Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 10 lutego 2026 18:24
  • Data zakończenia: 10 lutego 2026 18:35

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przedstawiony obraz został zarejestrowany podczas wykonania

Ilustracja do pytania
A. rezonansu magnetycznego.
B. badania radioizotopowego.
C. pozytonowej tomografii emisyjnej.
D. tomografii komputerowej.
Przedstawiony obraz to klasyczna scyntygrafia kośćca – czyli wynik badania radioizotopowego układu kostnego. Widać całe ciało w projekcji przedniej i tylnej, z równomiernym, dość „ziarnistym” rozkładem znacznika w kościach, bez typowych dla TK czy MR przekrojów poprzecznych. W medycynie nuklearnej nie oglądamy samej anatomii jak w RTG czy TK, tylko rozkład radiofarmaceutyku, który pokazuje metabolizm i aktywność biologiczną tkanek. Tutaj najczęściej stosuje się 99mTc-MDP lub inny fosfonian znakowany technetem, który gromadzi się w kościach proporcjonalnie do ich ukrwienia i przebudowy. Dzięki temu takie badanie jest bardzo czułe w wykrywaniu przerzutów do kości, świeżych złamań, zmian zapalnych czy jałowej martwicy. W praktyce klinicznej scyntygrafia całego szkieletu jest standardem np. w onkologii (rak piersi, prostata, nerki), ortopedii i reumatologii. Obraz z gammakamery ma niską rozdzielczość anatomiczną, ale wysoką czułość funkcjonalną. Z mojego doświadczenia dobrą praktyką jest zawsze kojarzyć: widok „szkieletu w całości”, obraz dwuwymiarowy, bez warstw, o charakterystycznej „szarej” skali i opis typu „przód/tył” – to najczęściej właśnie scyntygrafia. W odróżnieniu od TK czy MR, pacjent dostaje dożylnie radiofarmaceutyk, czeka się zwykle 2–3 godziny na wychwyt w kościach, a potem wykonuje się powolny skan całego ciała gammakamerą. W nowocześniejszych pracowniach łączy się to potem z TK (tzw. SPECT/CT), ale sam obraz szkieletu, jak na tym przykładzie, pochodzi z klasycznej gammakamery, czyli z badania radioizotopowego.

Pytanie 2

W pozytonowej tomografii emisyjnej PET zostaje zarejestrowane promieniowanie powstające podczas

A. anihilacji pary proton-antyproton.
B. rozpraszania culombowskiego.
C. anihilacji pary elektron-pozyton.
D. rozpraszania comptonowskiego.
W pozytonowej tomografii emisyjnej (PET) kluczowym zjawiskiem fizycznym jest właśnie anihilacja pary elektron–pozyton. Radiofarmaceutyk podany pacjentowi emituje pozytony, czyli antycząstki elektronów. Pozyton w tkankach bardzo szybko traci energię kinetyczną, zderzając się z elektronami otoczenia, aż w końcu dochodzi do ich spotkania i anihilacji. W wyniku tej anihilacji powstają dwa fotony promieniowania gamma o energii 511 keV każdy, emitowane prawie dokładnie w przeciwnych kierunkach (pod kątem około 180°). To właśnie te dwa skorelowane fotony są rejestrowane w aparacie PET w trybie tzw. koincydencji. Z mojego doświadczenia to jest najważniejszy fizyczny „trik” PET-u: aparat nie widzi bezpośrednio pozytonu, tylko parę fotonów po anihilacji. Detektory ułożone dookoła pacjenta rejestrują jednoczesne (w bardzo krótkim oknie czasowym) uderzenia fotonów w przeciwległe kryształy scyntylacyjne. Na tej podstawie system rekonstruuje linię, wzdłuż której musiała zajść anihilacja, czyli tzw. line of response (LOR). Sumując miliony takich zdarzeń, komputer odtwarza rozkład radioaktywności w organizmie. W praktyce klinicznej, np. w onkologii, pozwala to ocenić metabolizm glukozy w guzach przy użyciu 18F-FDG albo wychwyt innych znaczników. Standardy pracowni medycyny nuklearnej (np. EANM) podkreślają znaczenie prawidłowego doboru radiofarmaceutyku i kalibracji systemu detekcji właśnie pod kątem rejestracji fotonów 511 keV i ich koincydencji. Moim zdaniem, jak dobrze zrozumiesz mechanizm anihilacji i rejestracji tych dwóch fotonów, dużo łatwiej ogarnąć później takie rzeczy jak korekcja osłabienia, rozpraszania czy artefakty w obrazach PET/CT.

Pytanie 3

Na zarejestrowanych obrazach badania renoscyntygraficznego widać, że prawa nerka pacjenta

Ilustracja do pytania
A. nie gromadzi radioznacznika.
B. wykazuje opóźnione wydalanie radioznacznika.
C. wykazuje opóźnione gromadzenie radioznacznika.
D. gromadzi prawidłowo radioznacznik.
Na przedstawionych kolejnych klatkach badania renoscyntygraficznego widać wyraźnie, że po stronie lewej (oznaczenie L) nerka gromadzi radioznacznik, a następnie stopniowo go wydala – obraz jest dynamiczny, krzywa czas–aktywność w takiej nerce zwykle ma typowy kształt: szybki wzrost, plateau, potem powolny spadek. Po stronie prawej (P) praktycznie od początku badania brak jest wyraźnego ogniska wychwytu w rzucie prawej nerki, a w kolejnych minutach nic się tam istotnie nie zmienia. To właśnie jest typowy obraz nerki, która nie gromadzi radioznacznika – albo z powodu braku perfuzji, albo ciężkiego uszkodzenia miąższu, albo w skrajnych przypadkach braku czynnej nerki (np. nerka zanikowa, po przebytych zmianach zapalnych, niedokrwiennych, po ciężkim uszkodzeniu toksycznym itp.). W rutynowej praktyce medycyny nuklearnej przy interpretacji renoscyntygrafii zawsze porównuje się obie nerki: symetrię ukrwienia, tempo narastania sygnału, maksymalne gromadzenie oraz fazę wydalania. Jeżeli jedna nerka jest praktycznie „niewidoczna” na wszystkich fazach, a tło w tej okolicy nie różni się od reszty jamy brzusznej, mówimy o braku gromadzenia radioznacznika. Moim zdaniem ważne jest też, żeby pamiętać o możliwych przyczynach technicznych: zbyt mała dawka, zła kolimacja, przesunięcie pacjenta – ale tutaj lewa nerka jest prawidłowo widoczna, więc problem techniczny jest mało prawdopodobny. W opisie takiego badania według dobrych praktyk (EANM, SNMMI) podaje się zwykle procentowy udział czynnościowy każdej nerki; przy braku gromadzenia po jednej stronie udział tej nerki będzie bliski 0%. Klinicznie takie rozpoznanie ma duże znaczenie np. przed planowanym zabiegiem urologicznym, kwalifikacją do nefrektomii, oceną powikłań po zatorze tętnicy nerkowej lub po ciężkim odmiedniczkowym zapaleniu. Tego typu obraz nie zostawia dużego pola do interpretacji – to nie jest ani opóźnione gromadzenie, ani czyste zaburzenie fazy wydalania, tylko funkcjonalnie „niema” nerka.

Pytanie 4

Który narząd został uwidoczniony na przedstawionym obrazie scyntygraficznym?

Ilustracja do pytania
A. Wątroba.
B. Serce.
C. Płuca.
D. Trzustka.
Na obrazie scyntygraficznym widoczna jest wątroba – charakterystyczne, nieregularne ognisko gromadzenia znacznika położone w prawej górnej części jamy brzusznej, przesunięte nieco ku górze pod prawym łukiem żebrowym. W badaniach medycyny nuklearnej, szczególnie w klasycznej scyntygrafii wątroby i śledziony z użyciem koloidów znakowanych technetem-99m, fizjologicznie największą aktywność obserwujemy właśnie w miąższu wątrobowym. Kolorowe mapowanie (czerwony/żółty – najwyższe wychwyty, zielony/niebieski – niższe) dobrze pokazuje rozkład perfuzji i czynności fagocytarnej komórek układu siateczkowo‑śródbłonkowego. Moim zdaniem warto zapamiętać, że w prawidłowym badaniu wątroba ma dość jednorodną intensywność, o wyraźnych granicach, bez ubytków wychwytu. W praktyce klinicznej scyntygrafię wątroby wykorzystuje się rzadziej niż kiedyś, ale nadal bywa przydatna przy ocenie rozległości uszkodzenia miąższu, funkcji resztkowej po resekcjach czy w kwalifikacji do zabiegów radioembolizacji. W standardach medycyny nuklearnej podkreśla się konieczność prawidłowego pozycjonowania pacjenta (najczęściej pozycja leżąca na plecach, detektor nad jamą brzuszną) oraz stosowania odpowiednich okien energetycznych dla Tc-99m, żeby uzyskać czytelny obraz narządu. Dobra praktyka to zawsze korelacja scyntygrafii z badaniami anatomicznymi, np. USG lub TK, ale pierwszym krokiem jest właśnie poprawne rozpoznanie, że oglądamy wątrobę, a nie płuca czy serce. Takie „czytanie z mapy izotopowej” to typowa umiejętność technika pracowni medycyny nuklearnej.

Pytanie 5

Na obrazie uwidoczniono

Ilustracja do pytania
A. radiogram czynnościowy kręgosłupa lędźwiowego.
B. radiogram z wadą postawy.
C. radiogram czynnościowy kręgosłupa piersiowego.
D. scyntygram kośćca.
Na tym obrazie łatwo się pomylić, jeśli ktoś patrzy na układ kostny wyłącznie przez pryzmat klasycznego RTG. Intuicyjnie można pomyśleć: „widać cały szkielet, więc to pewnie jakiś radiogram kręgosłupa albo badanie postawy”. Tymczasem kluczowe jest rozpoznanie techniki obrazowania. Radiogram, czyli zdjęcie RTG, pokazuje różnice pochłaniania promieniowania przez tkanki – kości są wyraźnie białe, tło ciemne, widoczne są ostre kontury, struktury tkanek miękkich, czasem gaz w przewodzie pokarmowym, a obraz jest zwykle ograniczony do jednej okolicy (np. tylko kręgosłup lędźwiowy). Tutaj mamy coś zupełnie innego: cały szkielet w dwóch projekcjach, bez typowych granic narządów, z rozmytym, „izotopowym” wyglądem. To cechy badania medycyny nuklearnej, czyli scyntygrafii kości. Pojęcie „radiogram z wadą postawy” sugeruje klasyczne zdjęcie RTG w projekcji stojącej, gdzie ocenia się np. skoliozę, kifozy, ustawienie miednicy. Tam jednak widzimy dobrze odwzorowane zarysy kręgów, talerzy biodrowych, łuków żebrowych, a nie równomierny rozkład aktywności radioznacznika. Radiogram czynnościowy kręgosłupa piersiowego czy lędźwiowego to z kolei seria zdjęć RTG wykonanych w zgięciu i wyproście (czasem w skłonach bocznych), żeby ocenić ruchomość segmentów, niestabilność czy listhezę. Są to badania lokalne, skierowane na jeden odcinek kręgosłupa, a nie na cały szkielet. Typowym błędem myślowym jest utożsamianie każdego „białego szkieletu na czarnym tle” z RTG. W medycynie nuklearnej obraz zależy od wychwytu radiofarmaceutyku, a nie od gęstości tkanki w klasycznym sensie. Dlatego kontury są miękkie, a ogniska patologiczne wyglądają jak obszary zwiększonej (gorące) lub zmniejszonej (zimne) aktywności, a nie jak złamania czy zwapnienia w klasycznym radiogramie. Rozpoznanie modalności – RTG vs scyntygrafia – to podstawa poprawnej interpretacji i planowania dalszej diagnostyki.

Pytanie 6

Kto jest odpowiedzialny za wykonywanie testów podstawowych kontroli jakości gammakamery w Zakładzie Medycyny Nuklearnej?

A. Lekarz radiolog z inspektorem ochrony radiologicznej.
B. Technik elektroradiolog z inspektorem ochrony radiologicznej.
C. Technik elektroradiolog z inżynierem medycznym.
D. Lekarz radiolog z technikiem elektroradiologiem.
Prawidłowo wskazano, że za wykonywanie testów podstawowych kontroli jakości gammakamery odpowiada duet: technik elektroradiolog oraz inżynier medyczny (często jest to również fizyk medyczny, ale organizacyjnie zwykle podchodzi to pod inżynierię medyczną). Wynika to z podziału kompetencji w Zakładzie Medycyny Nuklearnej i z obowiązujących wytycznych dotyczących zapewnienia jakości w diagnostyce izotopowej. Technik elektroradiolog zna procedury kliniczne, obsługę gammakamery, zasady przygotowania pacjenta i wykonywania badań scyntygraficznych. To on w praktyce uruchamia aparat, wykonuje codzienne testy podstawowe, np. jednorodności pola, sprawdzenie energii fotopiku, prostoliniowości, rozdzielczości przestrzennej przy użyciu odpowiednich fantomów. Inżynier medyczny odpowiada natomiast za stronę techniczną i fizyczną systemu: konfigurację detektorów, parametry pracy kolimatorów, oprogramowanie rekonstrukcyjne, serwisowanie aparatu, analizę wyników testów i ich dokumentację. W dobrych zakładach, z mojego doświadczenia, inżynier bardzo pilnuje trendów wyników testów, bo pozwala to wychwycić wczesne pogorszenie parametrów pracy gammakamery, zanim pacjentowe obrazy zaczną być zauważalnie gorsze. Standardy jakości, zarówno krajowe jak i międzynarodowe (np. zalecenia IAEA czy wytyczne EANM), podkreślają, że kontrola jakości w medycynie nuklearnej musi być prowadzona systematycznie, według ustalonych protokołów, z podziałem zadań pomiędzy personel medyczny i techniczny. To nie jest tylko formalność – poprawnie wykonywane testy podstawowe zmniejszają ryzyko błędnej diagnozy, niepotrzebnych powtórek badań, a także ograniczają narażenie pacjentów na zbędną dawkę promieniowania, bo badania są wykonywane prawidłowo już za pierwszym razem. W praktyce oznacza to, że technik i inżynier działają razem: technik robi pomiary, inżynier je ocenia, interpretuje i w razie potrzeby inicjuje serwis lub korektę parametrów urządzenia.

Pytanie 7

Emisja fali elektromagnetycznej występuje w procesie rozpadu promieniotwórczego

A. gamma.
B. alfa.
C. beta minus.
D. beta plus.
Prawidłowo wskazana została emisja promieniowania gamma. W fizyce jądrowej mówimy, że rozpad gamma to proces, w którym jądro atomowe przechodzi ze stanu wzbudzonego do stanu o niższej energii, nie zmieniając ani liczby protonów, ani neutronów. Czyli skład jądra zostaje ten sam, ale pozbywa się ono nadmiaru energii właśnie w postaci fali elektromagnetycznej o bardzo wysokiej energii – fotonu gamma. To jest klucz: gamma to nie cząstka materialna jak elektron czy alfa, tylko kwant promieniowania elektromagnetycznego. W medycynie nuklearnej ta właściwość jest wykorzystywana non stop. W badaniach scyntygraficznych czy PET dobiera się takie radioizotopy, które emitują głównie promieniowanie gamma (lub w PET: parę fotonów 511 keV po anihilacji), bo fale elektromagnetyczne gamma dobrze przechodzą przez tkanki i można je zarejestrować gammakamerą lub detektorami PET. Standardem jest np. technet-99m, który po przejściu do stanu podstawowego emituje foton gamma, a aparat rejestruje jego tor i tworzy obraz rozmieszczenia radiofarmaceutyku. Z mojego doświadczenia, dobra praktyka w pracowni medycyny nuklearnej to zawsze myślenie o tym, jakie dokładnie promieniowanie emituje dany izotop: czy jest to czyste gamma, beta plus, beta minus, czy mieszane. Ma to znaczenie dla ochrony radiologicznej, jakości obrazu i dawki dla pacjenta. Warto też pamiętać, że po rozpadzie alfa lub beta jądro potomne często jest w stanie wzbudzonym i dopiero potem „dorzuca” rozpad gamma – więc w dokumentacji fizycznej często widzimy kaskadę: najpierw zmiana składu jądra, a potem emisja fali elektromagnetycznej gamma jako etap „dooczyszczający” energię.

Pytanie 8

W scyntygrafii perfuzyjnej płuc pacjentowi podawany jest radioizotop

A. ¹²³I wziewnie.
B. ¹²³I dożylnie.
C. ⁹⁹ᵐTc dożylnie.
D. ⁹⁹ᵐTc wziewnie.
W scyntygrafii perfuzyjnej płuc kluczowe jest zrozumienie, co dokładnie chcemy zobrazować. Badanie ma ocenić perfuzję, czyli przepływ krwi przez łożysko naczyniowe płuc, a nie wentylację ani czynność tarczycy. Z tego wynika zarówno wybór radioizotopu, jak i drogi jego podania. Częsty błąd polega na automatycznym kojarzeniu 99mTc z podaniem wziewnym, bo w badaniach wentylacyjnych płuc faktycznie stosuje się wziewne aerozole znakowane technetem-99m. Jednak w badaniu perfuzyjnym ta logika się odwraca: interesuje nas krążenie krwi, więc radiofarmaceutyk musi trafić do układu naczyniowego, czyli podajemy go dożylnie. Po podaniu dożylnym 99mTc-MAA ulega zatrzymaniu w kapilarach płucnych, co tworzy mapę ukrwienia miąższu płucnego. Gdybyśmy podali 99mTc wziewnie, obraz odzwierciedlałby rozmieszczenie aerozolu w drogach oddechowych, a więc wentylację, a nie perfuzję. To inny typ badania, używany do oceny np. przewlekłej obturacyjnej choroby płuc czy astmy. Z kolei zastosowanie jodu-123, niezależnie czy wziewnie, czy dożylnie, nie odpowiada standardowym protokołom scyntygrafii perfuzyjnej płuc. 123I jest klasycznie kojarzony z badaniami tarczycy i nie jest typowym znacznikiem ukrwienia płuc. W praktyce klinicznej obowiązujące wytyczne medycyny nuklearnej wskazują 99mTc-MAA jako podstawowy radiofarmaceutyk do oceny perfuzji płuc. Błędne odpowiedzi biorą się często z mieszania w głowie różnych protokołów: wentylacja vs perfuzja, płuca vs tarczyca, 99mTc vs 123I. Warto sobie ułożyć prostą mapę: perfuzja płuc – 99mTc-MAA dożylnie; wentylacja płuc – preparat wziewny; tarczyca – jod radioaktywny. Taka struktura porządkuje wiedzę i zmniejsza ryzyko takich pomyłek na egzaminie i w praktyce zawodowej.

Pytanie 9

Które urządzenie zostało przedstawione na fotografii i w jakiej pracowni znajduje zastosowanie?

Ilustracja do pytania
A. Densytometr rentgenowski w pracowni medycyny nuklearnej.
B. Gammakamera w pracowni radioterapii.
C. Rentgenograf w pracowni rentgenowskiej.
D. Kamera scyntygraficzna w pracowni medycyny nuklearnej.
Na zdjęciu widać klasyczną kamerę scyntygraficzną, często nazywaną też gammakamerą, używaną w pracowni medycyny nuklearnej. Charakterystyczny jest duży pierścień z głowicami detekcyjnymi oraz ruchomy stół pacjenta, który wsuwa się w obszar detekcji. W medycynie nuklearnej nie oświetlamy pacjenta z zewnątrz promieniowaniem, tylko wykorzystujemy promieniowanie gamma emitowane z wnętrza ciała po podaniu radiofarmaceutyku. Detektory kamery scyntygraficznej (zwykle kryształ NaI(Tl) i fotopowielacze) rejestrują to promieniowanie i tworzą obraz rozmieszczenia znacznika w narządach. Dzięki temu można ocenić nie tylko anatomię, ale przede wszystkim funkcję – np. perfuzję mięśnia sercowego, czynność tarczycy, perfuzję nerek, metabolizm kości. W praktyce klinicznej wykonuje się takie badania jak scyntygrafia kości, scyntygrafia perfuzyjna płuc, SPECT serca, SPECT mózgu. Moim zdaniem to właśnie jest główna przewaga medycyny nuklearnej nad klasycznym RTG: widzimy fizjologię, a nie tylko kształt narządu. Dobre praktyki wymagają tu m.in. prawidłowego doboru radiofarmaceutyku, kalibracji kolimatorów, kontroli jakości detektorów oraz właściwego pozycjonowania pacjenta, żeby uniknąć artefaktów ruchowych. W nowoczesnych pracowniach często stosuje się systemy hybrydowe SPECT/CT – z zewnątrz wyglądają podobnie, ale oprócz kamery scyntygraficznej mają zintegrowany tomograf komputerowy, co pozwala łączyć informację czynnościową z anatomiczną i dokładniej lokalizować zmiany patologiczne. Zdjęcie w pytaniu pokazuje właśnie typowy układ głowic scyntygraficznych wokół stołu, a nie klasyczny aparat RTG czy akcelerator do radioterapii.

Pytanie 10

Na scyntygramie tarczycy został uwidoczniony guzek

Ilustracja do pytania
A. gorący w płacie prawym.
B. zimny w płacie lewym.
C. gorący w płacie lewym.
D. zimny w płacie prawym.
Prawidłowo wskazany został guzek gorący w płacie prawym. Na scyntygramie tarczycy obszar „gorący” to miejsce, gdzie znacznik radioizotopowy (najczęściej technet-99m lub jod-123) gromadzi się intensywniej niż w otaczającym miąższu. W obrazie widzimy to jako ognisko o wyraźnie wyższym wychwycie – bardziej „jasne” lub o intensywniejszej barwie w skali kolorowej. Guzek gorący zwykle oznacza zmianę autonomiczną, czyli fragment tarczycy, który produkuje hormony niezależnie od kontroli przysadki. W praktyce przy prawidłowo wykonanym badaniu taki guzek bardzo często odpowiada tzw. autonomicznemu gruczolakowi toksycznemu, który może być przyczyną nadczynności tarczycy. Moim zdaniem najważniejsza w interpretacji jest orientacja obrazu: standardowo projekcja AP tarczycy jest prezentowana tak, że prawa strona pacjenta znajduje się po lewej stronie obrazu (czyli jak w typowym RTG klatki piersiowej). Technicy i lekarze medycyny nuklearnej muszą o tym pamiętać, bo pomylenie stron prowadzi do błędnego opisu płata. W dobrych pracowniach zawsze zaznacza się kierunek projekcji (np. AP) oraz stosuje się znaczniki orientacyjne albo opis słowny w protokole badania. Guzek gorący w prawym płacie ma też konkretne konsekwencje kliniczne. Taki pacjent będzie kwalifikowany raczej do leczenia jodem promieniotwórczym lub do zabiegu chirurgicznego, a nie do biopsji cienkoigłowej w pierwszym rzucie, bo ryzyko nowotworu w guzku gorącym jest niewielkie. W codziennej pracy technika elektroradiologii ważne jest poprawne ułożenie pacjenta (pozycja leżąca lub siedząca, szyja lekko odgięta), prawidłowe skalibrowanie gammakamery i dobranie czasu akwizycji, żeby różnice wychwytu między miąższem a guzkiem były wyraźne i nieprzekłamane przez szumy. Z mojego doświadczenia, im lepiej opanuje się zasady orientacji anatomicznej w projekcjach medycyny nuklearnej, tym mniej jest później pomyłek przy opisie takich ognisk jak ten guzek w prawym płacie.

Pytanie 11

W badaniu PETCT radioizotop ulega

A. rozpadowi γ, emitując pozyton.
B. rozpadowi β -, emitując elektron.
C. rozpadowi β +, emitując pozyton.
D. rozpadowi γ, emitując foton promieniowania.
W badaniu PET/CT kluczowe jest właśnie to, że stosowany radioizotop ulega rozpadowi β+, czyli emituje pozyton. To nie jest tylko detal z fizyki jądrowej, ale absolutna podstawa działania całej aparatury PET. Pozyton, który wylatuje z jądra, bardzo szybko zderza się z elektronem w tkankach pacjenta. Dochodzi wtedy do anihilacji – masa pary elektron–pozyton zamienia się w energię w postaci dwóch fotonów γ o energii 511 keV, wysyłanych prawie dokładnie w przeciwnych kierunkach (pod kątem ok. 180°). Detektory w gantrze PET rejestrują jednocześnie te dwa fotony, tzw. koincydencję, i na tej podstawie system rekonstruuje linię, na której zaszła anihilacja. Tak powstaje obraz rozkładu radioznacznika w organizmie. W praktyce klinicznej w PET/CT najczęściej używa się 18F-FDG, czyli glukozy znakowanej fluorem-18, który właśnie jest emiterem β+. Dzięki temu można oceniać metabolizm glukozy w nowotworach, zapaleniach, zmianach infekcyjnych. Podobnie inne znaczniki PET, jak 11C, 13N czy 68Ga, też są emiterami pozytonów i wykorzystują dokładnie ten sam mechanizm fizyczny. Z mojego doświadczenia warto zapamiętać prostą zależność: PET = pozytony = rozpad β+. CT w tym hybrydowym badaniu dostarcza już klasycznego obrazu anatomicznego w oparciu o promieniowanie rentgenowskie, ale sama część PET zawsze opiera się na emisji pozytonów i anihilacji, a nie na zwykłej emisji fotonów γ jak w klasycznej scyntygrafii. To potem przekłada się na wysoką czułość w onkologii, planowaniu radioterapii, ocenie odpowiedzi na leczenie i w wielu protokołach zgodnych z aktualnymi wytycznymi medycyny nuklearnej.

Pytanie 12

Emisja fali elektromagnetycznej występuje w procesie rozpadu promieniotwórczego

A. beta minus.
B. gamma.
C. beta plus.
D. alfa.
W tym zagadnieniu kluczowe jest rozróżnienie między promieniowaniem cząstkowymi a elektromagnetycznym. Promieniowanie alfa i oba typy promieniowania beta (plus i minus) to emisja cząstek materialnych z jądra atomowego, natomiast promieniowanie gamma jest emisją wysokoenergetycznych fotonów, czyli właśnie fali elektromagnetycznej. Pomyłki biorą się często z tego, że wszystkie te procesy są „promieniotwórcze”, więc intuicyjnie wrzuca się je do jednego worka, a to jednak zupełnie inne mechanizmy fizyczne i inny sposób oddziaływania z tkanką. Promieniowanie alfa to jądra helu (dwie protony i dwie neutrony). Mają dużą masę i ładunek dodatni, bardzo silnie jonizują ośrodek, ale mają bardzo mały zasięg – kilka dziesiątych milimetra w tkankach, zatrzymuje je już kartka papieru czy naskórek. Nie są to fale elektromagnetyczne, tylko konkretne, ciężkie cząstki. Z kolei promieniowanie beta minus to elektrony emitowane z jądra, a beta plus to pozytony. To dalej cząstki, o znacznie mniejszej masie niż alfa, o ładunku ujemnym (beta minus) lub dodatnim (beta plus). Rozpraszają się, hamują, jonizują materiał, ale wciąż nie mają natury fali elektromagnetycznej. W medycynie nuklearnej pozytony z rozpadu beta plus są ważne, bo ulegają anihilacji z elektronami, a w wyniku tej anihilacji dopiero powstają dwa fotony gamma o energii 511 keV, rejestrowane w PET. I tu jest często źródło błędu: ktoś widzi PET, beta plus i fotony gamma i myśli, że sam rozpad beta plus to już emisja fali elektromagnetycznej. Tymczasem najpierw emitowana jest cząstka (pozyton), a dopiero jej dalszy los powoduje emisję fotonów. Rozpad beta minus również nie jest emisją fali elektromagnetycznej, tylko cząstek – ma to znaczenie przy ochronie radiologicznej, bo osłony materiałowe i planowanie odległości roboczych dobiera się inaczej dla elektronów niż dla fotonów. W badaniach i terapii, gdzie liczy się rejestracja promieniowania przez detektory z zewnątrz, wykorzystuje się głównie promieniowanie gamma (lub X), właśnie dlatego, że jako fala elektromagnetyczna ma duży zasięg i dobrze przenika tkanki. Dlatego tylko odpowiedź związana z promieniowaniem gamma odpowiada definicji emisji fali elektromagnetycznej w procesie rozpadu promieniotwórczego.

Pytanie 13

Który radioizotop jest stosowany w diagnostyce i terapii raka tarczycy?

A. ²²³Ra
B. ¹³¹I
C. ¹⁸⁶Re
D. ¹³³Xe
W leczeniu i diagnostyce raka tarczycy kluczowe jest wykorzystanie fizjologii tego narządu, czyli naturalnej zdolności do wychwytu jodu. Z tego powodu stosuje się radioaktywny jod, konkretnie 131I, a nie inne przypadkowe radioizotopy. Błędne odpowiedzi zwykle wynikają z kojarzenia nazw izotopów „na pamięć” bez zastanowienia się, jaki narząd ma do nich naturalne powinowactwo i jakie promieniowanie emitują. 133Xe to ksenon-133, gaz szlachetny używany głównie w badaniach perfuzji płuc, np. w scyntygrafii wentylacyjnej. Ten izotop jest wdychany, rozpuszcza się w krwi w płucach i pozwala ocenić przepływ powietrza oraz krwi w miąższu płucnym. Nie ma żadnego sensownego mechanizmu, żeby ksenon gromadził się selektywnie w tarczycy, więc z punktu widzenia raka tarczycy jest kompletnie nieprzydatny. Z mojego doświadczenia uczniowie mylą go, bo „kojarzy się z medycyną nuklearną”, ale to zdecydowanie inny zakres badań. 186Re, czyli ren-186, jest stosowany raczej w terapii izotopowej zmian kostnych lub w leczeniu bólów kostnych w przebiegu przerzutów nowotworowych, czasem w radioizotopowym leczeniu zmian stawowych. Ma inne właściwości fizyczne i biologiczne, a jego dystrybucja nie jest związana z metabolizmem jodu. W kontekście tarczycy jego użycie byłoby po prostu nielogiczne i sprzeczne z dobrą praktyką. 223Ra (rad-223) jest z kolei stosowany w leczeniu przerzutów osteoblastycznych do kości, np. w raku prostaty. To emiter alfa, który lokalizuje się w miejscach intensywnej przebudowy kostnej. Jego siła jest właśnie w silnym, krótkodystansowym promieniowaniu alfa w kościach, a nie w gruczole tarczowym. Typowym błędem jest myślenie: „to też radioizotop onkologiczny, więc pewnie dobry do raka tarczycy”. Niestety tak to nie działa. W medycynie nuklearnej za każdym razem trzeba łączyć: powinowactwo narządowe, typ promieniowania i wskazania kliniczne. Tylko 131I spełnia wszystkie te warunki w przypadku raka tarczycy, co jest potwierdzone wieloma wytycznymi i wieloletnią praktyką kliniczną.

Pytanie 14

Diagnozowanie metodą PET oparte jest na zjawisku

A. anihilacji pozytonu i elektronu.
B. fotoelektrycznym.
C. rozproszenia klasycznego.
D. Comptona.
Prawidłowa odpowiedź opiera się na kluczowym zjawisku fizycznym w medycynie nuklearnej: anihilacji pozytonu i elektronu. W badaniu PET (Pozytonowa Tomografia Emisyjna) do organizmu podaje się radiofarmaceutyk, który emituje pozytony, najczęściej jest to 18F-FDG, czyli fluorodeoksyglukoza znakowana fluorem-18. Pozyton, czyli dodatnio naładowany odpowiednik elektronu, po bardzo krótkiej drodze w tkance zderza się z elektronem. W momencie ich spotkania dochodzi do anihilacji – masa obu cząstek zamienia się w energię w postaci dwóch kwantów promieniowania gamma o energii 511 keV, wysyłanych prawie dokładnie w przeciwne strony (pod kątem około 180°). I właśnie to rejestruje skaner PET. Detektory ustawione w pierścieniu wokół pacjenta wychwytują te dwa fotony w tzw. koincydencji. System elektroniki i oprogramowanie rekonstruują na tej podstawie, wzdłuż której linii w ciele pacjenta doszło do anihilacji. Z mojego doświadczenia to jest główny moment „olśnienia” u uczniów: PET nie rejestruje bezpośrednio pozytonów, tylko fotony powstałe po ich anihilacji. W praktyce klinicznej pozwala to bardzo dokładnie oceniać metabolizm tkanek, np. w onkologii do wykrywania przerzutów, w kardiologii do oceny żywotności mięśnia sercowego, a w neurologii do analizy metabolizmu mózgu. Standardem jest też łączenie PET z TK (PET/CT), dzięki czemu oprócz informacji czynnościowej (metabolizm, perfuzja) mamy dokładne odniesienie anatomiczne. Dobre praktyki wymagają poprawnego przygotowania pacjenta (np. głodówka, kontrola glikemii przy FDG), bo to wpływa na wychwyt radiofarmaceutyku i jakość obrazów. Moim zdaniem zrozumienie anihilacji to podstawa, żeby nie mylić PET z klasycznym RTG czy TK, które bazują na zupełnie innych zjawiskach fizycznych.

Pytanie 15

W leczeniu izotopowym tarczycy należy podać

A. doustnie emiter promieniowania alfa.
B. doustnie emiter promieniowania beta.
C. dożylnie emiter promieniowania beta.
D. dożylnie emiter promieniowania alfa.
W leczeniu izotopowym tarczycy standardem jest podanie doustne radiojodu, czyli emitera promieniowania beta. Najczęściej stosuje się jod-131, który gromadzi się selektywnie w tkance tarczycowej, bo tarczyca fizjologicznie wychwytuje jod z krwi do syntezy hormonów. Dzięki temu mamy coś w rodzaju „celowanej” radioterapii – promieniowanie beta działa głównie w obrębie tarczycy, a otaczające tkanki dostają relatywnie mniejszą dawkę. Emiter beta ma stosunkowo krótki zasięg w tkankach (kilka milimetrów), co ogranicza uszkodzenia narządów sąsiednich. Doustne podanie w kapsułce lub płynie jest wygodne, tanie, dobrze tolerowane przez pacjentów i zgodne z obowiązującymi procedurami medycyny nuklearnej. Podanie dożylne w tym wskazaniu nie jest potrzebne – układ pokarmowy bardzo dobrze wchłania jod, a później krew rozprowadza go do tarczycy. W praktyce klinicznej stosuje się tę metodę m.in. w leczeniu nadczynności tarczycy, wola toksycznego oraz po operacjach raka tarczycy do zniszczenia pozostałej tkanki tarczycowej lub przerzutów wychwytujących jod. Z mojego doświadczenia to jedno z prostszych do zapamiętania skojarzeń: tarczyca = jod-131 doustnie, emiter beta. W dobrych ośrodkach dużą wagę przykłada się do prawidłowego przygotowania pacjenta (dieta uboga w jod, odstawienie niektórych leków, weryfikacja ciąży u kobiet), a także do ochrony radiologicznej po podaniu dawki – pacjent dostaje szczegółowe zalecenia, jak ograniczyć narażenie domowników. Moim zdaniem warto to kojarzyć nie tylko jako „pytanie testowe”, ale jako klasyczny przykład praktycznego wykorzystania fizyki promieniowania w medycynie nuklearnej.

Pytanie 16

Które czynności wykonuje technik elektroradiolog w pracowni „gorącej”?

A. Przeprowadza badanie gammakamerą.
B. Przygotowuje radiofarmaceutyk.
C. Układa pacjenta do badania.
D. Sporządza dokumentację medyczną.
W medycynie nuklearnej podział na pracownię „gorącą” i „zimną” nie jest przypadkowy, tylko wynika z organizacji procesu diagnostycznego i zasad ochrony radiologicznej. Typowym błędem jest wrzucanie wszystkich czynności technika elektroradiologa „do jednego worka” i zakładanie, że skoro coś dzieje się w zakładzie medycyny nuklearnej, to na pewno odbywa się w pracowni „gorącej”. Tak niestety nie jest. Układanie pacjenta do badania, ustawianie go pod gammakamerą, dobór pozycji i ewentualne unieruchomienie to czynności typowe dla pracowni „zimnej”, czyli tej, w której znajduje się gammakamera i gdzie odbywa się właściwe obrazowanie. Tam technik dba o komfort pacjenta, poprawne ułożenie względem detektorów, zakres skanowania, sprawdza parametry aparatu, ale samo podłoże radiofarmaceutyczne ma już przygotowane wcześniej. Podobnie przeprowadzenie badania gammakamerą, czyli ustawianie protokołów, akwizycja obrazów, kontrola jakości obrazu i ewentualne powtarzanie sekwencji, to etap diagnostyczny, a nie etap przygotowania substancji promieniotwórczej. To jest inny odcinek pracy, zwykle realizowany w innej sali, często fizycznie oddzielonej, żeby ograniczyć ryzyko skażeń i lepiej kontrolować narażenie personelu. Sporządzanie dokumentacji medycznej też bywa mylące. Owszem, technik prowadzi dużo dokumentacji, ale sama dokumentacja pacjenta, opis przebiegu badania, dane do systemu RIS/PACS są związane głównie z procesem diagnostycznym i organizacją pracy, a nie z typową definicją czynności w pracowni „gorącej”. W „gorącej” dokumentacja dotyczy przede wszystkim obrotu źródłami promieniotwórczymi, aktywności, terminów ważności, odpadów, kontroli skażeń. Typowy błąd myślowy polega więc na myleniu miejsca (pracownia „gorąca”) z całym zakładem medycyny nuklearnej i na tym, że kojarzymy najbardziej „widoczny” etap, czyli badanie gammakamerą i kontakt z pacjentem, a zapominamy o mniej spektakularnym, ale bardzo kluczowym etapie przygotowania radiofarmaceutyku, który odbywa się właśnie w pracowni „gorącej”.

Pytanie 17

Wskazaniem do wykonania scyntygrafii perfuzyjnej jest

A. zapalenie płuc.
B. zatorowość płucna.
C. ropień płuca.
D. ciężkie nadciśnienie płucne.
Prawidłowo wskazana zatorowość płucna jako główne wskazanie do scyntygrafii perfuzyjnej bardzo dobrze pokazuje zrozumienie roli medycyny nuklearnej w diagnostyce chorób układu oddechowego. Scyntygrafia perfuzyjna polega na dożylnym podaniu radiofarmaceutyku (najczęściej makroagregatów albuminy znakowanych technetem-99m), które zatrzymują się w naczyniach włosowatych płuc proporcjonalnie do przepływu krwi. Gammakamera rejestruje rozkład perfuzji w miąższu płucnym. W zatorowości płucnej typowym obrazem są ogniskowe ubytki gromadzenia znacznika w obszarach, gdzie doszło do zamknięcia tętnicy płucnej lub jej odgałęzień, przy jednocześnie zachowanej wentylacji (w badaniu V/Q – ventilation/perfusion). W praktyce klinicznej scyntygrafię perfuzyjną wykonuje się, gdy podejrzewa się zatorowość, a np. angio-TK klatki piersiowej jest przeciwwskazana (ciężka niewydolność nerek, alergia na jodowy środek cieniujący, ciąża) lub daje niejednoznaczny wynik. W wytycznych (np. europejskich ESC/ERS) scyntygrafia V/Q jest uznawana za równorzędną metodę obrazowania w PE, szczególnie u młodych pacjentów i kobiet w ciąży, bo wiąże się z mniejszą dawką promieniowania dla gruczołów sutkowych. Moim zdaniem w praktyce warto też pamiętać o interpretacji w kontekście obrazu klinicznego i D-dimerów, bo sama scyntygrafia nie rozwiązuje wszystkiego, ale bardzo pomaga odróżnić zator od zmian zapalnych czy przewlekłej choroby płuc. Dobrą praktyką jest łączenie perfuzji z oceną wentylacji, bo dopiero niezgodność tych dwóch map jest naprawdę charakterystyczna dla ostrej zatorowości płucnej.

Pytanie 18

Ligand stosuje się

A. w radiologii klasycznej jako środek kontrastujący negatywny.
B. w rezonansie magnetycznym jako środek kontrastujący pozytywny.
C. w radiologii klasycznej jako środek kontrastujący pozytywny.
D. w medycynie nuklearnej jako nośnik radiofarmaceutyku.
Prawidłowo – ligand w tym kontekście to związek chemiczny, który wiąże się selektywnie z określonym celem biologicznym, np. receptorem, enzymem czy transporterem, i właśnie w medycynie nuklearnej pełni rolę nośnika radiofarmaceutyku. Mówiąc prościej: ligand „prowadzi za rękę” izotop promieniotwórczy dokładnie tam, gdzie chcemy zobaczyć czynność narządu albo ognisko chorobowe. Radioizotop sam z siebie nie jest wybiórczy, dopiero połączenie go z odpowiednim ligandem tworzy radiofarmaceutyk o określonej tropowości, np. do kości, mięśnia sercowego, guzów neuroendokrynnych czy receptorów dopaminergicznych. W scyntygrafii kości używa się ligandów fosfonianowych znakowanych technetem-99m, które gromadzą się w miejscach wzmożonego metabolizmu kostnego. W scyntygrafii perfuzyjnej serca mamy ligandy lipofilne, które wnikają do kardiomiocytów proporcjonalnie do przepływu krwi. W PET z kolei typowym przykładem jest 18F-FDG, gdzie ligandem jest analog glukozy, a izotopem fluor-18. Z mojego doświadczenia to właśnie zrozumienie roli liganda tłumaczy, czemu dwa różne radiofarmaceutyki z tym samym izotopem mogą mieć zupełnie inne wskazania. Dobre praktyki w medycynie nuklearnej wymagają bardzo świadomego doboru liganda do konkretnego badania: bierzemy pod uwagę farmakokinetykę, specyficzność wiązania, szybkość eliminacji, a także bezpieczeństwo dla pacjenta. W wytycznych EANM czy IAEA wyraźnie podkreśla się, że to właściwości liganda decydują o jakości obrazowania funkcjonalnego, a nie tylko sam izotop. Dlatego poprawne skojarzenie pojęcia „ligand” z nośnikiem radiofarmaceutyku w medycynie nuklearnej jest bardzo istotne i praktycznie przydatne w pracy z gammakamerą czy PET.

Pytanie 19

Który radiofarmaceutyk może zostać podany pacjentowi w scyntygrafii perfuzyjnej mózgu?

A. Tc-99m MDP
B. I-123 NaI
C. I-131 NaI
D. Tc-99m HMPAO
Prawidłowo wybrany został Tc-99m HMPAO, czyli technet-99m heksametylopropylenoamina oksym. To klasyczny radiofarmaceutyk stosowany w scyntygrafii perfuzyjnej mózgu, zarówno w badaniach stacjonarnych SPECT, jak i w niektórych protokołach dynamicznych. Ma on właściwości lipofilne, dzięki czemu łatwo przenika przez barierę krew–mózg i w stosunkowo krótkim czasie ulega utrwaleniu w tkance mózgowej proporcjonalnie do regionalnego przepływu krwi. Dzięki temu rozkład wychwytu Tc-99m HMPAO bardzo dobrze odzwierciedla perfuzję poszczególnych obszarów mózgu w momencie podania. W praktyce klinicznej używa się go m.in. do oceny ognisk niedokrwienia, w diagnostyce padaczki (lokalizacja ogniska padaczkowego), w ocenie otępień, a także w niektórych przypadkach urazów mózgu. Z mojego doświadczenia, przy badaniach padaczkowych bardzo ważny jest moment podania – HMPAO trzeba wstrzyknąć w trakcie napadu lub tuż po, żeby zobaczyć typowy wzrost przepływu w ognisku. Tc-99m jako znacznik ma korzystny okres półtrwania (ok. 6 godzin), emituje promieniowanie gamma o energii idealnej do gammakamery (140 keV) i daje dobrą jakość obrazów przy stosunkowo niskiej dawce dla pacjenta, co jest zgodne z zasadą ALARA w medycynie nuklearnej. W wytycznych i w praktyce większości pracowni perfuzyjna scyntygrafia mózgu kojarzy się głównie właśnie z Tc-99m HMPAO albo jego nowszym odpowiednikiem Tc-99m ECD. To są standardowe, rekomendowane radiofarmaceutyki do tego typu badań.

Pytanie 20

W badaniu PET CT wykorzystuje się radioizotopy emitujące promieniowanie

A. beta minus.
B. beta plus.
C. gamma.
D. alfa.
W PET/CT bardzo łatwo pomylić się, bo na pierwszy rzut oka wydaje się, że skoro urządzenie rejestruje promieniowanie gamma, to używa się izotopów gamma. I tu jest ten typowy błąd myślowy: mylimy to, co emituje radioizotop, z tym, co w końcu rejestruje detektor. W PET kluczowy jest emiter beta plus, czyli taki radionuklid, który w swoim rozpadzie wytwarza pozyton. Pozyton to antycząstka elektronu, naładowana dodatnio. Po krótkim torze w tkance pozyton zderza się z elektronem i dopiero wtedy dochodzi do anihilacji i powstają dwa fotony gamma o energii 511 keV. Detektory PET nie rejestrują więc bezpośrednio rozpadu beta, tylko produkty anihilacji. Promieniowanie alfa nie ma tu w ogóle zastosowania – cząstki alfa mają bardzo mały zasięg w tkankach i są silnie jonizujące, przez co kompletnie nie nadają się do obrazowania tomograficznego całego ciała. Stosuje się je czasem w terapii izotopowej, ale nie w PET. Emiter beta minus też nie pasuje, bo w tym rozpadzie powstaje elektron, a nie pozyton. Elektron nie anihiluje z elektronem, tylko traci energię w ośrodku przez jonizację i hamowanie, więc nie generuje tych charakterystycznych dwóch fotonów 511 keV pod kątem 180°. Tego rodzaju izotopy wykorzystuje się głównie w terapii (np. 90Y, 131I), ewentualnie w innych typach badań, ale nie w klasycznym PET. Często zdarza się też, że ktoś odpowiada „gamma”, bo kojarzy, że w medycynie nuklearnej jest gammakamera i scyntygrafia. Tam faktycznie używa się emiterów gamma, ale to jest SPECT, a nie PET. PET opiera się właśnie na fizyce anihilacji pozyton–elektron. Moim zdaniem warto sobie to poukładać tak: do ciała zawsze podajemy emiter beta plus, a urządzenie rejestruje pary fotonów gamma po anihilacji. Jak zapamiętasz ten ciąg zdarzeń, to podobne pytania przestają być problemem.

Pytanie 21

W medycynie nuklearnej wykorzystuje się:

A. emisyjną tomografię, EEG, scyntygraf.
B. scyntygraf, gammakamerę, emisyjną tomografię i PET.
C. gammakamerę, PET, USG i scyntygraf.
D. ultrasonograf, scyntygraf i EMG.
Prawidłowo wskazałeś zestaw aparatury typowej dla medycyny nuklearnej: scyntygraf, gammakamera, emisyjna tomografia i PET. Wszystkie te urządzenia mają jedną wspólną cechę – rejestrują promieniowanie emitowane z wnętrza ciała pacjenta po podaniu radiofarmaceutyku. To właśnie odróżnia medycynę nuklearną od klasycznej radiologii, gdzie źródło promieniowania jest na zewnątrz (np. lampa rentgenowska). Scyntygraf i gammakamera to w praktyce nazwy bliskoznaczne – gammakamera jest współczesnym urządzeniem rejestrującym promieniowanie gamma i tworzącym obrazy scyntygraficzne. Wykorzystuje się ją np. w scyntygrafii kości, tarczycy, perfuzji mięśnia sercowego. Emisyjna tomografia (SPECT – tomografia emisyjna pojedynczych fotonów) pozwala uzyskać obrazy przekrojowe, podobnie jak tomografia komputerowa, ale pokazuje głównie funkcję narządu, a nie tylko jego budowę. Dzięki temu można ocenić perfuzję mózgu, żywotność mięśnia sercowego czy czynność nerek. PET, czyli pozytonowa tomografia emisyjna, wykorzystuje radioizotopy emitujące pozytony i zjawisko anihilacji. Standardowo stosuje się np. 18F-FDG do oceny metabolizmu glukozy w onkologii, kardiologii czy neurologii. W nowoczesnych pracowniach łączy się PET z CT lub MR (PET/CT, PET/MR), co pozwala na bardzo dokładne połączenie informacji funkcjonalnej z anatomiczną. Z mojego doświadczenia to właśnie zrozumienie, że medycyna nuklearna bada przede wszystkim funkcję i metabolizm, a nie samą anatomię, bardzo pomaga w zapamiętaniu, jakie urządzenia do niej należą. W dobrych praktykach ważne jest też prawidłowe przygotowanie radiofarmaceutyku, kontrola jakości aparatury oraz ścisłe przestrzeganie zasad ochrony radiologicznej, bo pracujemy z promieniowaniem jonizującym podanym do organizmu pacjenta.

Pytanie 22

Które znaczniki są wykorzystywane w scyntygrafii tarczycy?

A. Jod 131 i technet 99m
B. Mikrosfery albuminowe i jod 132
C. Mikrosfery albuminowe i technet 99m
D. Mikrosfery albuminowe i jod 131
Prawidłowo wskazane znaczniki – jod 131 i technet 99m – to klasyczne i w zasadzie podręcznikowe radioizotopy stosowane w scyntygrafii tarczycy. W praktyce medycyny nuklearnej oba wykorzystuje się do oceny funkcji i budowy gruczołu, ale w trochę innych sytuacjach. Technet 99m (a dokładniej nadtechnecjan Tc‑99m) jest pobierany przez komórki tarczycy podobnie jak jod, ale nie jest przez nie wbudowywany w hormony. Dzięki temu daje szybki, czysty obraz rozmieszczenia czynnego miąższu – świetnie nadaje się do rutynowych badań scyntygraficznych, oceny guzków „zimnych” i „gorących”, kontroli po leczeniu zachowawczym nadczynności. W standardach pracowni medycyny nuklearnej Tc‑99m jest izotopem pierwszego wyboru do typowej scyntygrafii, bo ma krótki okres półtrwania i emituje głównie promieniowanie gamma o energii idealnej dla gammakamery. Jod 131 ma inne zastosowanie: służy głównie do badań jodochwytności, planowania terapii jodem promieniotwórczym oraz do terapii nadczynności i raka tarczycy. Emituje promieniowanie beta (terapeutyczne) i gamma (diagnostyczne), ale z racji wyższej dawki i gorszej jakości obrazowania w nowoczesnych standardach rzadziej używa się go do klasycznej scyntygrafii obrazowej, a bardziej do procedur terapeutyczno‑diagnostycznych. Moim zdaniem ważne jest, żeby kojarzyć: tarczyca = izotopy jodu + Tc‑99m, a nie mikrosfery czy inne radiofarmaceutyki narządowo‑nieswoiste. W praktyce technik medycyny nuklearnej musi wiedzieć, że do scyntygrafii tarczycy przygotowuje się właśnie preparaty jodu promieniotwórczego albo nadtechnecjanu, zgodnie z procedurami, kontrolą jakości radiofarmaceutyku i zasadami ochrony radiologicznej.

Pytanie 23

Radioizotopowa terapia medycyny nuklearnej polega na wprowadzeniu do tkanek lub narządów radiofarmaceutyku

A. znajdującego się w odległości 100 cm od pacjenta.
B. znajdującego się w odległości 50 cm od pacjenta.
C. emitującego promieniowanie γ ze źródeł otwartych.
D. emitującego promieniowanie β ze źródeł otwartych.
Prawidłowo – istota radioizotopowej terapii w medycynie nuklearnej polega na podaniu radiofarmaceutyku emitującego głównie promieniowanie β ze źródeł otwartych, czyli takiego, który wnika do organizmu (do krwi, tkanek, narządów), a nie jest zamknięty w jakiejś osłonie czy aplikatorze. Promieniowanie beta ma stosunkowo krótki zasięg w tkankach (zwykle kilka milimetrów), dzięki czemu dawka pochłonięta koncentruje się w obrębie zmiany chorobowej – guza, przerzutów do kości, nadczynnego guzka tarczycy – a mniej uszkadza otaczające, zdrowe tkanki. To jest właśnie ten „terapeutyczny” efekt medycyny nuklearnej, w odróżnieniu od diagnostyki scyntygraficznej, gdzie ważniejsze jest promieniowanie γ rejestrowane przez gammakamerę. Typowy przykład z praktyki: leczenie nadczynności tarczycy radiojodem I-131 – izotop jest podawany doustnie, kumuluje się w tarczycy i dzięki emisji β niszczy komórki produkujące nadmiar hormonów. Inne przykłady to terapia przerzutów do kości z użyciem Sr-89 czy Sm-153, albo nowocześniejsze terapie receptorowe (np. 177Lu-DOTATATE w guzach neuroendokrynnych). We wszystkich tych przypadkach stosuje się źródła otwarte – radiofarmaceutyk krąży w organizmie i jest częściowo wydalany, dlatego obowiązują ścisłe zasady ochrony radiologicznej: wydzielone sale, kontrola skażeń, instrukcje dla pacjenta po wypisie. Moim zdaniem warto zapamiętać prostą zasadę: β = leczenie (terapia), γ = obrazowanie (diagnostyka), oczywiście z pewnymi wyjątkami, ale jako skrót myślowy działa całkiem dobrze.

Pytanie 24

Na którym obrazie zarejestrowano badanie scyntygraficzne?

A. Obraz 2
Ilustracja do odpowiedzi A
B. Obraz 1
Ilustracja do odpowiedzi B
C. Obraz 3
Ilustracja do odpowiedzi C
D. Obraz 4
Ilustracja do odpowiedzi D
Prawidłowo wskazany został obraz 4, bo właśnie on przedstawia badanie scyntygraficzne. W scyntygrafii nie oglądamy klasycznej anatomii, tylko rozkład radioaktywnego znacznika w narządzie. Dlatego obraz jest ziarnisty, o niższej rozdzielczości przestrzennej, zwykle w skali szarości lub w pseudokolorach, a struktury anatomiczne są słabo zarysowane. W tym przypadku widać typowy obraz scyntygrafii tarczycy: „motylkowaty” kształt, bez wyraźnych granic tkanek miękkich, ale z wyraźnie zaznaczoną aktywnością radiofarmaceutyku w miąższu gruczołu. W medycynie nuklearnej rejestrujemy promieniowanie gamma emitowane przez podany dożylnie lub doustnie radioizotop (np. 99mTc, 131I), za pomocą gammakamery. Z mojego doświadczenia to właśnie charakterystyczna ziarnistość i brak typowej anatomii są najlepszą podpowiedzią na egzaminach. W praktyce klinicznej scyntygrafia tarczycy służy m.in. do oceny funkcji guzków („zimne”, „gorące”), rozpoznania wola guzowatego toksycznego czy różnicowania przyczyn nadczynności tarczycy. Podobnie wykonuje się scyntygrafię kości, nerek, perfuzji płuc czy mięśnia sercowego – za każdym razem patrzymy bardziej na rozkład funkcji niż na szczegóły budowy. Zgodnie z dobrymi praktykami medycyny nuklearnej kluczowe jest prawidłowe przygotowanie pacjenta, dobranie radiofarmaceutyku, właściwe ustawienie gammakamery oraz późniejsza korelacja obrazu scyntygraficznego z badaniami anatomicznymi (CT, MR, USG). W nowoczesnych pracowniach często łączy się scyntygrafię z CT (SPECT/CT), ale sam charakter obrazu funkcjonalnego pozostaje taki, jak na tym czwartym zdjęciu.

Pytanie 25

Który radioizotop jest emiterem promieniowania alfa?

A. ⁹⁹ᵐTc
B. ¹³¹I
C. ²²³Ra
D. ¹⁸F
W tym pytaniu łatwo się pomylić, bo wszystkie podane izotopy są dobrze znane w medycynie, ale pełnią zupełnie różne role i emitują różne typy promieniowania. Kluczowe jest rozróżnienie, które radioizotopy są typowo diagnostyczne, a które terapeutyczne, oraz jaki jest ich główny rodzaj promieniowania. Fluor-18 jest klasycznym izotopem stosowanym w PET. To emiter beta plus (β+), czyli emituje pozytony. Pozyton anihiluje z elektronem, powstają dwa kwanty promieniowania gamma 511 keV, rejestrowane przez detektory w skanerze PET. On nie jest emiterem alfa, więc mimo że często pojawia się w praktyce, nie pasuje do tego pytania. Jod-131 to z kolei izotop kojarzony z leczeniem chorób tarczycy i diagnostyką scyntygraficzną. Jego główne znaczenie terapeutyczne wynika z emisji promieniowania beta minus (β−), które ma zasięg kilku milimetrów w tkance i pozwala niszczyć komórki tarczycy. Dodatkowo emituje promieniowanie gamma, przydatne diagnostycznie. Wiele osób myli silne działanie terapeutyczne z promieniowaniem alfa, ale tutaj to nadal beta minus. Technet-99m jest natomiast złotym standardem w diagnostyce scyntygraficznej. Emituje głównie promieniowanie gamma o energii około 140 keV, idealne do obrazowania gammakamerą. Ten izotop prawie nie ma zastosowania terapeutycznego, bo nie emituje ani beta, ani alfa w sposób klinicznie istotny. Mylenie go z emiterem alfa wynika czasem z tego, że jest „wszędzie” w medycynie nuklearnej, więc intuicyjnie wydaje się dobrym kandydatem. W rzeczywistości jedynym z wymienionych izotopów, który jest typowym emiterem promieniowania alfa, jest rad-223. To on ma wysokie LET, bardzo krótki zasięg w tkance i jest używany w terapii izotopowej, a nie w obrazowaniu. Dobra praktyka jest taka, żeby przy nauce radioizotopów od razu łączyć: rodzaj promieniowania + zastosowanie (diagnostyka/terapia) + przykład badania lub procedury klinicznej. To mocno ułatwia unikanie takich pomyłek.

Pytanie 26

W leczeniu izotopowym tarczycy podaje się

A. dożylnie emiter promieniowania α
B. doustnie emiter promieniowania α
C. doustnie emiter promieniowania β
D. dożylnie emiter promieniowania β
Prawidłowo: w leczeniu izotopowym nadczynności tarczycy stosuje się doustnie preparaty zawierające jod promieniotwórczy, najczęściej jod-131, który jest emiterem promieniowania β. Tarczyca fizjologicznie wychwytuje jod z krwi, więc po połknięciu kapsułki lub płynu radiojod trafia do gruczołu tak jak zwykły jod, a następnie emituje promieniowanie beta bezpośrednio w tkance. Dzięki temu mamy efekt tzw. terapii celowanej: dawka promieniowania jest skoncentrowana głównie w tarczycy, a narządy sąsiednie dostają relatywnie małą dawkę. To jest bardzo zgodne z zasadą ALARA i ze standardami medycyny nuklearnej. Promieniowanie β (elektrony) ma stosunkowo mały zasięg w tkankach – rzędu kilku milimetrów. To oznacza, że niszczy głównie komórki tarczycy gromadzące jod, bez głębokiego uszkadzania dalszych struktur. W praktyce klinicznej używa się specjalnie przygotowanych radiofarmaceutyków, zwykle w postaci kapsułek, które pacjent połyka jednorazowo pod kontrolą personelu medycyny nuklearnej. Nie ma tutaj żadnej iniekcji dożylnej, bo nie ma takiej potrzeby – fizjologia tarczycy sama „dowiezie” radiojod tam, gdzie trzeba. W procedurach opisanych w wytycznych (np. EANM, Polskie Towarzystwo Medycyny Nuklearnej) podkreśla się, że podanie doustne jest standardem, a dawka jest dobierana indywidualnie w zależności od masy tarczycy, stopnia nadczynności, czasem także wieku pacjenta. Moim zdaniem warto zapamiętać taki prosty schemat: leczenie nadczynności tarczycy = doustny jod-131 = emiter β. W praktyce technika jest dość prosta organizacyjnie, ale wymaga ścisłego przestrzegania zasad ochrony radiologicznej, np. odizolowania pacjenta przez pewien czas, ograniczenia kontaktu z dziećmi i kobietami w ciąży oraz dokładnej dokumentacji podanej aktywności. To jest typowy, klasyczny przykład terapeutycznego zastosowania medycyny nuklearnej, odróżniający ją od radioterapii zewnętrznej.

Pytanie 27

Który radiofarmaceutyk należy podać pacjentowi w scyntygrafii perfuzyjnej mózgu?

A. I-123 NaI
B. <b>I-131 NaI</b>
C. Tc-99m HM-PAO
D. Tc-99m MDP
Prawidłowo wskazany radiofarmaceutyk w scyntygrafii perfuzyjnej mózgu to Tc-99m HM-PAO. Jest to lipofilny związek znakowany technetem-99m, który bardzo dobrze przenika przez barierę krew–mózg i w pierwszej fazie rozkłada się proporcjonalnie do przepływu mózgowego. Dzięki temu obraz z gammakamery odzwierciedla regionalny przepływ krwi w mózgu, czyli dokładnie to, co chcemy ocenić w badaniu perfuzyjnym. W praktyce klinicznej Tc-99m HM-PAO (lub podobny związek Tc-99m ECD) jest standardem w diagnostyce napadów padaczkowych, ocenie niedokrwienia, demencji czy w kwalifikacji pacjentów po udarach. Z mojego doświadczenia w medycynie nuklearnej najważniejsze jest, że podanie musi być wykonane w spoczynku lub w określonym momencie (np. w trakcie napadu padaczkowego), bo radiofarmaceutyk „zamraża” perfuzję z chwili podania. Technet-99m ma dobre właściwości fizyczne: energię promieniowania gamma 140 keV i krótki okres półtrwania ok. 6 godzin, co jest optymalnym kompromisem między jakością obrazu a dawką dla pacjenta. HM-PAO po przejściu przez barierę krew–mózg ulega przemianom w komórkach, przez co zostaje zatrzymany w tkance mózgowej na czas potrzebny do wykonania skanu. To właśnie odróżnia go od wielu innych radiofarmaceutyków, które albo w ogóle nie przechodzą do mózgu, albo nie odzwierciedlają perfuzji, tylko np. metabolizm czy wychwyt tarczycowy. W dobrych praktykach pracowni medycyny nuklearnej podkreśla się też znaczenie właściwego przygotowania preparatu HM-PAO, szybkiego podania po przygotowaniu zestawu znakowanego oraz kontroli jakości (np. sprawdzenie radiochemicznej czystości), żeby uzyskać wiarygodny, czytelny obraz perfuzji mózgu.

Pytanie 28

„Ognisko zimne” w obrazie scyntygraficznym oznacza

A. zmianę o większej aktywności hormonalnej.
B. obszar niegromadzący radioznacznika.
C. obszar gromadzący znacznik.
D. zmianę najczęściej o charakterze łagodnym.
Prawidłowo – w scyntygrafii „ognisko zimne” oznacza obszar, który nie gromadzi radioznacznika, czyli praktycznie brak rejestracji promieniowania w tym miejscu na obrazie gammakamery. W badaniach medycyny nuklearnej, takich jak scyntygrafia kości, tarczycy czy wątroby, zakładamy, że prawidłowa tkanka wychwytuje podany radiofarmaceutyk w pewnym typowym, dość równomiernym stopniu. Jeśli w tym tle pojawia się „dziura”, miejsce o znacznie mniejszej aktywności niż otoczenie albo wręcz czarne pole na kolorowej mapie, to właśnie mówimy o ognisku zimnym. Moim zdaniem dobrze jest to kojarzyć z „brakiem funkcji”, a nie z konkretnym rozpoznaniem. Przykład praktyczny: w scyntygrafii tarczycy po podaniu jodu promieniotwórczego wole guzkowe może dać obraz guzków „zimnych” – guz nie gromadzi jodu, bo nie produkuje hormonów. Ale taki guzek może być zarówno łagodny, jak i złośliwy, więc sam fakt „zimna” nie rozstrzyga. W scyntygrafii kości zimne ognisko może oznaczać np. rozległą martwicę, torbiel, niektóre przerzuty lityczne, albo też artefakt techniczny (np. metaliczna proteza dająca zacienienie). Według dobrych praktyk medycyny nuklearnej każde ognisko zimne trzeba zawsze interpretować w kontekście: rodzaju radiofarmaceutyku, obrazu klinicznego, innych badań obrazowych (RTG, TK, MR). I jeszcze jedna rzecz: ognisko gorące to nadmierne gromadzenie znacznika, a ognisko zimne – niedobór lub brak, co jest podstawową parą pojęć, którą naprawdę warto mieć „w małym palcu” podczas nauki scyntygrafii.

Pytanie 29

Czas połowicznego zaniku jest wykorzystywany

A. w teleradioterapii.
B. w medycynie nuklearnej.
C. w tomografii komputerowej.
D. w rentgenografii.
Prawidłowo – czas połowicznego zaniku (okres półtrwania) to pojęcie absolutnie kluczowe właśnie w medycynie nuklearnej. Opisuje on, w jakim czasie aktywność promieniotwórcza danego radionuklidu spada o połowę. W praktyce oznacza to, że po jednym czasie połowicznego zaniku mamy 50% wyjściowej aktywności, po dwóch – 25%, po trzech – 12,5% itd. W medycynie nuklearnej trzeba brać pod uwagę zarówno fizyczny czas połowicznego zaniku (rozpad jądra atomowego), jak i biologiczny czas półtrwania (eliminacja radiofarmaceutyku z organizmu), a w planowaniu badań często korzysta się z tzw. efektywnego czasu połowicznego zaniku, który łączy oba te procesy. Dzięki temu można prawidłowo dobrać dawkę radiofarmaceutyku do scyntygrafii, PET czy terapii izotopowej (np. jodem-131 w leczeniu nadczynności tarczycy lub raka tarczycy), tak żeby uzyskać wystarczająco dobrą jakość obrazu, a jednocześnie nie narażać pacjenta na niepotrzebnie dużą dawkę promieniowania. W standardach medycyny nuklearnej ogromny nacisk kładzie się na świadome dobieranie izotopu o odpowiednim okresie półtrwania: do diagnostyki preferuje się radionuklidy o krótkim czasie połowicznego zaniku (np. technet-99m, fluor-18), które szybko się rozpadają i zmniejszają narażenie po badaniu, natomiast w terapii można stosować izotopy o dłuższym okresie, żeby efekt terapeutyczny utrzymywał się wystarczająco długo w tkance nowotworowej. Z mojego doświadczenia uczenia się do egzaminów, zrozumienie tego pojęcia bardzo ułatwia ogarniecie, dlaczego konkretne radioizotopy wybiera się do konkretnych procedur i czemu w opisach badań zawsze pojawia się informacja o aktywności w MBq i momencie jej podania. To nie jest sucha teoria, tylko realny fundament bezpiecznego i sensownego planowania badań i terapii radioizotopowych.

Pytanie 30

W której technice obrazowania zostają zarejestrowane jednocześnie dwa przeciwbieżne kwanty promieniowania gamma o równej energii 511 keV?

A. Scyntygrafii dynamicznej.
B. Tomografii komputerowej.
C. Tomografii emisyjnej pojedynczego fotonu.
D. Pozytonowej tomografii emisyjnej.
Prawidłowa odpowiedź to pozytonowa tomografia emisyjna (PET), bo tylko w tej technice wykorzystuje się zjawisko anihilacji pozyton–elektron i rejestruje się jednocześnie dwa przeciwbieżne fotony gamma o energii 511 keV. W PET radiofarmaceutyk emituje pozytony, które po bardzo krótkiej drodze w tkance zderzają się z elektronami. W wyniku anihilacji masa cząstek zamienia się w energię i powstają dwa kwanty promieniowania gamma lecące w prawie dokładnie przeciwnych kierunkach, każdy właśnie o energii 511 keV. Detektory PET ułożone w pierścień rejestrują te dwa fotony w tzw. koincydencji czasowej. Dzięki temu aparat wie, że zdarzenie pochodzi z jednej linii między dwoma detektorami (linia odpowiedzi – LOR), co pozwala bardzo precyzyjnie odtworzyć rozkład radioznacznika w organizmie. W praktyce klinicznej PET stosuje się głównie w onkologii, kardiologii i neurologii – np. do wykrywania przerzutów nowotworowych, oceny żywotności mięśnia sercowego albo metabolizmu glukozy w mózgu. Moim zdaniem kluczowe jest zapamiętanie, że energia 511 keV i rejestracja koincydencyjna dwóch fotonów to absolutny „podpis” PET, a nie zwykłej scyntygrafii czy SPECT. W dobrej praktyce technik zawsze zwraca uwagę na poprawne ułożenie pacjenta w pierścieniu, stabilność układu koincydencyjnego i kalibrację energii detektorów, bo każdy błąd w tych elementach psuje jakość rekonstrukcji obrazu i może prowadzić do fałszywie dodatnich lub ujemnych ognisk wychwytu.

Pytanie 31

Którym skrótem oznacza się tomografię komputerową wysokiej rozdzielczości?

A. EPCW
B. HRCT
C. SPECT
D. PTCA
Prawidłowy skrót to HRCT, czyli High Resolution Computed Tomography – po polsku tomografia komputerowa wysokiej rozdzielczości. Jest to specjalny protokół badania TK, stosowany głównie do bardzo dokładnej oceny miąższu płuc. Różni się od standardowej tomografii przede wszystkim ustawieniami technicznymi: używa się bardzo cienkich warstw (rzędu 0,5–1,5 mm), wysokiej rozdzielczości przestrzennej i odpowiednich filtrów rekonstrukcyjnych (tzw. filtry wysokiej rozdzielczości, „sharp kernel”). Dzięki temu można zobaczyć drobne struktury, jak oskrzeliki końcowe, przegrody międzypęcherzykowe czy wczesne zmiany śródmiąższowe, które na zwykłym TK mogłyby się „zgubić”. W praktyce klinicznej HRCT jest złotym standardem przy diagnostyce chorób śródmiąższowych płuc, rozedmy, zmian w przebiegu kolagenoz, sarkoidozy, a także przy ocenie powikłań po radioterapii klatki piersiowej. Bardzo często wykonuje się je w określonych fazach oddechu (wdech, czasem wydech) i z ograniczonym zakresem naświetlania, żeby zmniejszyć dawkę promieniowania, bo z natury cienkie warstwy zwiększają ekspozycję. Moim zdaniem warto zapamiętać, że HRCT to nie osobne urządzenie, tylko sposób wykonania badania na standardowym tomografie, zgodnie z zaleceniami towarzystw radiologicznych (np. standardy diagnostyki ILD). W opisach badań zawsze powinno się wyraźnie zaznaczać, że zastosowano protokół HRCT, bo ma to duże znaczenie dla dalszej interpretacji i porównywania badań w czasie.

Pytanie 32

Glukoza podawana pacjentowi w badaniu PET jest znakowana radioaktywnym

A. fluorem.
B. torem.
C. technetem.
D. fosforem.
W medycynie nuklearnej dobór właściwego radionuklidu do konkretnej procedury jest absolutnie kluczowy. W PET nie wystarczy, że pierwiastek jest radioaktywny; musi emitować pozytony o odpowiedniej energii, mieć dopasowany okres półtrwania i dać się wbudować w cząsteczkę biologicznie aktywną. Dlatego w przypadku obrazowania metabolizmu glukozy stosuje się fluor-18, a nie tor, fosfor czy technet. Tor kojarzy się niektórym z promieniotwórczością, ale w diagnostyce obrazowej praktycznie się go nie używa. Jego izotopy mają niekorzystne właściwości fizyczne i radiotoksykologiczne, a do tego nie ma uzasadnionych klinicznie radiofarmaceutyków z torem do rutynowych badań PET. To raczej temat badań specjalistycznych, głównie w kontekście terapii, a nie obrazowania metabolizmu glukozy. Fosfor rzeczywiście jest ważnym pierwiastkiem w biologii, a izotop 32P bywa używany w badaniach naukowych czy w niektórych terapiach, ale nie jest emiterem pozytonów stosowanym w klasycznym PET. Można spotkać go w kontekście terapii izotopowej, jednak nie jako znacznik glukozy. W PET do znakowania związków metabolicznych używa się głównie izotopów takich jak 18F, 11C, 13N czy 15O, właśnie ze względu na ich właściwości fizyczne. Technet-99m jest natomiast bardzo popularny w scyntygrafii planarne i SPECT, ale to emiter promieniowania gamma, a nie pozytonów. Świetnie sprawdza się w badaniach kości, perfuzji mięśnia sercowego czy nerek, jednak nie nadaje się do PET. Typowym błędem jest wrzucanie „wszystkich radioizotopów” do jednego worka – że jak coś jest promieniotwórcze, to można to podać i zobaczyć na każdym urządzeniu. W praktyce każdy tryb obrazowania (SPECT, PET, RTG) wymaga ściśle określonych energii i typów promieniowania. Właśnie dlatego glukoza w PET musi być znakowana fluorem-18, a nie dowolnym innym pierwiastkiem radioaktywnym.

Pytanie 33

W scyntygrafii kośćca „ogniska gorące” oznaczają miejsca

A. równomiernego gromadzenia znacznika.
B. zmniejszonego gromadzenia znacznika.
C. braku gromadzenia znacznika.
D. zwiększonego gromadzenia znacznika.
Prawidłowo – w scyntygrafii kośćca tzw. „ogniska gorące” oznaczają miejsca zwiększonego gromadzenia znacznika radiofarmaceutycznego, najczęściej fosfonianu znakowanego technetem-99m (np. 99mTc-MDP). Gammakamera rejestruje promieniowanie gamma emitowane z organizmu, więc tam, gdzie komórek kostnych jest aktywnych więcej, gdzie jest wzmożony metabolizm kostny i przebudowa kości, tam radiofarmaceutyk odkłada się intensywniej. Na obrazie widzimy to jako jaśniejsze, wyraźnie odcinające się punkty lub obszary – właśnie „hot spots”. Moim zdaniem istotne jest, żeby od razu kojarzyć: gorące ognisko = wzmożona aktywność kostna, a nie „dziura” czy brak kości. Typowo takie ogniska widzimy w przerzutach osteoblastycznych (np. rak prostaty), w złamaniach (świeżych lub gojących się), w zmianach zapalnych (osteomyelitis), w chorobie Pageta, a nawet w miejscach przeciążenia mechanicznego. W praktyce technik czy lekarz medycyny nuklearnej zawsze ocenia nie tylko samą intensywność, ale też kształt, lokalizację i symetrię ogniska w porównaniu z tłem oraz innymi kośćmi. Standardy opisów zalecają, żeby nie pisać tylko „ognisko gorące”, ale dodać przypuszczalną etiologię, np. „ognisko wzmożonego gromadzenia znacznika o charakterze meta osteoblastycznej” albo „ognisko odpowiadające zmianom pourazowym”. W nowoczesnych pracowniach często łączy się scyntygrafię z SPECT/CT, co pozwala od razu skorelować „gorące” miejsce z dokładną anatomią na tomografii komputerowej. W codziennej pracy klinicznej takie rozumienie „hot spotów” pomaga odróżnić zmiany łagodne (np. stawy przeciążone) od podejrzanych onkologicznie, co jest kluczowe przy kwalifikacji chorego do dalszej diagnostyki czy leczenia onkologicznego.

Pytanie 34

Który radioizotop jest stosowany w scyntygrafii perfuzyjnej mózgu?

A. ¹²³I
B. ¹³¹I
C. ⁹⁹ᵐTc
D. ⁹⁴ᵐTc
Prawidłowa odpowiedź to 99mTc, bo jest to podstawowy radioizotop stosowany w medycynie nuklearnej do badań scyntygraficznych, w tym do scyntygrafii perfuzyjnej mózgu. Technet-99m ma kilka bardzo wygodnych cech fizycznych: emituje promieniowanie gamma o energii ok. 140 keV, które jest idealne dla gammakamery, ma krótki okres półtrwania (ok. 6 godzin), dzięki czemu dawka pochłonięta przez pacjenta jest relatywnie niska, a jednocześnie jest czas na wykonanie badania. Z mojego doświadczenia to jest taki „koń roboczy” medycyny nuklearnej – używa się go w sercu, kościach, tarczycy, nerkach i właśnie w mózgu. W scyntygrafii perfuzyjnej mózgu 99mTc podaje się w postaci odpowiedniego radiofarmaceutyku, najczęściej związków takich jak HMPAO czy ECD. Są to lipofilne kompleksy, które przechodzą przez barierę krew–mózg i zatrzymują się w tkance mózgowej proporcjonalnie do przepływu krwi. Dzięki temu na obrazie z gammakamery widzimy rozkład perfuzji, czyli w praktyce które obszary mózgu są dobrze ukrwione, a które słabiej. Ma to ogromne znaczenie np. w diagnostyce padaczki ogniskowej, zmian niedokrwiennych, otępień, a także w ocenie skutków urazów czaszkowo–mózgowych. W nowoczesnych pracowniach badania te wykonuje się zwykle w technice SPECT, często łączonej z CT (SPECT/CT), co pozwala na lepszą lokalizację ognisk patologicznych. Standardem dobrej praktyki jest dobór jak najmniejszej aktywności 99mTc, która nadal zapewnia dobrą jakość obrazu, oraz dokładne przygotowanie radiofarmaceutyku zgodnie z procedurami jakościowymi (GMP, kontrola radiochemicznej czystości). Warto też pamiętać, że dzięki właściwościom 99mTc możliwe jest stosunkowo bezpieczne wykonywanie badań nawet u pacjentów wymagających powtórnych ocen perfuzji. Moim zdaniem znajomość roli technetu-99m w perfuzji mózgu to absolutna podstawa dla każdego technika medycyny nuklearnej.

Pytanie 35

Przedstawiony obraz został zarejestrowany podczas wykonywania

Ilustracja do pytania
A. badania radioizotopowego.
B. tomografii komputerowej.
C. pozytonowej tomografii emisyjnej.
D. rezonansu magnetycznego.
Na obrazie widzisz typowy wynik badania radioizotopowego kośćca, czyli scyntygrafię kości wykonaną gammakamerą po dożylnym podaniu radiofarmaceutyku (najczęściej znaczonego technetem-99m fosfonianu). Charakterystyczny jest tu tzw. obraz „szkieletu z rozmytymi konturami” – widoczne są głównie struktury kostne, bez dokładnego zarysu tkanek miękkich, a intensywność zabarwienia zależy od wychwytu znacznika metabolicznie aktywnego w kościach. To właśnie odróżnia obraz scyntygraficzny od klasycznego RTG czy TK, gdzie widzimy anatomiczne szczegóły, krawędzie, zróżnicowaną gęstość tkanek. W medycynie nuklearnej nie pokazujemy bezpośrednio anatomii, tylko rozkład radioaktywności – czyli funkcję narządu lub metabolizm tkanki. Moim zdaniem warto zapamiętać prostą rzecz: w badaniach radioizotopowych obraz jest zwykle bardziej „rozmyty”, kontrast jest funkcjonalny, a nie czysto anatomiczny. W scyntygrafii kości oceniamy m.in. ogniska wzmożonego metabolizmu kostnego – przerzuty nowotworowe, złamania przeciążeniowe, zmiany zapalne, martwicze. W praktyce klinicznej takie badanie jest standardem np. w onkologii przy podejrzeniu przerzutów do kości (rak piersi, prostaty), w ortopedii przy niejasnym bólu kostnym, w reumatologii przy rozsianych zmianach zapalnych. Zgodnie z dobrą praktyką medycyny nuklearnej ważne jest odpowiednie przygotowanie pacjenta (nawodnienie, opróżnienie pęcherza przed badaniem, zdjęcie metalowych przedmiotów) oraz właściwy dobór radiofarmaceutyku i aktywności dawki. Personel musi też zadbać o czas między podaniem znacznika a rejestracją obrazu (dla scyntygrafii kości najczęściej ok. 2–3 godziny), bo to wpływa na jakość i interpretowalność wyniku. Warto kojarzyć, że takie całociałowe, symetryczne „szkieletowe” obrazy to klasyka badań radioizotopowych w medycynie nuklearnej, a nie TK, MR czy PET, chociaż PET też należy do metod medycyny nuklearnej, ale wygląda już trochę inaczej i zwykle jest łączony z CT (PET/CT).

Pytanie 36

Podczas którego badania zostały zarejestrowane przedstawione obrazy?

Ilustracja do pytania
A. Scyntygrafii tarczycy.
B. Ultrasonografii tarczycy.
C. Scyntygrafii nerek.
D. Tomografii nerek.
Na ilustracji widoczne są typowe obrazy scyntygraficzne, a więc badanie medycyny nuklearnej, a nie klasycznej radiologii czy ultrasonografii. Częsty błąd polega na tym, że wszystko co jest „obrazkiem z medycyny” wrzuca się do jednego worka i myli się tomografię komputerową z badaniami izotopowymi. W tomografii nerek mielibyśmy do czynienia z przekrojami anatomicznymi o wysokiej rozdzielczości przestrzennej, w odcieniach szarości, z dobrze widoczną korą, miedniczką, naczyniami, ewentualnie kontrastem jodowym w świetle układu kielichowo‑miedniczkowego. Tutaj tego nie ma: obraz jest ziarnisty, barwny, bez wyraźnych granic tkanek, co jednoznacznie sugeruje rejestrację promieniowania gamma pochodzącego z radioznacznika. Równie mylące bywa kojarzenie każdego badania scyntygraficznego z tarczycą, bo to jedno z najczęściej omawianych badań w podręcznikach. Scyntygrafia tarczycy pokazuje pojedynczy narząd w przedniej części szyi, zwykle w jednej projekcji, o kształcie motyla, z symetrycznymi płatami i cieśnią – a nie dwie struktury położone głęboko w jamie brzusznej, po obu stronach kręgosłupa. Rozmieszczenie ognisk na obrazie zdecydowanie nie odpowiada topografii tarczycy. Ultrasonografia tarczycy z kolei w ogóle nie wykorzystuje promieniowania jonizującego ani radiofarmaceutyków. Obraz USG jest czarno‑biały, oparty na echogeniczności tkanek, z widocznym zarysem skóry, mięśni i naczyń, często z dopplerem, ale nigdy w postaci kolorowych „plam aktywności”. Dobre praktyki w diagnostyce obrazowej wymagają, żeby przy rozpoznawaniu rodzaju badania zwracać uwagę na kilka cech: czy obraz jest anatomicznie szczegółowy czy funkcjonalny, czy widać przekroje poprzeczne lub podłużne, w jakiej skali barw jest prezentowany i czy forma obrazu pasuje do typowych przykładów z medycyny nuklearnej. W tym przypadku wszystkie te elementy jednoznacznie wskazują na scyntygrafię nerek, a nie na tomografię komputerową, scyntygrafię tarczycy ani ultrasonografię.

Pytanie 37

Które informacje należy zamieścić na strzykawce z radiofarmaceutykiem przygotowanym przez technika elektroradiologa?

A. Typ radiofarmaceutyku, stężenie, godzina przygotowania.
B. Czas okresu inkubacji, radioaktywność, inicjały technika.
C. Typ radiofarmaceutyku, radioaktywność, godzina przygotowania.
D. Czas okresu inkubacji, stężenie, inicjały technika.
Poprawnie wskazany zestaw informacji na etykiecie strzykawki z radiofarmaceutykiem – typ radiofarmaceutyku, radioaktywność i godzina przygotowania – wynika bezpośrednio z praktyki medycyny nuklearnej i zasad bezpieczeństwa radiologicznego. Typ radiofarmaceutyku (np. 99mTc-MDP, 99mTc-DTPA, 18F-FDG) pozwala jednoznacznie zidentyfikować, co dokładnie podajemy pacjentowi i do jakiego badania jest to przeznaczone. To ważne, bo inne radiofarmaceutyki mają różne wskazania, drogi podania, rozkład w organizmie i dawki. Radioaktywność (najczęściej w MBq) jest kluczowa, bo na jej podstawie technik i lekarz oceniają, czy dawka podawana pacjentowi jest zgodna z protokołem i z zasadą ALARA. Dzięki temu można też przeliczyć dawkę, jeśli podanie następuje po pewnym czasie od przygotowania i trzeba uwzględnić fizyczny czas połowicznego zaniku. Godzina przygotowania jest potrzebna właśnie do tego, żeby skorygować aktywność z uwzględnieniem rozpadu promieniotwórczego i mieć pewność, że w momencie iniekcji aktywność mieści się w założonym zakresie. W praktyce w pracowniach medycyny nuklearnej przyjęte jest, że etykieta na strzykawce zawiera minimum: nazwę radiofarmaceutyku, aktywność przeliczoną na konkretną godzinę odniesienia (czas kalibracji) oraz tę godzinę. Często dodaje się też dane pacjenta lub numer zlecenia, ale to już zależy od procedur wewnętrznych. Moim zdaniem warto od razu wyrabiać sobie nawyk patrzenia na etykietę pod kątem tych trzech rzeczy: co to jest, ile MBq i kiedy przygotowane – bo to realnie wpływa na jakość badania i bezpieczeństwo pacjenta.

Pytanie 38

Który narząd na obrazie scyntygrafii znakowanej erytrocytami zaznaczono cyfrą 2?

Ilustracja do pytania
A. Serce.
B. Wątrobę.
C. Nerkę.
D. Śledzionę.
Prawidłowo – na scyntygrafii z użyciem znakowanych erytrocytów struktura oznaczona cyfrą 2 to śledziona. W tego typu badaniu podaje się dożylnie erytrocyty znakowane najczęściej technetem-99m (99mTc). Znacznik pozostaje we krwi, dlatego najbardziej uwidaczniają się narządy silnie ukrwione i uczestniczące w filtracji oraz niszczeniu krwinek: serce, wątroba i właśnie śledziona. Śledziona leży anatomicznie w lewym górnym kwadrancie jamy brzusznej, pod przeponą, bocznie i nieco ku tyłowi w stosunku do żołądka. Na obrazie projekcji przedniej wygląda zwykle jak intensywny, owalny obszar gromadzenia znacznika po lewej stronie, poniżej poziomu serca i nieco bocznie od wątroby. Moim zdaniem ważne jest, żeby w praktyce zawsze łączyć położenie narządu z charakterem radiofarmaceutyku: w badaniu RBC nie zobaczymy typowego wydzielania do dróg moczowych jak w scyntygrafii nerek, tylko rozkład w obrębie układu krążenia i narządów krwiotwórczych. W diagnostyce klinicznej tę technikę wykorzystuje się m.in. do oceny ektopowej śledziony, tzw. „splenosis”, do różnicowania ognisk w obrębie jamy brzusznej oraz do oceny funkcji śledziony po urazach czy w chorobach hematologicznych. Dobrą praktyką jest zawsze porównywanie intensywności wychwytu w śledzionie z wątrobą – śledziona w tym badaniu powinna być co najmniej tak samo, a często nawet bardziej intensywna. W pracowni medycyny nuklearnej przy ocenie takich obrazów technik musi zwracać uwagę na poprawne ułożenie pacjenta, centralizację pola widzenia gammakamery i prawidłowe oznaczenie stron ciała, bo pomylenie lewej z prawą od razu prowadziłoby do błędnej identyfikacji śledziony i innych narządów.

Pytanie 39

Na scyntygramie strzałką oznaczono

Ilustracja do pytania
A. trzustkę.
B. śledzionę.
C. wątrobę.
D. nerkę.
Na przedstawionym obrazie widzisz klasyczne badanie medycyny nuklearnej – scyntygrafię nerek. Strzałka wskazuje prawą nerkę, która gromadzi podany dożylnie radiofarmaceutyk i dlatego świeci intensywnie na żółto‑pomarańczowo. Nerki leżą w górnej części jamy brzusznej, po obu stronach kręgosłupa, i na scyntygramie są zwykle widoczne jako dwa symetryczne, fasolowate ogniska wychwytu, mniej więcej na poziomie dolnych żeber. Dolne ognisko poniżej to pęcherz moczowy wypełniony radioznacznikiem wydalanym z moczem – to też jest typowy obraz w badaniach nerkowych. W praktyce klinicznej takie badanie wykonuje się głównie z użyciem technetu‑99m (np. 99mTc‑DTPA, 99mTc‑MAG3, 99mTc‑DMSA). Pozwala ono ocenić perfuzję, funkcję wydalniczą i miąższ nerek, a także podzieloną funkcję każdej nerki osobno. Z mojego doświadczenia to jedno z najczęściej spotykanych badań w pracowni medycyny nuklearnej, szczególnie u pacjentów z nadciśnieniem naczyniowo‑nerkowym, podejrzeniem zwężenia tętnicy nerkowej, wadami wrodzonymi układu moczowego czy po przebytych odmiedniczkowych zapaleniach nerek. Dobre praktyki mówią, żeby zawsze łączyć ocenę kształtu i położenia ognisk wychwytu z wiedzą anatomiczną oraz z innymi metodami obrazowania (USG, TK), bo dopiero wtedy interpretacja jest wiarygodna. Warto też pamiętać o prawidłowym przygotowaniu pacjenta: odpowiednie nawodnienie, opróżnienie pęcherza przed badaniem i unikanie leków zaburzających perfuzję nerek. Dzięki temu obraz jest czytelny, a ocena funkcji – bardziej miarodajna.

Pytanie 40

Na obrazie scyntygrafii perfuzyjnej serca strzałką wskazano ścianę

Ilustracja do pytania
A. dolną serca.
B. boczną serca.
C. przednią serca.
D. przegrodową serca.
Na przedstawionym obrazie widzimy klasyczny wycinek z tomograficznej scyntygrafii perfuzyjnej mięśnia sercowego (SPECT) w projekcji krótkiej osi (short axis). Taki obraz pokazuje pierścień mięśnia lewej komory, a legenda z prawej strony wyraźnie opisuje orientację: po lewej mamy „septal”, po prawej „lateral”, u góry okolica podstawna, u dołu okolica koniuszka (apeksu), z przodu „anterior”, niżej „inferior”. Strzałka skierowana jest właśnie na stronę opisaną jako „septal”, czyli ścianę przegrodową serca. Ściana przegrodowa odpowiada za część przegrody międzykomorowej lewej komory i jest bardzo ważna w ocenie choroby wieńcowej, szczególnie przy podejrzeniu zwężeń w obrębie gałęzi międzykomorowej przedniej i pnia lewej tętnicy wieńcowej. W praktyce klinicznej, przy analizie takich obrazów, zawsze najpierw ustala się orientację: gdzie jest przegroda, gdzie ściana boczna, gdzie przednia i dolna. Standardem jest korzystanie z opisu orientacji na pasku referencyjnym po boku lub z szablonu „bull’s eye”. Moim zdaniem warto od początku wyrabiać sobie nawyk mentalnego „obracania” serca: pamiętać, że na ustandaryzowanych obrazach SPECT ściana przegrodowa leży zwykle po lewej stronie ekranu w projekcji short axis, a ściana boczna po prawej. Dokładna identyfikacja ściany przegrodowej ma znaczenie nie tylko przy rozpoznawaniu niedokrwienia, ale też przy planowaniu zabiegów kardiologii inwazyjnej, kontroli efektów rewaskularyzacji oraz przy kwalifikacji do terapii resynchronizującej. W dobrych pracowniach medycyny nuklearnej zawsze kładzie się nacisk na poprawne ustawienie pacjenta, korektę ruchu i prawidłową rekonstrukcję, żeby odwzorowanie ściany przegrodowej i pozostałych segmentów lewej komory było jak najbardziej wiarygodne i powtarzalne.