Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 00:53
  • Data zakończenia: 19 grudnia 2025 01:14

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. pirometr
B. induktor
C. przekładnik napięciowy
D. prądnicę tachometryczną
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zamontowaniu w oprawach nowych źródeł światła
B. zadziałaniu bezpiecznika
C. rozbudowaniu instalacji
D. zadziałaniu wyłącznika różnicowoprądowego
Odpowiedź dotycząca przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia po każdorazowym rozbudowaniu instalacji jest słuszna. Rozbudowa instalacji wiąże się z wprowadzeniem nowych elementów oraz modyfikacją istniejących, co może wpływać na bezpieczeństwo i funkcjonalność całego systemu. Z tego względu, standardy branżowe, takie jak PN-EN 60364, zalecają przeprowadzanie pomiarów kontrolnych po każdej rozbudowie, aby upewnić się, że instalacja spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz nie stwarza zagrożenia dla użytkowników. Przykładowo, po dodaniu nowych obwodów czy urządzeń, ważne jest, aby sprawdzić ich poprawność pod względem rezystancji izolacji oraz ciągłości przewodów. Tego typu pomiary pozwalają na identyfikację potencjalnych usterek, takich jak niewłaściwe połączenia czy uszkodzenia izolacji, które mogą prowadzić do awarii lub zagrożeń pożarowych.

Pytanie 5

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B16
B. B10
C. C16
D. C10
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy typu B charakteryzuje się zdolnością do wykrywania przeciążeń oraz zwarć w instalacjach elektrycznych. Przy impedancji pętli zwarcia Z = 4,2 Ω, wyłącznik B10 zapewnia odpowiednią ochronę przeciwporażeniową, gdyż jego prąd znamionowy wynosi 10 A. W sytuacji zwarcia, czas reakcji wyłącznika jest kluczowy dla bezpieczeństwa, a wyłącznik typu B zadziała przy prądzie zwarciowym w granicach 3 do 5 krotności prądu znamionowego. Przykładowo, dla prądu zwarciowego rzędu 30 A, wyłącznik ten zadziała w czasie wystarczającym, by zminimalizować ryzyko uszkodzenia instalacji oraz zapobiec porażeniom. Zgodnie z normami, takimi jak PN-EN 60898, dobór wyłącznika powinien być dostosowany do warunków pracy oraz charakterystyki obciążenia, co potwierdza wybór B10 jako właściwy. Dodatkowo, stosowanie wyłączników nadprądowych zgodnych z obowiązującymi regulacjami sprzyja utrzymaniu wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 6

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 1 rok
B. 2 lata
C. 4 lata
D. 3 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 7

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. wzrost prędkości obrotowej silnika
B. spadek prędkości obrotowej silnika
C. unieruchomienie silnika
D. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 8

Jakie zabezpieczenie stanowi zainstalowane urządzenie pokazane na zdjęciu?

Ilustracja do pytania
A. Różnicowe i nadprądowe.
B. Tylko przepięciowe.
C. Różnicowe i przepięciowe.
D. Tylko nadprądowe.
Urządzenie pokazane na zdjęciu to wyłącznik różnicowoprądowy z zabezpieczeniem nadprądowym, co czyni odpowiedź 'Różnicowe i nadprądowe' poprawną. Wyłączniki różnicowoprądowe są kluczowymi elementami ochrony instalacji elektrycznych. Ich zadaniem jest wykrywanie upływności prądu, co chroni przed porażeniem prądem oraz pożarami spowodowanymi iskrami. Oznaczenie B10 wskazuje na nadprądowe zabezpieczenie o charakterystyce B, co jest typowe dla obwodów o niewielkich prądach startowych, takich jak obwody oświetleniowe czy gniazdka. Dodatkowo, IΔn 0.03A oznacza, że wyłącznik będzie zadziałał przy prądzie różnicowym 30mA, co jest istotnym progiem dla ochrony ludzi przed niebezpiecznymi skutkami porażenia. W praktyce, stosowanie zarówno zabezpieczeń różnicowych, jak i nadprądowych jest zgodne z normami PN-EN 61008-1 oraz PN-EN 60947-2, co zapewnia bezpieczeństwo instalacji elektrycznych w obiektach mieszkalnych i przemysłowych.

Pytanie 9

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 50 V AC
B. 12 V AC
C. 110 V DC
D. 230 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 10

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Amperomierz oraz watomierz
B. Woltomierz oraz watomierz
C. Woltomierz oraz omomierz
D. Amperomierz oraz woltomierz
Aby wyznaczyć rezystancję uzwojeń transformatora średniej mocy, kluczowe jest zastosowanie amperomierza i woltomierza. Amperomierz służy do pomiaru prądu płynącego przez uzwojenie, natomiast woltomierz mierzy napięcie na tym uzwojeniu. Zgodnie z prawem Ohma, rezystancję można obliczyć, dzieląc zmierzone napięcie przez zmierzony prąd (R = U/I). Takie podejście jest nie tylko zgodne z dobrymi praktykami inżynieryjnymi, ale również spełnia standardy zawarte w normach IEC dotyczących testowania transformatorów. W praktyce, w trakcie pomiarów, należy upewnić się, że wszystkie urządzenia są odpowiednio skalibrowane i przystosowane do zakresu mocy transformatora, co zapewni dokładność wyników. Ponadto, pomiary powinny być przeprowadzane w warunkach stabilnych, aby uniknąć zakłóceń mogących wpływać na dokładność odczytów. Takie procedury mogą być kluczowe dla oceny stanu technicznego transformatora oraz jego efektywności energetycznej.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie stopnie ochrony są wymagane dla oprawy, którą należy zastąpić uszkodzoną oprawę w instalacji oświetlenia, zamontowaną w chodniku przed werandą budynku jednorodzinnego?

Ilustracja do pytania
A. IP 67; IK 02
B. IP23; IK03
C. IP 23; IK 10
D. IP 67; IK 09
Odpowiedź IP 67; IK 09 jest poprawna, ponieważ zapewnia odpowiednie stopnie ochrony dla oprawy zamontowanej w chodniku przed werandą budynku jednorodzinnego. Stopień ochrony IP 67 oznacza, że oprawa jest całkowicie pyłoszczelna (pierwsza cyfra 6) oraz odporna na zanurzenie w wodzie do głębokości 1 metra przez maksymalnie 30 minut (druga cyfra 7). Taki poziom ochrony jest kluczowy w obszarach narażonych na kontakt z wodą, zwłaszcza w strefach zewnętrznych, gdzie zmiany pogodowe mogą prowadzić do zalania. Stopień ochrony IK 09 wskazuje na odporność na uderzenia mechaniczne o energii do 10J, co jest istotne dla opraw oświetleniowych instalowanych w miejscach o dużym natężeniu ruchu, takich jak chodniki. W praktyce, zastosowanie opraw z tymi parametrami zwiększa bezpieczeństwo i trwałość instalacji oświetleniowej, minimalizując ryzyko awarii spowodowane zarówno uszkodzeniami mechanicznymi, jak i wpływem warunków atmosferycznych. Warto również zaznaczyć, że zgodnie z normą IEC 60529, odpowiednie zabezpieczenie urządzeń oświetleniowych w strefach zewnętrznych jest kluczowe dla zapewnienia ich długotrwałego i bezpiecznego funkcjonowania.

Pytanie 14

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
B. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
C. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
D. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
Wybór odpowiedzi dotyczącej zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest uzasadniony. Zgodnie z normami instalacji elektrycznych, takimi jak PN-IEC 60364, zaleca się, aby gniazda wtykowe w pomieszczeniach mieszkalnych były podłączone do odrębnych obwodów. Taki układ zwiększa bezpieczeństwo, ponieważ w przypadku przeciążenia lub zwarcia, wyłączenie jednego obwodu nie wpływa na pozostałe gniazda w innych pomieszczeniach. Przykładem praktycznym jest sytuacja, gdy w jednym pomieszczeniu używamy wielu urządzeń elektrycznych, takich jak komputer, lodówka czy telewizor. Dzieląc zasilanie na poszczególne obwody, minimalizujemy ryzyko spadku napięcia i zapewniamy stabilność zasilania. Dodatkowo, urządzenia wymagające dużej mocy, jak pralki czy kuchenki, powinny być zasilane z osobnych obwodów, co wynika z zasad bezpieczeństwa oraz efektywności energetycznej.

Pytanie 15

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. lakieru izolacyjnego
B. pierścienia zwierającego
C. izolacji żłobkowej
D. drutu nawojowego
Nieprawidłowe koncepcje dotyczące odpowiedzi związane z drutem nawojowym, izolacją żłobkową i lakierem izolacyjnym mogą wynikać z nieporozumienia dotyczącego funkcji tych elementów w budowie silnika indukcyjnego. Drut nawojowy jest kluczowym elementem, ponieważ to właśnie z niego składają się uzwojenia stojana. Jego jakość oraz odpowiedni dobór materiału mają bezpośrednie przełożenie na wydajność i sprawność silnika. Izolacja żłobkowa zapewnia, że uzwojenia nie zwarcia się nawzajem, co jest niezbędne do prawidłowego funkcjonowania silnika. Lakier izolacyjny dodatkowo chroni uzwojenia przed wilgocią i zanieczyszczeniami, co może prowadzić do uszkodzeń. Ignorowanie roli tych elementów może prowadzić do błędnych wniosków na temat konstrukcji silników. Często problemy dotyczące ich zastosowania mogą wynikać z braku znajomości norm branżowych, które zalecają konkretne materiały i metody izolacji, co jest kluczowe dla bezpieczeństwa oraz wydajności pracy silników. Wszelkie niedopatrzenia w tych kwestiach mogą prowadzić do awarii silnika, a także zwiększenia kosztów eksploatacji z powodu nieefektywności energetycznej. W związku z tym, ważne jest zrozumienie, że każdy z wymienionych elementów pełni istotną rolę w prawidłowym działaniu silnika indukcyjnego.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaką charakterystykę powinien mieć wyłącznik instalacyjny nadprądowy, aby zapewnić, że nie wystąpi przypadkowe zadziałanie zabezpieczenia podczas uruchamiania urządzenia o dużym momencie rozruchowym?

A. Charakterystykę C
B. Charakterystykę D
C. Charakterystykę Z
D. Charakterystykę B
Wyłącznik nadprądowy z charakterystyką D to całkiem fajna opcja, zwłaszcza jeśli pracujesz z urządzeniami, które mają duży pobór prądu, jak na przykład silniki. Wiesz, różni się on trochę od charakterystyk B i C, które nie pozwalają na takie chwilowe przeszalenie prądu. A w przypadku silników, to może być naprawdę ważne, bo w momencie startu potrafią pobierać nawet 5-7 razy więcej prądu niż w normalnych warunkach. Taki wyłącznik D pomoże uniknąć niepotrzebnych wyłączeń, co jest kluczowe w przemyśle, gdzie maszyny muszą działać bez przerwy. Dobrze jest też pamiętać o normach, jak IEC 60947-2, bo wskazują one, jak ważne jest dobranie odpowiedniej charakterystyki do konkretnego obciążenia. Dzięki temu możesz być pewny, że wszystko będzie działać sprawnie i bezpiecznie.

Pytanie 18

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. pięć lat
B. jeden rok
C. dwa lata
D. pół roku
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 19

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Częstotliwość prądu w silniku wzrośnie
B. Pobór mocy czynnej z sieci ulegnie zwiększeniu
C. Napięcie na końcówkach silnika się zmniejszy
D. Pobór mocy biernej z sieci będzie mniejszy
Założenia sugerujące, że pobór mocy czynnej z sieci wzrośnie, napięcie na zaciskach silnika spadnie lub częstotliwość prądu w silniku się zwiększy, są błędne i opierają się na nieprecyzyjnym rozumieniu zasad działania silników asynchronicznych oraz kondensatorów. Pobór mocy czynnej jest ściśle związany z pracą silnika, a włączenie kondensatorów ma na celu poprawę współczynnika mocy, co prowadzi do zmniejszenia poboru mocy biernej, a nie czynnej. W przypadku spadku napięcia na zaciskach silnika, takie zjawisko występuje jedynie w sytuacji, gdy obciążenie jest zbyt duże w porównaniu do możliwości zasilania, co jest odwrotnością efektu uzyskanego przez kondensatory. Co więcej, zwiększenie częstotliwości prądu nie jest możliwe przez dodanie kondensatorów, ponieważ częstotliwość prądu w systemie zasilania jest stała i zadana przez dostawcę energii. Zrozumienie tych zasad jest kluczowe do poprawnej analizy systemów elektroenergetycznych oraz minimalizacji strat energii i poprawy efektywności operacyjnej. W praktyce, nieodpowiednie podejście do kompensacji mocy biernej może prowadzić do poważnych problemów, w tym do obniżenia jakości zasilania i zwiększenia kosztów eksploatacji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
B. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
C. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
D. Zmierzyć ciągłość przewodów ochronnych PE
Sprawdzanie działania wyłącznika RCD przy pomocy przycisku 'TEST' nie rozwiązuje problemu z wysoką wartością impedancji pętli zwarcia, a jedynie testuje funkcjonalność samego urządzenia. Wyłączniki RCD mają na celu ochronę przed porażeniem prądem elektrycznym, ale ich sprawność nie wpływa bezpośrednio na impedancję pętli zwarcia. Wartość impedancji pętli zwarcia jest krytycznym parametrem, który powinien mieścić się w określonych granicach, aby zapewnić, że zabezpieczenia, takie jak bezpieczniki lub wyłączniki, zadziałają w odpowiednim czasie w przypadku zwarcia. Testy rezystancji izolacji przewodów, choć istotne, nie są bezpośrednio związane z problemem impedancji pętli zwarcia, ponieważ koncentrują się na integralności izolacji, a nie na połączeniach. Z kolei pomiar ciągłości przewodów ochronnych PE, choć ważny, nie identyfikuje potencjalnych problemów z połączeniami wewnętrznymi obwodu, które mogą być źródłem wysokiej impedancji. Niestety, często dochodzi do mylnego przekonania, że pojedyncze testy mogą kompleksowo rozwiązać problem, podczas gdy kluczowe jest zdiagnozowanie i nawiązanie do przyczyn wysokiej impedancji, które mogą wynikać z wielu czynników, w tym właśnie z nieprawidłowych połączeń elektrycznych.

Pytanie 22

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 2 lata
B. 5 lat
C. 3 lata
D. 1 rok
Odpowiedź '5 lat' jest jak najbardziej zgodna z przepisami prawa i normami bezpieczeństwa, które dotyczą elektryki w budynkach. Ustalono ten okres, żeby zapewnić bezpieczeństwo dla użytkowników i zmniejszyć ryzyko awarii. Regularne przeglądy co pięć lat pomagają dostrzegać ewentualne usterki, zużycie materiałów albo niezgodności ze standardami. W budynkach wielorodzinnych, gdzie mieszka dużo ludzi, ważne jest, żeby instalacje były nie tylko sprawne, ale też bezpieczne. Jakby przeglądy były robione rzadziej, mogłoby to spowodować poważne zagrożenia, jak pożar czy porażenie prądem. W praktyce dobrze jest nie tylko trzymać się tej pięcioletniej zasady, ale i wprowadzać częstsze przeglądy, jeśli widzisz, że instalacja ma jakieś oznaki zużycia albo w przypadku obiektów, które są w większym ryzyku.

Pytanie 23

Który z poniższych przyrządów pozwala na zidentyfikowanie przerwy w przewodzie PE techniką bezpośrednią?

A. Omomierz
B. Woltomierz
C. Detektor napięcia
D. Miernik upływu
Wskaźnik napięcia, woltomierz i miernik upływu to przyrządy, które mają swoje specyficzne zastosowania, ale nie są odpowiednie do lokalizowania braków ciągłości przewodu PE metodą bezpośrednią. Wskaźnik napięcia służy głównie do szybkiego sprawdzania obecności napięcia w obwodach, co nie dostarcza informacji o ciągłości przewodów. Ten przyrząd może jednak sugerować, czy w danym miejscu obwodu występuje napięcie, ale nie informuje o ewentualnych przerwach czy uszkodzeniach. Użycie wskaźnika napięcia w kontekście pomiaru ciągłości przewodu PE może prowadzić do błędnych wniosków, gdyż może być sytuacja, w której napięcie jest obecne, ale przewód nie jest w pełni sprawny. Woltomierz, choć jest bardziej zaawansowanym narzędziem do pomiaru napięcia, również nie dostarcza danych na temat ciągłości przewodów, ponieważ jego głównym celem jest pomiar napięcia między dwoma punktami. Z kolei miernik upływu służy do oceny strumienia prądu, który przepływa przez ciało lub inne masy, co nie jest bezpośrednio związane z lokalizowaniem braków ciągłości przewodu. Użycie tych przyrządów w kontekście problemów z przewodem PE może prowadzić do pominięcia krytycznych usterek, co zagraża bezpieczeństwu instalacji elektrycznej. Dlatego kluczowe jest stosowanie odpowiednich narzędzi, takich jak omomierz, aby zapewnić dokładność i niezawodność pomiarów w systemach elektrycznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Przerwa w uzwojeniu pierwotnym
B. Zwarcie w uzwojeniu pierwotnym
C. Zwarcie w uzwojeniu wtórnym
D. Przerwa w uzwojeniu wtórnym
Zwarcie w uzwojeniu pierwotnym transformatora obniżającego napięcie powoduje, że przy braku obciążenia (stan jałowy) napięcie na uzwojeniu pierwotnym nie może osiągnąć wartości znamionowej. W przypadku transformatora o przekładni napięciowej wynoszącej 5, napięcie wtórne powinno wynosić pięć razy mniejsze niż pierwotne, czyli przy napięciu 230 V na uzwojeniu pierwotnym, napięcie wtórne powinno wynosić 46 V. Jednak w omawianym przypadku zmierzono napięcia 230 V i 460 V, co sugeruje, że doszło do zwarcia w uzwojeniu pierwotnym. Takie uszkodzenie może prowadzić do znacznego wzrostu prądu, co jest niebezpieczne dla transformatora, a także dla sieci zasilającej. W praktyce, w celu weryfikacji stanu uzwojeń, stosuje się pomiary impedancji oraz testy napięciowe, które są zgodne z normami IEC i ANSI. W przypadku stwierdzenia zwarcia, konieczne jest szybkie odłączenie zasilania i przeprowadzenie naprawy oraz wymiany uszkodzonych elementów, aby przywrócić prawidłowe funkcjonowanie transformatora.

Pytanie 28

Jaki jest maksymalny dopuszczalny czas wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku uszkodzenia w systemie sieciowym TN-S, kiedy napięcie fazowe przekracza 400 V, a obwody odbiorcze mają prąd znamionowy do 32 A?

A. 0,5 s
B. 0,1 s
C. 0,8 s
D. 0,2 s
Czas wyłączenia zasilania w instalacjach elektrycznych jest kluczowym elementem ochrony przed porażeniem prądem. W przypadku odpowiedzi, które wskazują na czasy wyłączenia dłuższe niż 0,1 s, istnieje fundamentalne nieporozumienie dotyczące norm ochrony przeciwporażeniowej. Czas 0,5 s czy 0,2 s, choć mogą wydawać się wystarczające, nie spełniają wymogów stawianych przez normy, takie jak PN-EN 60364-4-41, które jasno określają, że najkrótszy czas wyłączenia zasilania powinien wynosić 0,1 s dla obwodów o prądzie znamionowym do 32 A w układzie TN-S. W wydłużonych czasach wyłączenia zwiększa się ryzyko dla zdrowia użytkowników, ponieważ dłuższa ekspozycja na prąd może prowadzić do poważnych obrażeń. Typowe błędy myślowe prowadzące do takich wniosków obejmują ignorowanie specyfiki norm oraz nieprawidłowe rozumienie zasad działania zabezpieczeń elektrycznych. Często myli się również czasy wyłączenia dla różnych rodzajów instalacji, co prowadzi do stosowania niewłaściwych wartości czasowych, które mogą być nieadekwatne do zapewnienia bezpieczeństwa. Wiedza o ochronie przed porażeniem prądem oraz znajomość aktualnych norm są kluczowe dla projektowania i eksploatacji instalacji elektrycznych, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
B. spisu terminów oraz zakresów prób i pomiarów kontrolnych
C. specyfikacji technicznej instalacji
D. opisu doboru urządzeń zabezpieczających
Opis doboru urządzeń zabezpieczających nie jest konieczny w instrukcji eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowo-prądowymi, ponieważ taki dobór powinien być już wykonany na etapie projektowania instalacji. Instrukcja eksploatacji koncentruje się na użytkowaniu oraz utrzymaniu instalacji, nie zaś na jej projektowaniu. W praktyce oznacza to, że wszystkie istotne decyzje dotyczące doboru wyłączników, takich jak typ, charakterystyka oraz zasady działania, powinny być przedstawione w dokumentacji projektowej, zgodnie z normami takimi jak PN-IEC 60947-2, które regulują zasady stosowania urządzeń zabezpieczających. Przykładem może być sytuacja, w której instalacja elektryczna już funkcjonuje i wymaga okresowych przeglądów – w takim przypadku istotne jest, aby instrukcja eksploatacji zawierała informacje o terminach przeglądów oraz zasadach ich przeprowadzania, a nie szczegóły dotyczące wcześniejszego doboru sprzętu. To pozwala na efektywne zarządzanie instalacją oraz zapewnia zgodność z przepisami BHP i normami technicznymi.

Pytanie 32

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
B. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
C. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
D. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
Gniazda wtykowe każdego pomieszczenia zasilać z osobnego obwodu to zalecenie, które nie znajduje zastosowania w standardach dotyczących instalacji elektrycznych w pomieszczeniach mieszkalnych. Według norm PN-IEC 60364-1 oraz wytycznych związanych z projektowaniem instalacji elektrycznych, obwody gniazd wtykowych mogą być grupowane, aby zminimalizować koszty i uprościć instalację. Zazwyczaj zaleca się, aby gniazda wtykowe w jednym pomieszczeniu były zasilane z jednego obwodu, co pozwala na efektywne wykorzystanie energii oraz ogranicza liczbę wymaganych obwodów w rozdzielnicy. Przykładowo, w typowej kuchni lub salonie, gdzie wykorzystuje się wiele gniazd wtykowych, projektowanie obwodów z wykorzystaniem jednego obwodu dla danego pomieszczenia jest praktycznym rozwiązaniem. Ponadto, stosując się do takich zasad, można uniknąć niepotrzebnej komplikacji w instalacji oraz eksploatacji, co sprzyja bezpieczeństwu użytkowania."

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. sprawdzić ciągłość obwodu wirnika
B. odłączyć rezystory rozruchowe
C. zwierać uzwojenie stojana
D. wymienić szczotki
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 35

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Pogorszenie stanu mechanicznego połączeń przewodów
B. Obniżenie rezystancji izolacji przewodów
C. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
D. Przerwanie pionowego uziomu w ziemi
Pogorszenie się stanu mechanicznego połączeń przewodów jest odpowiedzią prawidłową, ponieważ podczas oględzin instalacji elektrycznej można fizycznie ocenić jakość połączeń. W praktyce, mechaniczne uszkodzenia, takie jak luźne złącza, korozja czy pęknięcia, mogą prowadzić do zwiększonego oporu, co z kolei zwiększa ryzyko przegrzewania się i potencjalnych awarii. Standardy takie jak PN-IEC 60364 podkreślają znaczenie regularnych inspekcji połączeń w celu zapewnienia ich niezawodności. W sytuacjach awaryjnych, takich jak pożar spowodowany zwarciem, wiele incydentów można przypisać właśnie do niewłaściwego stanu połączeń. Przykładem skutków takiego pogorszenia może być utrata ciągłości elektrycznej prowadząca do nieprawidłowego działania urządzeń czy nawet ich uszkodzenia. Dlatego też, podczas oględzin, należy szczegółowo badać stan wszystkich połączeń, aby zapewnić bezpieczeństwo i sprawność całej instalacji elektrycznej.

Pytanie 36

Jakiego rodzaju wyłączników RCD należy użyć do zabezpieczenia instalacji elektrycznej obwodu gniazd jednofazowych w pracowni komputerowej, gdzie znajdują się 15 zestawów komputerowych?

A. 25/2/030-AC
B. 25/4/030-AC
C. 25/4/300-A
D. 25/2/030-A
Wybranie wyłącznika RCD 25/2/030-A do zabezpieczenia obwodu gniazd jednofazowych w pracowni komputerowej jest właściwym wyborem, biorąc pod uwagę wymagania bezpieczeństwa oraz specyfikę użytkowania. Typ 25/2/030-A oznacza, że jest to wyłącznik różnicowoprądowy o prądzie znamionowym 30 mA, co jest standardem zalecanym do ochrony osób przed porażeniem prądem elektrycznym, szczególnie w miejscach narażonych na kontakt z wodą. W pracowni komputerowej, gdzie znajdują się urządzenia elektroniczne, a także potencjalnie wilgotne warunki, jest to kluczowe. Zastosowanie wyłącznika o prądzie różnicowym 30 mA jest zgodne z normą PN-EN 61008, która zaleca stosowanie tego typu zabezpieczeń w instalacjach z gniazdami użytkowymi. Dodatkowo, 25/2/030-A charakteryzuje się niskim prądem zadziałania, co zapewnia szybką reakcję w przypadku wykrycia upływu prądu, minimalizując ryzyko porażenia. Przykład zastosowania to sytuacja, w której pracownik korzysta z komputera, a w wyniku uszkodzenia przewodu zasilającego występuje przepływ prądu do ziemi – RCD natychmiast zareaguje, odcinając zasilanie.

Pytanie 37

Co oznacza symbol IP44 w kontekście ochrony urządzeń elektrycznych?

A. Ochronę przed pełnym zanurzeniem w wodzie
B. Ochronę przed pyłem oraz działaniem pary wodnej
C. Ochronę przed ciałami stałymi większymi niż 1 mm oraz przed bryzgami wody z dowolnego kierunku
D. Ochronę przed bezpośrednim działaniem promieni słonecznych
Symbol IP44 w kontekście ochrony urządzeń elektrycznych oznacza, że urządzenie jest zabezpieczone przed ciałami stałymi o średnicy większej niż 1 mm oraz przed bryzgami wody z dowolnego kierunku. Jest to standardowy sposób klasyfikacji stopnia ochrony zapewnianej przez obudowy urządzeń elektrycznych, określany przez normę IEC 60529. Pierwsza cyfra '4' oznacza, że urządzenie jest chronione przed cząstkami stałymi większymi niż 1 mm, co jest istotne w kontekście ochrony przed kurzem, pyłem czy nawet niewielkimi owadami. Druga cyfra '4' wskazuje na ochronę przed wodą bryzgającą z dowolnego kierunku, co jest istotne w środowiskach, gdzie urządzenie może być narażone na deszcz lub inne źródła wilgoci, ale nie jest przewidziane do zanurzenia. Tego rodzaju ochrona jest szczególnie ważna w przypadku instalacji zewnętrznych lub w miejscach o podwyższonej wilgotności, gdzie niezawodność sprzętu elektrycznego jest kluczowa dla bezpieczeństwa i ciągłości pracy. W praktyce, wybór odpowiedniej klasy IP pozwala na dostosowanie urządzenia do specyficznych warunków pracy, zapewniając jego długowieczność i niezawodność, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie skutki przyniesie zmiana przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2 w instalacji elektrycznej podtynkowej w budynku mieszkalnym?

A. Obniżenie wytrzymałości mechanicznej przewodów
B. Wzrost obciążalności prądowej instalacji
C. Wzrost rezystancji pętli zwarcia
D. Obniżenie napięcia roboczego
Wybór odpowiedzi dotyczącej zwiększenia rezystancji pętli zwarcia jest błędny, ponieważ nie uwzględnia podstawowych zasad dotyczących przewodnictwa elektrycznego. Przewody DY, w przeciwieństwie do ADG, mają lepsze parametry przewodzenia prądu, co automatycznie wiąże się z obniżeniem rezystancji. Wykorzystanie przewodów o niższej rezystancji jest kluczowe dla bezpieczeństwa instalacji, ponieważ zmniejsza ryzyko przegrzania oraz skutków zwarcia. Zwiększenie rezystancji pętli zwarcia mogłoby prowadzić do niepożądanych skutków, takich jak zbyt wysokie napięcia podczas zwarcia, co zagraża bezpieczeństwu użytkowników. Kolejnym błędnym rozumowaniem jest przekonanie, że zmiana na przewody DY zmniejsza wytrzymałość mechaniczną przewodów. W rzeczywistości przewody DY mają lepsze właściwości mechaniczne, co czyni je bardziej odpornymi na uszkodzenia, a tym samym zwiększa ich żywotność. Co więcej, obniżenie napięcia roboczego nie ma związku z rodzajem zastosowanych przewodów, ponieważ napięcie robocze zależy od projektowanych parametrów instalacji oraz używanych urządzeń. Właściwy dobór przewodów nie tylko poprawia parametry techniczne instalacji, ale także zwiększa jej bezpieczeństwo i niezawodność, co jest zgodne z obowiązującymi normami i standardami branżowymi.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.