wysokiej efektywności. Z kolei współczynnik mocy 0,57 wskazuje na słabe wykorzystanie energii, co prowadzi do wysokich strat w systemie. W praktyce, niskie wartości współczynnika mocy mogą skutkować koniecznością stosowania dodatkowych kondensatorów w celu poprawy jakości energii elektrycznej, co wiąże się z dodatkowymi kosztami. Typowym błędem myślowym w ocenie współczynnika mocy jest pomijanie wpływu obciążeń indukcyjnych oraz ich charakterystyki na całkowite zużycie energii. Ważnym aspektem jest także to, że obliczając współczynnik mocy, należy uwzględnić zarówno moc czynną, jak i moc bierną, co pozwala na bardziej precyzyjne zaplanowanie wymagań energetycznych dla danej instalacji. Dlatego też, zrozumienie i poprawne obliczenie współczynnika mocy jest kluczowe dla efektywności energetycznej i optymalizacji kosztów związanych z eksploatacją silników elektrycznych.

Pytanie 11

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Niepoprawne odpowiedzi mogą wynikać z kilku typowych błędów myślowych i nieporozumień związanych z instalacjami elektrycznymi. Przede wszystkim, w schematach A, B i C często błędnie umieszczany jest przewód fazowy L, co może prowadzić do niewłaściwego działania obwodu oświetleniowego. W przypadku schematu A, przewód fazowy został połączony z przewodem neutralnym, co stwarza ryzyko zwarcia. W praktyce, takie połączenie nie tylko uniemożliwi załączenie światła, ale także może doprowadzić do uszkodzenia urządzeń elektrycznych oraz stanowić poważne zagrożenie dla bezpieczeństwa osób korzystających z instalacji. Schemat B z kolei mógłby sugerować, że przewód NE jest poprowadzony przez łącznik, co jest niezgodne z zasadami, gdyż neutralny przewód powinien być zawsze bezpośrednio połączony do źródła zasilania. Wreszcie, schemat C nie uwzględnia prawidłowego uziemienia, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Każde z tych podejść pokazuje, jak ważne jest przestrzeganie standardów, takich jak PN-IEC 60364, które nakładają obowiązek stosowania odpowiednich metod podłączeń oraz zabezpieczeń w instalacjach elektrycznych. Właściwe zrozumienie i przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa oraz funkcjonalności instalacji elektrycznych.

Pytanie 12

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi
B. ciągłości przewodów ochronnych i neutralnych
C. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
D. metody zabezpieczenia przed porażeniem prądem elektrycznym
Oględziny instalacji elektrycznych obejmują szereg kluczowych aspektów, które są niezbędne do zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. W kontekście podanych odpowiedzi, istnieje szereg nieporozumień dotyczących tego, co powinno być przedmiotem takich oględzin. Stan widocznych części przewodów oraz izolatorów, a także ich mocowania, to kluczowy element oceny bezpieczeństwa instalacji. Właściwe mocowanie przewodów i ich izolacja są niezbędne, aby zapobiec potencjalnym uszkodzeniom mechanicznym, które mogą prowadzić do zwarć czy pożarów. Kolejnym istotnym aspektem jest sposób ochrony przed porażeniem prądem elektrycznym. Ochrona ta obejmuje nie tylko zastosowanie odpowiednich zabezpieczeń, ale także ich regularne sprawdzanie, aby upewnić się, że nie uległy one uszkodzeniu. Zastosowanie ciągłości przewodów ochronnych i neutralnych w kontekście oględzin jest mylące, ponieważ tego typu pomiary są zazwyczaj realizowane podczas testów diagnostycznych, a nie wizualnych inspekcji. W praktyce, błędem jest zakładanie, że inspekcje mogą zastąpić bardziej szczegółowe badania, takie jak pomiary rezystancji i ciągłości. Istotne jest, aby dla bezpieczeństwa instalacji elektrycznych przestrzegać konkretnych standardów, takich jak PN-IEC 60364, które wyraźnie określają, jakie elementy powinny być poddawane ocenie w trakcie oględzin oraz jakie metody pomiarowe należy stosować.

Pytanie 13

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
Analizując podane odpowiedzi, można zauważyć, że wiele z nich zawiera nieprawidłowe założenia dotyczące funkcji wyłączników różnicowoprądowych i nadprądowych. Na przykład, niektóre z odpowiedzi mylnie klasyfikują wyłącznik nadprądowy jako odłącznik, co jest istotnym błędem w zrozumieniu ich funkcji. Odłącznik instalacyjny nie zabezpiecza przed przeciążeniem ani zwarciem, a jedynie służy do rozłączania obwodu w celach serwisowych. W praktyce, w przypadku awarii, wyłącznik różnicowoprądowy jest kluczowy, ponieważ jego zadaniem jest zapobieganie porażeniom prądem elektrycznym. Dodatkowo, wyłączniki nadprądowe i różnicowoprądowe mają różne mechanizmy działania. Wyłącznik nadprądowy reaguje na nadmierny prąd, natomiast wyłącznik różnicowoprądowy monitoruje równowagę prądów w obwodzie. Te różnice są fundamentalne do prawidłowego doboru i zastosowania tych urządzeń w instalacjach elektrycznych. W związku z tym, zrozumienie tych koncepcji jest kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności instalacji elektrycznych, a także dla unikania zagrożeń związanych z ich niewłaściwym stosowaniem.

Pytanie 14

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. E27
B. G9
C. GU10
D. MR11
Wybierając inne odpowiedzi, można wpaść w pułapki związane z trzonkami żarówek. Na przykład, GU10 to dość inna sprawa – to do oświetlenia punktowego i ma dwa piny. Myślenie, że wszystkie nowoczesne źródła są podobne, to pułapka, bo różnice w mocowaniach są ważne. MR11, który jest mniejszy od MR16, też ma swoją budowę i nie pasuje do E27. A z G9 bywa podobnie – ludzie myślą, że małe źródła światła są lepsze, a tak naprawdę E27 często oferuje większą wydajność. Ignorując różnice w konstrukcji trzonków, można trafić na kłopoty z dopasowaniem, a czasem trzeba dokupić coś dodatkowego. Dlatego warto znać standardy i specyfikacje, żeby dobrze dobrać żarówki i osprzęt, co się przekłada na oszczędność energii i komfort użytkowania.

Pytanie 15

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
B. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
C. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Analiza pozostałych odpowiedzi ujawnia pewne nieporozumienia dotyczące klasyfikacji i zastosowania różnych typów kabli. W odpowiedzi, która wskazuje na kabel sygnalizacyjny z żyłami jednodrutowymi, istotnym błędem jest założenie, że kabel kontrolny nie może mieć wielodrutowych żył. W praktyce, żyły wielodrutowe są często stosowane w kablach kontrolnych, ponieważ oferują większą elastyczność i odporność na uszkodzenia. W kontekście napięcia, klasyfikacja na 0,6/1 kV jest typowa dla kabli elektroenergetycznych, a nie kontrolnych, które są z reguły projektowane z myślą o niższych napięciach, takich jak 300/500 V. Odpowiedź mówiąca o kablu sygnalizacyjnym z żyłami wielodrutowymi o wiązkach parowych także nie bierze pod uwagę ekranowania, które jest kluczowe dla kabli kontrolnych. Ekranowanie zapobiega zakłóceniom i zapewnia integralność sygnału, co jest niezbędne w aplikacjach, gdzie precyzyjne przesyłanie danych jest kluczowe. Niezrozumienie różnicy między zastosowaniem kabli sygnalizacyjnych a kontrolnych prowadzi do błędnych wniosków, co może skutkować niewłaściwym doborem materiałów w projektach instalacyjnych, obniżając ich efektywność i bezpieczeństwo.

Pytanie 16

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,0% + 2 cyfry
B. ±1,5% + 3 cyfry
C. ±2,5% + 1 cyfra
D. ±1,0% + 4 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 17

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. pokoju 1 i pokoju 2
B. łazience i pokoju 2
C. łazience i pokoju 1
D. kuchni i pokoju 2
Twoje odpowiedzi dotyczące gniazd w kuchni, łazience, czy też różnych kombinacji tych pomieszczeń są błędne. Wydaje mi się, że myślisz, że obwody w tych miejscach są objęte ochroną RCD, ale to nie jest prawda. RCD powinno się stosować tam, gdzie ryzyko kontaktu z wodą jest wysokie, co jest naprawdę istotne, żeby zapewnić bezpieczeństwo. Kuchnia i łazienka to miejsca, gdzie wilgoć jest na porządku dziennym, więc ochrona RCD to konieczność. Z kolei twierdzenie, że obwody w pokojach mają taką samą ochronę, może wprowadzać w błąd, bo te przestrzenie nie są tak narażone jak kuchnie czy łazienki. Często też ludzie mogą mylnie sądzić, że RCD powinno być wszędzie w mieszkaniu, co nie zawsze ma sens w praktyce. Dobrze jest montować RCD w obwodach, gdzie mogą być urządzenia używane w wilgotnych warunkach, ale w pokojach, które nie mają tyle wilgoci, można je zabezpieczyć w inny sposób. Ignorowanie tego bezpieczeństwa to ryzykowna sprawa, dlatego istotne jest, by instalacja elektryczna była zgodna z normami.

Pytanie 18

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. przewody zasilające.
B. łącznik.
C. żyrandol.
D. przewód ochronny.
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 19

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. MR16
B. GU10
C. E27
D. G9
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 20

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 0 s ÷ 0,06 s
B. 60 s ÷ 10 000 s
C. 0,06 s ÷ 0,017 s
D. 10 s ÷ 60 s
Poprawna odpowiedź to 10 s ÷ 60 s, co wynika z charakterystyki wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA. Przy prądzie 25 A, który jest 2,5-krotnością prądu znamionowego wynoszącego 10 A, czas zadziałania wyzwalacza wynosi od 10 do 60 sekund. Tego typu wyłączniki są kluczowe w systemach zasilania, ponieważ chronią obwody przed przegrzaniem i potencjalnym uszkodzeniem spowodowanym nadmiernym prądem. W praktyce oznacza to, że wyzwalacz będzie działał w określonym czasie, co jest istotne dla zapewnienia bezpieczeństwa instalacji elektrycznej. Warto również zauważyć, że zgodność z normą IEC 60947-2, która reguluje wymagania dla wyłączników, potwierdza, że czas zadziałania w tym przedziale jest optymalny dla zachowania równowagi między bezpieczeństwem a funkcjonalnością. Dobrze zaprojektowane systemy powinny uwzględniać te parametry, aby skutecznie chronić przed skutkami przeciążeń.

Pytanie 21

Zdjęcie przedstawia

Ilustracja do pytania
A. wyłącznik krzyżowy.
B. łącznik żaluzjowy.
C. wyłącznik schodowy.
D. łącznik wielofunkcyjny.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 22

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Świecznikowy
B. Dwubiegunowy
C. Schodowy
D. Krzyżowy
Odpowiedzi takie jak 'Dwubiegunowy', 'Schodowy' czy 'Krzyżowy' nie są odpowiednie w kontekście pytania o sterowanie dwoma sekcjami źródeł światła w żyrandolu. Łącznik dwubiegunowy, choć umożliwia włączanie i wyłączanie obwodów, nie jest przeznaczony do niezależnego sterowania różnymi sekcjami tego samego źródła światła. Zazwyczaj stosuje się go do prostych obwodów, gdzie jedynie kontroluje zasilanie jednego obwodu. Łącznik schodowy jest używany głównie w instalacjach, gdzie potrzebne jest kontrolowanie jednego źródła światła z dwóch różnych miejsc, co z kolei nie ma zastosowania w przypadku żyrandola z wieloma sekcjami. Łącznik krzyżowy służy do rozszerzenia możliwości już istniejącego układu schodowego, umożliwiając sterowanie jednym źródłem światła z więcej niż dwóch miejsc, ale także nie jest odpowiedni dla żyrandola, gdzie potrzebne jest niezależne włączanie poszczególnych sekcji. Typowe błędy myślowe mogą obejmować założenie, że każdy rodzaj łącznika posiada uniwersalne zastosowanie, co nie jest zgodne z rzeczywistością instalacyjną i wymaga szczególnej uwagi przy wyborze odpowiedniego typu łącznika do konkretnej aplikacji oświetleniowej.

Pytanie 23

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,95
B. 0,75
C. 0,71
D. 0,79
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 24

Który z symboli przedstawionych na rysunkach jest stosowany na schematach montażowych?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór symbolu innego niż przedstawiony na rysunku C. wskazuje na niezrozumienie podstawowych zasad oznaczania elementów w schematach montażowych. Każdy symbol na schemacie ma swoje specyficzne znaczenie i zastosowanie, które są ściśle określone przez normy branżowe, takie jak IEC 60617 czy ANSI Y32. W przypadku symboli A., B. i D., każdy z tych symboli nie odpowiada standardowym oznaczeniom używanym w elektronice. Na przykład, symbol A. mógłby być mylony z innym komponentem, takim jak kondensator czy opornik, co prowadzi do błędnej interpretacji funkcjonalności obwodu. W praktyce, takie pomyłki mogą skutkować nieprawidłowym montażem, a w konsekwencji awarią urządzenia. Ważne jest, aby przed podjęciem decyzji w odniesieniu do schematów montażowych, zrozumieć, jakie elementy są na nich przedstawione i jak wpływają na działanie całego układu. Dlatego kluczowe jest dokładne zapoznanie się z normami i dobrymi praktykami, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niewłaściwych wyborów w procesie projektowania elektronicznego.

Pytanie 25

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TT
B. TN-S
C. IT
D. TN-C
Wybór innych układów sieciowych, takich jak IT, TN-S i TT, jest nietrafiony z kilku powodów. W układzie IT, który charakteryzuje się izolowanym systemem zasilania, nie występuje przewód PEN, ponieważ nie ma potrzeby łączenia funkcji ochronnych i neutralnych. Ten system jest często stosowany w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale, ponieważ w przypadku awarii jednego z fazowych przewodów, pozostałe mogą dalej funkcjonować bez przerwy. Układ TN-S natomiast odseparowuje przewody ochronne (PE) od przewodów neutralnych (N), co zwiększa bezpieczeństwo, ale wymaga większej liczby przewodów, co może być mniej efektywne kosztowo. Z kolei układ TT to inny system, w którym przewód ochronny jest oddzielony od systemu neutralnego, co oznacza, że w przypadku uszkodzenia nie jest możliwe skorzystanie z przewodu PEN. Takie rozwiązanie może być stosowane w sytuacjach, gdzie występują wysokie wymagania dotyczące bezpieczeństwa, ale wiąże się z większym ryzykiem porażenia elektrycznego. W praktyce, wybór odpowiedniego układu sieciowego powinien być uzależniony od specyficznych potrzeb oraz warunków, w jakich będzie funkcjonować instalacja elektryczna. Warto zatem zrozumieć różnice pomiędzy tymi układami, aby skutecznie dobierać rozwiązania odpowiednie dla konkretnego zastosowania.

Pytanie 26

Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego

A. posiadająca uprawnienia SEP, co rok
B. przeszkolona, co rok
C. mająca uprawnienia SEP, co 6 miesięcy
D. przeszkolona, co 6 miesięcy
Wybór odpowiedzi, że osoba posiadająca uprawnienia SEP powinna sprawdzać urządzenia raz na rok, może prowadzić do nieporozumień w zakresie odpowiedzialności za bezpieczeństwo elektryczne. Uprawnienia SEP (Stowarzyszenia Elektryków Polskich) są ważne, ale samo posiadanie takich uprawnień nie zastępuje potrzeby regularnego przeszkolenia i aktualizacji wiedzy na temat najnowszych standardów oraz zasad działania urządzeń elektrycznych. Osoby z uprawnieniami SEP, które nie są regularnie przeszkolone, mogą nie być w pełni świadome aktualnych procedur bezpieczeństwa, co może prowadzić do niepoprawnych wniosków dotyczących stanu urządzeń. Z kolei odpowiedzi sugerujące, że przeszkolona osoba powinna sprawdzać urządzenia raz na rok, przeczą zaleceniom praktycznym dotyczącym częstotliwości testowania, które powinno być przeprowadzane znacznie częściej, aby zapewnić ciągłe bezpieczeństwo. Częste kontrole są kluczowe, ponieważ urządzenia różnicowoprądowe mogą ulegać degradacji, co w dłuższym czasie może prowadzić do ich niesprawności. Ponadto, co sześć miesięcy wykonywane kontrole są zgodne z kodeksami bezpieczeństwa, które zalecają, aby personel był regularnie przeszkalany w zakresie obsługi oraz identyfikacji potencjalnych zagrożeń związanych z wykorzystaniem energii elektrycznej. Ignorowanie tych zaleceń może prowadzić do poważnych wypadków oraz narażenia użytkowników na niebezpieczeństwo.

Pytanie 27

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP20
B. IP55
C. IP44
D. IP33
Wybór właściwego stopnia ochrony IP jest kluczowym elementem przy projektowaniu instalacji elektrycznych, zwłaszcza w pomieszczeniach o podwyższonej wilgotności. Odpowiedzi sugerujące stopień ochrony niższy niż IP44, takie jak IP20 czy IP33, nie spełniają wymagań dla pomieszczeń wilgotnych. IP20 oznacza ochronę przed ciałami obcymi o średnicy większej niż 12,5 mm i brak ochrony przed wodą, co czyni je zupełnie nieodpowiednimi dla wilgotnych środowisk. Podobnie IP33, chociaż zapewnia pewną ochronę przed bryzgami wody pod kątem do 60 stopni, nie gwarantuje pełnej ochrony w warunkach, gdzie woda może pochodzić z różnych kierunków. Odpowiedź IP55, choć oferuje lepszą ochronę niż wymagana minimalna, jest często stosowana w bardziej wymagających środowiskach, np. na zewnątrz, gdzie wymagana jest zwiększona odporność na kurz i wodę. Wybór odpowiedniego stopnia ochrony jest kluczowy dla zapewnienia bezpieczeństwa i trwałości instalacji, dlatego warto być świadomym nie tylko wymogów minimalnych, ale i specyficznych warunków pracy urządzeń, aby unikać niepotrzebnych kosztów i zagrożeń związanych z nieodpowiednimi komponentami.

Pytanie 28

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 6,73 MΩ
B. 6,18 MΩ
C. 6,87 MΩ
D. 7,48 MΩ
Analiza rezystancji izolacji uzwojeń silnika w różnych temperaturach może stanowić wyzwanie, zwłaszcza gdy nie są brane pod uwagę odpowiednie współczynniki przeliczeniowe. W przypadku, gdy odpowiedzi sugerują wartości 6,73 MΩ, 6,87 MΩ, 7,48 MΩ oraz 6,18 MΩ, istotne jest zrozumienie, że każda z tych odpowiedzi opiera się na błędnych założeniach. Wartość 6,18 MΩ, choć może wydawać się poprawna, została obliczona w sposób nieprawidłowy, ponieważ pomija uwzględnienie odpowiednich współczynników przeliczeniowych i ich wpływu na wynik. W przypadku obliczania rezystancji izolacji, temperatura ma kluczowe znaczenie, a różnice między 20°C a 23°C mogą znacząco wpływać na wyniki. Przyjmuje się, że wzrost temperatury wpływa na zmniejszenie rezystancji, co oznacza, że rezystancja w niższej temperaturze powinna być wyższa. Wartości 6,73 MΩ i 6,87 MΩ mogą wynikać z pomyłek w korzystaniu z tabeli współczynników lub niewłaściwego zastosowania wzoru, co prowadzi do zaniżenia wartości izolacji. Natomiast 7,48 MΩ, choć na pierwszy rzut oka może wydawać się bardziej wiarygodne, jest wynikiem błędnych obliczeń, które nie uwzględniają prawidłowego przeliczenia na podstawie temperatury. Wiedza na temat prawidłowego wyznaczania rezystancji izolacji uzwojeń jest niezwykle istotna w kontekście bezpieczeństwa urządzeń elektrycznych oraz ich niezawodności w długotrwałym użytkowaniu.

Pytanie 29

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzone przewody pomiędzy W2 a W3
B. Uszkodzony przewód pomiędzy W3 a E1
C. Uszkodzone przewody pomiędzy W1 a W2
D. Uszkodzony przewód pomiędzy W1 a S191B10
Nieprawidłowe odpowiedzi wskazują na różne nieporozumienia dotyczące działania obwodów elektrycznych. Wybór uszkodzonego przewodu pomiędzy W1 a S191B10 sugeruje, że uczestnik testu nie zrozumiał, jak obwody szeregowe działają w kontekście świecenia żarówek. W przypadku uszkodzenia przewodu w tej lokalizacji, obie żarówki E1 i E2 nie mogłyby świecić, ponieważ brakowałoby pełnego obwodu. Kolejny błąd dotyczy wskazania uszkodzonych przewodów pomiędzy W1 a W2. Gdyby ten przewód był uszkodzony, żarówka E2 również nie mogłaby świecić, co jest sprzeczne z danymi. Również wybór uszkodzenia przewodów pomiędzy W2 a W3 jest mylny, ponieważ zgodnie z pomiarem napięcia U12 na poziomie 228 V, nie ma tam przerwy. To wskazuje na sprawność tej sekcji obwodu. Kluczowe jest zrozumienie, że w obwodach elektrycznych prąd płynie w zamkniętej pętli, a każde uszkodzenie w dowolnym miejscu wyłącza cały obwód. W praktyce, aby uniknąć takich błędów, zaleca się dokładne badanie schematów oraz logiczne rozumowanie związane z kierunkiem przepływu prądu i funkcjonowaniem poszczególnych komponentów. Warto pamiętać, że analiza problemów elektrycznych wymaga nie tylko wiedzy teoretycznej, ale także umiejętności praktycznych w diagnostyce i naprawie instalacji.

Pytanie 30

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 1NO + 2NC
B. 3NO + 2NO + 1NC
C. 3NO + 1NO + 2NC
D. 3NC + 2NO + 1NC
Wybrana odpowiedź jest prawidłowa, ponieważ stycznik Q19 wymaga zastosowania trzech zestyków normalnie otwartych (3NO), jednego zestyków normalnie otwartego (1NO) oraz dwóch zestyków normalnie zamkniętych (2NC). W praktycznych zastosowaniach, takie zestawienie pozwala na skuteczne sterowanie obwodami, w których konieczne jest jednoczesne włączanie kilku urządzeń oraz realizacja funkcji zabezpieczających, takich jak odcięcie zasilania w przypadku awarii. W kontekście standardów branżowych, takie połączenie zestyków jest zgodne z normami IEC 60947, które definiują wymagania dla aparatów elektrycznych. Dobrą praktyką jest również regularne przeglądanie schematów układów oraz dobór odpowiednich elementów na podstawie ich charakterystyki oraz wymagań obciążeniowych. Dzięki starannej analizie schematu można uniknąć problemów związanych z niewłaściwym doborem zestyków, co jest kluczowe dla bezpieczeństwa i efektywności działania instalacji elektrycznych.

Pytanie 31

Który przewód jest oznaczony literami PE?

A. Fazowy
B. Ochronny
C. Neutralny
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 32

Przewód OMY 2x0,5 300/300 V przedstawia zdjęcie

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybierając jedną z pozostałych odpowiedzi, można wpaść w pułapkę niepełnego zrozumienia charakterystyki przewodów elektrycznych. Przewody OMY, które mają specyficzne właściwości, takie jak elastyczność i odpowiedni przekrój, są kluczowe w zastosowaniach niskonapięciowych. Wiele z błędnych odpowiedzi może przedstawiać przewody o innym przekroju, innej liczbie żył lub wykonane z materiałów, które nie spełniają standardów przewidzianych dla instalacji elektrycznych. Przykładowo, wybór przewodu o większym przekroju może sugerować, że jest on bardziej odpowiedni do intensywnego obciążenia, co jednak nie jest zgodne z wymogami danej instalacji. Ponadto, niewłaściwe zrozumienie norm dotyczących izolacji może prowadzić do wyboru przewodów, które nie są przystosowane do warunków panujących w danym środowisku. Często błędne odpowiedzi wynikają z nieprecyzyjnego rozpoznawania właściwości technicznych, takich jak rodzaj izolacji, liczba żył czy przekrój, co może prowadzić do niebezpiecznych sytuacji w użytkowaniu. W praktyce, dobór odpowiednich przewodów jest kluczowy dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Zrozumienie tych podstawowych różnic i znajomość specyfikacji technicznych są niezbędne dla każdego zajmującego się projektowaniem lub montażem instalacji elektrycznych.

Pytanie 33

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Omomierza
B. Megaomomierza
C. Watomierza
D. Megawoltomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 34

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór odpowiedzi A, B lub D wskazuje na nieporozumienie dotyczące symboliki stosowanej w dokumentacji instalacji elektrycznych. Odpowiedzi te nie reprezentują wyłącznika różnicowoprądowego, a ich analiza ujawnia częste błędy myślenia związane z interpretacją schematów. Na przykład, odpowiedź A może być mylnie zinterpretowana jako symbol innego urządzenia zabezpieczającego, takiego jak bezpiecznik, podczas gdy jego funkcje są zupełnie inne. Bezpieczniki działają na zasadzie przerywania obwodu w przypadku nadmiernego prądu, co jest innym mechanizmem ochrony niż działanie RCD. Wybór odpowiedzi B może sugerować pomyłkę w rozpoznaniu symboli stosowanych na schematach, co może prowadzić do poważnych konsekwencji w praktyce. Różnice w oznaczeniach mogą na przykład skutkować niewłaściwą instalacją urządzeń, co zagraża bezpieczeństwu użytkowników. Warto zwrócić uwagę, że poprawne rozumienie schematów elektrycznych opiera się na znajomości standardów branżowych, takich jak PN-EN 50010, które regulują sposób oznaczania i stosowania wyłączników RCD. Dlatego ważne jest, aby przed podjęciem decyzji w zakresie oznaczeń instalacyjnych dokładnie przestudiować właściwe dokumenty oraz szkolenia, które pozwolą na właściwe interpretowanie symboliki i unikanie niebezpiecznych błędów w instalacjach elektrycznych.

Pytanie 35

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 304 25-30-AC
B. P 302 25-30-AC
C. P 312 B-16-30-AC
D. P 344 C-16-30-AC
Wybierając te wyłączniki różnicowoprądowe P 302 25-30-AC, P 304 25-30-AC i P 344 C-16-30-AC, to tak trochę się pogubiliśmy w ich funkcjach i zastosowaniu. Przykład? Wyłącznik P 302 25-30-AC niby ma ochronę różnicowoprądową, ale w rzeczywistości jest stworzony do innych zastosowań, co może spowodować, że nie zadziała w przypadku przeciążenia lub zwarcia w gniazdach. Podobnie P 304 25-30-AC, który też nie daje pełnej ochrony w standardowych warunkach, co może narazić nasze urządzenia na uszkodzenia i zwiększyć ryzyko porażenia. A P 344 C-16-30-AC, mimo że w niektórych sytuacjach się sprawdzi, nie ma wszystkich potrzebnych funkcji zabezpieczeń, więc nie jest najlepszym wyborem do gniazdek. Wybierając nieodpowiedni wyłącznik, stawiamy użytkowników w niebezpieczeństwie i ryzykujemy całą instalacją elektryczną. Dlatego warto zrozumieć co każdy wyłącznik oferuje i czy pasuje do naszych potrzeb, żeby zapewnić bezpieczeństwo i użytkownikom, i całej instalacji.

Pytanie 36

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDY 3x1,5 750 V
B. YDYn 3x1,5 500 V
C. YDYp 3x1,5 750 V
D. YLY 3x1,5 500 V
Wybór błędnie oznaczonego przewodu prowadzi do wielu nieporozumień, które mogą wynikać z niewłaściwej interpretacji symboliki używanej w oznaczeniach. Przewody typu YDY, które nie zawierają litery 'p', są przewodami okrągłymi, co jest istotnym aspektem w kontekście instalacji w różnych warunkach, na przykład w pomieszczeniach o ograniczonej przestrzeni. Zastosowanie przewodów okrągłych może być niewłaściwe tam, gdzie istnieją ograniczenia przestrzenne, co może prowadzić do problemów z instalacją. Z kolei przewód YDYn 3x1,5 500 V, oznaczony jako przewód z napięciem 500 V, jest niewłaściwy dla aplikacji wymagających wyższego napięcia, co oznacza, że jego zastosowanie w instalacjach o wyższych wymaganiach może prowadzić do zagrożeń związanych z przeciążeniem. Ponadto, przewód YLY 3x1,5 500 V, który sugeruje zastosowanie izolacji polietylenowej, jest błędnym wyborem, ponieważ polietylen ma inne właściwości niż poliwinit, w tym różnice w odporności na czynniki atmosferyczne oraz chemiczne. Zrozumienie tych różnic jest kluczowe, aby uniknąć problemów z trwałością i bezpieczeństwem instalacji elektrycznych. W praktyce, nieprawidłowy wybór przewodu może prowadzić do awarii instalacji, a nawet stanowić zagrożenie pożarowe. Dlatego ważne jest, aby w każdej sytuacji dobierać przewód zgodnie z wymaganiami technicznymi i normami branżowymi, co zapewni bezpieczeństwo i efektywność działania instalacji.

Pytanie 37

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Sterownik rolet.
C. Przekaźnik priorytetowy.
D. Przekaźnik bistabilny.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.

Pytanie 38

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Wkrętarki akumulatorowej z odpowiednim bitem
B. Klucza imbusowego
C. Klucza nasadowego
D. Wiertarki udarowej z wiertłem widiowym
Użycie klucza imbusowego w kontekście wykonywania połączeń w listwach zaciskowych śrubowych jest niewłaściwe, ponieważ narzędzie to jest przeznaczone głównie do luzowania i dokręcania śrub z gniazdem sześciokątnym. W przypadku listw zaciskowych, które zazwyczaj wymagają bardziej elastycznego podejścia do różnych typów śrub, klucz imbusowy nie zapewnia optymalnej efektywności ani szybkości. Wkrętarka akumulatorowa z dopasowanym bitem jest narzędziem, które pozwala na szybką wymianę bitów w zależności od wymagań konkretnego zadania. Z kolei wiertarka udarowa z wiertłem widiowym jest przeznaczona do wiercenia otworów, a nie do dokręcania śrub, co czyni jej użycie w tym kontekście niepraktycznym. Klucz nasadowy, mimo że może być używany do różnych zastosowań, w przypadku listw zaciskowych również nie oferuje takiej uniwersalności i efektywności jak wkrętarka akumulatorowa. Typowym błędem myślowym jest założenie, że każde narzędzie do dokręcania jest odpowiednie do wszystkich zastosowań. W rzeczywistości, wybór narzędzia powinien być uzależniony od specyfiki zadania oraz wymagań dotyczących precyzji, szybkości i bezpieczeństwa pracy. Właściwe narzędzie przyczynia się nie tylko do efektywności, ale również do jakości wykonania instalacji elektrycznej, co jest kluczowe dla jej długotrwałego funkcjonowania.

Pytanie 39

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 3 listwy zaciskowej X1
B. Z zaciskiem A2 stycznika K1
C. Z zaciskiem 4 listwy zaciskowej X1
D. Z zaciskiem 22 stycznika K1
Analizując wybrane odpowiedzi, zauważamy, że wiele z nich opiera się na błędnym zrozumieniu schematu montażowego. Po pierwsze, połączenie zacisku A2 stycznika K1 z zaciskiem 41 stycznika K2 jest nieprawidłowe, ponieważ A2 jest zazwyczaj zarezerwowane dla innego obwodu zasilającego, a nie do bezpośredniego połączenia z K2. W kontekście elektryki, każdy zacisk ma określone funkcje, a pomylenie ich może prowadzić do nieprawidłowego działania urządzenia oraz potencjalnych zagrożeń dla bezpieczeństwa. W przypadku zacisku 22 stycznika K1, który jest połączony z zaciskiem 13 K1, zrozumienie, jakie funkcje pełni każdy z tych zacisków i jak są one zorganizowane w obwodzie, jest kluczowe. Zacisk 4 listwy zaciskowej X1 również nie jest poprawnym połączeniem, ponieważ zgodnie ze schematem, powinien być zarezerwowany dla innych zadań w obwodzie stycznika K2. W praktyce błędy te często wynikają z nieuważnego czytania schematów oraz braku wiedzy na temat podstawowych zasad okablowania. Kluczowe jest, aby przed przystąpieniem do pracy zapoznać się z pełnym kontekstem i funkcjonalnością obwodów, co jest fundamentalne dla zapewnienia skuteczności i bezpieczeństwa w instalacjach elektrycznych.

Pytanie 40

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. nałożyć warstwę cyny na końcówki przewodów
B. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej
C. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
D. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
Wymienione odpowiedzi, które sugerują zastosowanie gniazda o większym prądzie znamionowym lub naniesienie warstwy cyny na końcówki przewodów, są nieprawidłowe i mogą prowadzić do poważnych błędów w instalacji elektrycznej. Użycie gniazda o większym prądzie znamionowym może wydawać się korzystne, jednak nie uwzględnia to możliwości przewodów oraz ich obciążalności prądowej. Każdy element instalacji elektrycznej powinien być dobrany zgodnie z jego przeznaczeniem oraz obciążeniem, do którego jest zaprojektowany. Zastosowanie gniazda o wyższej wartości niż przewody prowadzi do sytuacji, w której przewody mogą ulegać przegrzaniu, co w konsekwencji stwarza ryzyko pożaru. Co więcej, nanoszenie cyny na końcówki przewodów jest praktyką, która nie tylko może wprowadzać dodatkowe opory w połączeniu, ale także stwarza ryzyko korozji oraz osłabienia połączenia w dłuższym okresie użytkowania. W instalacjach elektrycznych kluczową rolę odgrywa jakość połączeń, które powinny być pewne i stabilne, aby uniknąć awarii. Niezależnie od tego, jak zaawansowane są technologie stosowane w instalacji, kluczowe jest przestrzeganie zasad dotyczących podłączania przewodów do właściwych zacisków oraz wykorzystanie odpowiednich materiałów i produktów w zgodzie z normami branżowymi, aby zapewnić bezpieczeństwo i funkcjonalność całej instalacji.