Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 11:28
  • Data zakończenia: 9 grudnia 2025 11:46

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. SUB
B. MUL
C. DIV
D. ADD
Odpowiedzi DIV, ADD i MUL oznaczają inne operacje matematyczne, które są równie istotne w programowaniu PLC, ale nie dotyczą odejmowania. DIV to instrukcja dzielenia, która pozwala na rozdzielenie wartości na określone części, co jest przydatne, gdy musimy podzielić sygnał na mniejsze jednostki. Dzielenie jest często wykorzystywane w algorytmach skalowania sygnałów czy też przy obliczeniach proporcji. ADD to z kolei dodawanie, podstawowa operacja arytmetyczna służąca do zwiększania wartości sygnału, powszechnie używana w obliczeniach sumarycznych, np. w systemach pomiarowych, gdzie zliczamy impulsy lub sumujemy wartości z czujników. MUL, czyli mnożenie, pozwala na zwiększanie wartości poprzez powielanie jej przez określony współczynnik, co jest przydatne w procesach, takich jak kalibracja sygnału czy ustalanie proporcji w mieszankach. Typowym błędem w myśleniu jest utożsamianie wszystkich tych operacji ze sobą, co wynika z ich wspólnego matematycznego podłoża. Każda z tych instrukcji ma jednak swoje specyficzne zastosowania i funkcje w systemach sterowania, dlatego znajomość różnic między nimi jest kluczowa dla poprawnego projektowania algorytmów. W programowaniu PLC, zrozumienie tych fundamentalnych instrukcji pozwala na tworzenie bardziej efektywnych i elastycznych programów. Z mojego doświadczenia, początkujący często mylą te operacje, dlatego ważne jest, aby opracować solidne podstawy w zakresie operacji arytmetycznych i ich implementacji w praktyce przemysłowej.

Pytanie 2

Na którym rysunku przedstawiono symbol graficzny będący oznaczeniem napędu łącznika uruchamianego przez obrót?

A. Rysunek 2
Ilustracja do odpowiedzi A
B. Rysunek 4
Ilustracja do odpowiedzi B
C. Rysunek 1
Ilustracja do odpowiedzi C
D. Rysunek 3
Ilustracja do odpowiedzi D
Wybór niewłaściwego symbolu może wynikać z nieznajomości specyfiki oznaczeń stosowanych w elektrotechnice. Rysunki 1, 2 i 4 mogą wprowadzać w błąd, ponieważ nie są standardowym oznaczeniem napędu łącznika uruchamianego przez obrót. Na przykład rysunek 1 przypomina symbole stosowane do oznaczania innych funkcji, takie jak przyciski czy wyłączniki, ale nie odnosi się do napędu obrotowego. Podobnie, rysunek 2 może sugerować mechaniczny sposób działania, lecz brak charakterystycznych elementów obrotu sprawia, że odbiega od właściwego oznaczenia. Często spotykaną pomyłką jest mylenie symboli graficznych z powodu ich podobieństwa wizualnego, co prowadzi do błędów w interpretacji schematów. Aby uniknąć takich niejasności, warto zaznajomić się z obowiązującymi normami, które określają wygląd symboli wykorzystywanych w dokumentacji technicznej. Ważne jest, by analizować kontekst zastosowania symbolu i jego miejsce w schemacie, co pomaga zrozumieć jego funkcję i zastosowanie. Dokładne zrozumienie symboliki to klucz do efektywnego projektowania i użytkowania systemów elektrycznych.

Pytanie 3

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 3.
B. Tabliczka 1.
C. Tabliczka 2.
D. Tabliczka 4.
Przy analizie tabliczek znamionowych ważne jest zrozumienie, jak oznaczenia pracy wpływają na zastosowanie silnika. Każda tabliczka zawiera informacje o rodzaju pracy: S1, S2, S3 i S4. Tylko tabliczka 1 oznacza tryb pracy ciągłej (S1), co jest kluczowe w przypadku urządzeń działających bez przerw. Tabliczka 2 wskazuje tryb S3, co oznacza pracę przerywaną, często z krótkimi cyklami włączenia i wyłączenia. To typowe dla urządzeń, które muszą odpoczywać, aby uniknąć przegrzania. Tabliczka 3 z oznaczeniem S2 sugeruje krótki czas pracy ciągłej, co może być mylące, jeśli nie zrozumiemy, że jest to tryb limitowany czasowo, np. dla urządzeń startujących sporadycznie. Tabliczka 4 z trybem S4 obejmuje cykle pracy przerywanej z dodatkowym rozruchem, co jest specyficzne dla maszyn z dużymi obciążeniami startowymi. Typowe błędy myślowe dotyczą braku rozróżnienia między rodzajami pracy i związanych z nimi ograniczeń. Wybór niewłaściwego silnika może prowadzić do awarii, dlatego zrozumienie tych oznaczeń jest kluczowe.

Pytanie 4

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. zasilacz impulsowy.
B. koncentrator sieciowy.
C. sterownik PLC.
D. panel operatorski.
Urządzenie na zdjęciu nie jest panelem operatorskim, ponieważ panele operatorskie mają przede wszystkim za zadanie umożliwienie interakcji człowieka z maszyną, zazwyczaj poprzez ekran dotykowy. Z kolei zasilacze impulsowe służą do konwertowania napięcia elektrycznego i zasilania urządzeń, a koncentratory sieciowe są używane do zarządzania ruchem w sieciach komputerowych. Często błąd wynika z mylenia wizualnych podobieństw między urządzeniami. PLC może przypominać panel operatorski z racji wyświetlacza, ale jego funkcja jest zupełnie inna. Koncentrator, często zwany hubem, jest częścią infrastruktury sieciowej i wcale nie pasuje do przedstawionego urządzenia. Wiedza o różnych typach urządzeń i ich zastosowaniach jest kluczowa w automatyce. Sterowniki PLC są centralnym mózgiem systemów automatyki, kontrolując procesy na podstawie danych wejściowych i programów. Poprawne rozróżnienie tych urządzeń jest ważne dla skutecznej diagnozy i naprawy systemów automatyki. Dobrze jest zrozumieć, jakie zadania pełnią różne komponenty w środowisku przemysłowym i jakie są ich specyficzne zastosowania, aby uniknąć takich pomyłek w przyszłości.

Pytanie 5

Którą funkcję logiczną realizuje element przedstawiony na rysunku?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Analizując różne możliwości, można zauważyć, że często jest trudno odróżnić funkcje logiczne tylko na podstawie tabelki prawdy. Źle dobrana odpowiedź mogła wynikać z błędnej interpretacji tabeli prawdy, która jest kluczowa w zrozumieniu logiki systemu. Tabela prawdy dla funkcji OR pokazuje, że wynik jest prawdziwy, gdy przynajmniej jedno wejście jest prawdziwe. W przeciwnym razie, jak w funkcji AND, wynik byłby prawdziwy tylko wtedy, gdy oba wejścia są prawdziwe, co w kontekście zaworów pneumatycznych oznaczałoby brak przepływu przy zasilaniu tylko jednego wejścia. Błędne wybranie funkcji NOT, sugerowałoby, że przy jednym zasileniu występuje brak przepływu, co nie odpowiada rzeczywistości w tym przypadku. Typowym błędem jest mieszanie funkcji XOR z OR, gdzie XOR wymaga tylko jednego aktywnego sygnału dla wyniku prawdziwego, ale nie obu jednocześnie. Zrozumienie tych różnic jest fundamentalne w projektowaniu niezawodnych systemów logicznych i ma kluczowe znaczenie w automatyzacji procesów.

Pytanie 6

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. NPN NC
C. NPN NO
D. PNP NO
Gratulacje, wybrałeś poprawną odpowiedź! Czujnik przedstawiony na schemacie to czujnik z wyjściem typu NPN NC. Oznacza to, że w stanie normalnie zamkniętym (NC), czujnik przewodzi prąd w stanie spoczynkowym. Wyjście NPN oznacza, że czujnik łączy wyjście do masy (0 V) po zmianie stanu. W praktyce takie czujniki często stosuje się w aplikacjach przemysłowych, gdzie ważne jest, aby układ informował o obecności obiektu nawet w sytuacji awarii zasilania - stąd konfiguracja NC. Czujniki NPN są popularne w systemach, gdzie kontroler PLC odbiera sygnały względem masy. Stosowanie NPN w systemach automatyki przemysłowej jest zgodne z wieloma normami i standardami, co czyni je powszechnym wyborem wśród inżynierów. Warto zwrócić uwagę na to, że dobór odpowiedniego typu wyjścia czujnika zależy od konkretnej aplikacji i wymagań systemu, więc warto znać różnice między NPN a PNP oraz między NO a NC.

Pytanie 7

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. RJ-45
B. RS-232
C. USB
D. HDMI
Wybrałeś poprawną odpowiedź, ponieważ złącze RS-232 to klasyczny interfejs, który przez lata był standardem komunikacji szeregowej w komputerach i urządzeniach przemysłowych. Złącze te, najczęściej spotykane w wersji DB9, umożliwia przesyłanie danych szeregowo, co oznacza, że bity są przesyłane jeden po drugim. Jest znane ze swojej prostoty i niezawodności, chociaż jego prędkość transmisji nie jest zbyt wysoka w porównaniu z nowoczesnymi standardami. Używane jest często w aplikacjach przemysłowych, systemach POS czy do podłączania modemów i drukarek. Mimo że RS-232 zostało wypierane przez nowsze technologie, takie jak USB czy Ethernet, nadal znajduje zastosowanie tam, gdzie wymagana jest długa odległość transmisji i odporność na zakłócenia. W praktyce, złącza RS-232 są często wykorzystywane do konfiguracji urządzeń sieciowych czy w systemach automatyki przemysłowej. Warto także pamiętać, że ten typ połączenia wymaga odpowiedniego kabla z ekranowaniem, aby zminimalizować wpływ zakłóceń elektromagnetycznych. Moim zdaniem, znajomość RS-232 to podstawa dla każdego, kto interesuje się elektroniką i telekomunikacją, ponieważ pozwala zrozumieć fundamenty komunikacji szeregowej i jej zastosowania w praktyce.

Pytanie 8

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Zasilacz 230 V AC / 24 V DC
B. Przetwornica napięcia 2x24 V DC / 230 V AC
C. Przetwornica akumulatorowa 2x24 V / 230 V AC
D. Obiektowy separator napięć 24 V DC
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 9

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. czerwony.
B. żółto-zielony.
C. niebiesko-zielony.
D. niebieski.
Izolacja przewodów elektrycznych jest oznaczona zgodnie z międzynarodowymi normami, aby ułatwić ich identyfikację i zapewnić bezpieczne użytkowanie. Kolor niebieski jest tradycyjnie używany dla przewodów neutralnych, a czerwony często oznacza przewody fazowe w starych instalacjach. Błędem jest założenie, że dowolny przewód może pełnić rolę przewodu ochronnego. Niebieski przewód w nowoczesnych instalacjach jest przypisany do przewodu neutralnego (N), co oznacza, że nie powinien być używany jako przewód ochronny. Przewody neutralne są odpowiedzialne za zamknięcie obwodu elektrycznego, a ich niewłaściwe użycie w roli przewodów ochronnych może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy porażenia prądem. Czerwony kolor, choć historycznie używany w systemach trójfazowych jako sygnałowy lub fazowy, nie pełni funkcji ochronnej. Połączenie czerwonego przewodu z ochronnym punktem PE może skutkować błędami w instalacji, które są trudne do zdiagnozowania. Przewody niebiesko-zielone nie są standardem w żadnym uznanym międzynarodowo systemie oznaczeń, co również sugeruje brak znajomości norm i zasad bezpieczeństwa elektrycznego. Takie błędne założenia mogą wynikać z braku doświadczenia lub niewystarczającej znajomości obowiązujących przepisów, które jasno definiują zastosowanie przewodów ochronnych z żółto-zieloną izolacją. Właściwe zrozumienie tej kwestii ma kluczowe znaczenie dla utrzymania bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 10

Na rysunku przedstawiono listwę przyłączeniową regulatora temperatury. Do których zacisków regulatora należy podłączyć czujnik termoelektryczny?

Ilustracja do pytania
A. 2 i 3
B. 1 i 2
C. 5 i 6
D. 1 i 3
Wybór innych zacisków niż 2 i 3 prowadzi do błędnego podłączenia czujnika termoelektrycznego. Zaciski 1 i 3 lub 1 i 2 mogą być używane do innych funkcji niż podłączenie termopary, np. dla innych typów czujników lub jako część obwodu sterowania. Często popełnianym błędem jest mylenie zacisków z powodu podobieństwa ich oznaczeń lub konfiguracji fizycznej na listwie. W praktyce, wybór niewłaściwych zacisków skutkuje brakiem odczytu temperatury lub generowaniem błędnych wartości, co może wpływać na działanie całego systemu regulacji temperatury. Zaciski 5 i 6, które także były jedną z opcji, są zazwyczaj używane w innych częściach układu, np. do zasilania bądź jako część innego obwodu. Kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej regulatora temperatury, która precyzyjnie opisuje funkcje poszczególnych zacisków. Zrozumienie, jak działa efekt Seebecka i jak termopary generują sygnały, jest istotne dla prawidłowego podłączania i diagnozowania potencjalnych problemów. Dlatego edukacja w zakresie podstawowych zasad działania czujników i regulatorów jest nieoceniona dla każdego technika zajmującego się automatyką przemysłową.

Pytanie 11

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. P
B. A
C. T
D. B
Zrozumienie, do którego przyłącza w zaworze hydraulicznym należy podłączyć zbiornik z cieczą, jest kluczowe dla prawidłowego funkcjonowania całego systemu. Przyłącze P, często mylone, służy do doprowadzenia ciśnienia roboczego z pompy do zaworu, a nie do podłączenia zbiornika. To często spotykany błąd, wynikający z braku znajomości podstawowych zasad działania układów hydraulicznych. Przyłącza A i B odpowiadają za sterowanie przepływem cieczy do siłowników i innych elementów wykonawczych. Ich funkcją jest kierowanie cieczy do odpowiednich części systemu, aby mogły one wykonać zaplanowaną pracę, np. przesunięcie tłoka. Podłączenie zbiornika do tych portów mogłoby skutkować niekontrolowanym działaniem siłowników lub w ogóle uniemożliwić działanie układu. Prawidłowe podłączenie zbiornika do przyłącza T jest niezbędne dla zapewnienia swobodnego powrotu cieczy do zbiornika po jej użyciu w systemie. Takie podejście nie tylko zapobiega nadmiernemu ciśnieniu, ale także minimalizuje ryzyko uszkodzeń mechanicznych całego układu. Dobry projektant systemów hydraulicznych wie, że stosowanie się do standardowych praktyk i zrozumienie funkcji poszczególnych przyłączy jest podstawą dla niezawodności i efektywności działania.

Pytanie 12

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wiele osób myli symbol przekładni zębatej z symbolami innych rodzajów napędów, co jest całkiem zrozumiałe na początku nauki rysunku technicznego. Symbole z kołami połączonymi linią oznaczają przekładnie pasowe, w których napęd przenoszony jest przez pas, a nie przez zazębienie. To rozwiązanie pozwala na cichszą pracę i amortyzację drgań, ale ma mniejszą sprawność. Z kolei symbol z przerywaną linią wokół kół przedstawia przekładnię łańcuchową, w której moment obrotowy przenosi łańcuch z ogniwami współpracującymi z zębatkami. Inny symbol z ukośnymi liniami i strzałkami to element związany ze spawalnictwem, nie z mechaniką napędów. Wszystkie te błędne interpretacje wynikają z podobieństwa wizualnego – koła i linie często wyglądają podobnie, lecz zasada działania jest inna. W przekładni zębatej przeniesienie momentu odbywa się przez zazębienie kół, bez poślizgu i z dużą dokładnością. Dlatego poprawny symbol to ten, który pokazuje bezpośredni kontakt osi i zazębienie, a nie pas lub łańcuch.

Pytanie 13

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Pirometryczny.
B. Rezystancyjny.
C. Dylatacyjny.
D. Termoelektryczny.
Podczas gdy termoelektryczne, rezystancyjne i dylatacyjne metody pomiaru temperatury mają swoje zastosowania, nie są one odpowiednie do bezkontaktowego pomiaru. Termoelektryczne czujniki, takie jak termopary, działają na zasadzie różnicy potencjałów generowanej w wyniku zmian temperatury. Są one często używane w pomiarach wymagających dużej precyzji, ale wymagają fizycznego kontaktu z obiektem. Rezystancyjne termometry, takie jak PT100, opierają się na zmianie rezystancji materiału wraz z temperaturą. Choć bardzo dokładne, również wymagają kontaktu z mierzonym obiektem. Dylatacyjne metody, bazujące na rozszerzalności cieplnej materiałów, są coraz rzadziej stosowane, ponieważ są mniej dokładne i wolniejsze w odpowiedzi na szybkie zmiany temperatury. Wszystkie te metody są skuteczne, ale nie nadają się do bezkontaktowych pomiarów. Częstym błędem jest założenie, że każdy typ termometru może być użyty w dowolnym kontekście, co nie jest prawdą. Bez zrozumienia specyfiki i ograniczeń każdej z metod, można łatwo zastosować nieodpowiednie rozwiązanie, co prowadzi do błędów pomiarowych i potencjalnie niebezpiecznych sytuacji. Właściwe dobranie metody pomiarowej jest kluczowe dla uzyskania rzetelnych wyników w każdej aplikacji.

Pytanie 14

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. cewkę.
B. rdzeń.
C. zworę.
D. styki.
Zwróć uwagę na wskazanie strzałki w rysunku – jest to kluczowy element rozpoznawania zwory w przekaźniku. Zwora to ruchoma część przekaźnika, która pełni rolę mostka zamykającego lub otwierającego obwód w momencie przyciągnięcia przez elektromagnes. To właśnie dzięki zworze możemy kontrolować przepływ prądu w obwodach za pomocą sygnałów sterujących. Dzięki temu przekaźniki znajdują zastosowanie w wielu dziedzinach, od prostych układów automatyki po złożone systemy sterowania. Pamiętaj, że zwora działa skutecznie tylko wtedy, gdy jest dobrze zintegrowana z resztą elementów przekaźnika - cewką, rdzeniem i stykami. W praktyce kluczowe jest zapewnienie, że mechanizm zwory nie ulega zacięciom i jest dobrze skalibrowany. Warto również pamiętać o standardach, takich jak IEC 61810, które definiują wymagania dotyczące przekaźników. Zwory muszą działać precyzyjnie, co jest szczególnie ważne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa.

Pytanie 15

W regulatorze PID symbolem TI oznacza się czas

A. wyprzedzenia.
B. propagacji.
C. zdwojenia.
D. opóźnienia.
Pojęcia takie jak czas propagacji, opóźnienia czy wyprzedzenia mogą być mylące w kontekście regulatorów PID. Czas propagacji odnosi się raczej do opóźnień sygnału w systemach komunikacyjnych i nie ma związku z funkcjonowaniem regulatora PID. Czas opóźnienia to parametr występujący w modelach układów dynamicznych, związany z czasem potrzebnym na reakcję systemu na dany sygnał wejściowy. Może to być czas transportu materiału w procesie, ale nie jest to bezpośrednio związane z parametrami TI regulatora PID. Kolejnym błędnym pojęciem jest czas wyprzedzenia, który w automatyce może dotyczyć członów korekcyjnych stosowanych do kompensacji opóźnień czy poprawy dynamiki układu, lecz nie odnosi się do TI, który jest czasem całkowania. Typowym błędem jest zakładanie, że wszystkie te czasy są wymienne, co prowadzi do nieprawidłowego dostrajania regulatorów i destabilizacji procesu. Rozumienie, że TI to czas zdwojenia, jest kluczowe, bo to on określa, jak szybko regulator skoryguje odchyłki procesu względem zadanej wartości, co jest fundamentem stabilizacji i optymalizacji w systemach sterowania. Warto więc zrozumieć te koncepcje, aby unikać typowych błędów w projektowaniu i stosowaniu regulatorów PID w praktyce inżynierskiej. Właściwe zrozumienie parametrów regulatora pozwala na bardziej efektywne projektowanie i implementację systemów automatyki, co przekłada się na większą niezawodność i wydajność procesów technologicznych. Dlatego też nauka i zrozumienie tych pojęć jest niezbędne dla inżynierów automatyków i technologów procesów. Takie podejście pozwala na zgodność z dobrą praktyką projektową i wymogami norm jakościowych, co w efekcie zwiększa konkurencyjność przedsiębiorstw na rynku."]

Pytanie 16

Tabliczka znamionowa przedstawiona na rysunku, to tabliczka znamionowa

Ilustracja do pytania
A. silnika prądu przemiennego.
B. transformatora.
C. silnika prądu stałego.
D. kondensatora.
Tabliczka znamionowa, którą widzimy, to klasyczna tabliczka silnika prądu przemiennego. Jest to ważny element, który zawiera kluczowe informacje o specyfikacji technicznej urządzenia. Na tej tabliczce znajdziemy między innymi dane dotyczące napięcia, mocy, prędkości obrotowej oraz częstotliwości. Te parametry są istotne dla poprawnego podłączenia i eksploatacji silnika. W przypadku silników prądu przemiennego, zgodnie z dobrymi praktykami, warto zwrócić uwagę na współczynnik mocy (cos φ), który wpływa na efektywność energetyczną urządzenia. Moim zdaniem, takie tabliczki są nie tylko praktyczne, ale wręcz niezbędne w procesie instalacji i konserwacji. W praktyce zawodowej często spotykamy się z sytuacjami, gdzie dokładne odczytanie tych informacji potrafi zaoszczędzić wiele problemów. Silniki prądu przemiennego są szeroko stosowane w przemyśle, od napędów maszyn po wentylatory, dlatego zrozumienie ich specyfikacji to podstawa.

Pytanie 17

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”
B. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
C. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
D. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
Twoja odpowiedź jest poprawna! Podłączenie napięcia zasilania 24 V DC wymaga dużej uwagi co do prawidłowej polaryzacji. Zaciski 3 i 4 są oznaczone jako miejsca do podłączenia tego rodzaju zasilania. W Twoim przypadku, zacisk 3 jest miejscem, gdzie podłączamy ujemny biegun (-), a na zacisk 4 przypada dodatni biegun (+). Zastosowanie prawidłowej polaryzacji jest kluczowe, szczególnie w przypadku urządzeń elektronicznych, które mogą być wrażliwe na niewłaściwe podłączenie. Dokumentacja techniczna zawsze powinna być Twoim głównym źródłem informacji. Dobrym zwyczajem jest oznaczanie przewodów i zacisków, aby uniknąć pomyłek przy podłączaniu. W praktyce, poprawne podłączenie zasilania 24 V DC jest standardem w wielu aplikacjach przemysłowych, gdzie stabilność i niezawodność zasilania są kluczowe. Warto również pamiętać o zastosowaniu zabezpieczeń przeciwprzepięciowych w takich układach.

Pytanie 18

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 2
B. 4
C. 1
D. 3
Rozpoznanie diody prostowniczej na płytce drukowanej jest kluczowe dla zrozumienia działania układów elektronicznych. W tym przypadku, wybierając niepoprawne odpowiedzi, można było opierać się na błędnych przesłankach. Na przykład, tranzystory czy kondensatory również pełnią ważne role, ale ich funkcje różnią się znacznie od diody prostowniczej. Tranzystor, oznaczony tutaj jako element numer 2, działa jako przełącznik lub wzmacniacz sygnałów. Kondensator, z kolei, jak wskazuje pozycja 4, magazynuje energię i stabilizuje napięcie. Błędem jest zakładanie, że ich oznaczenie jest podobne do diod. Kluczowa różnica to kierunek przepływu prądu; dioda prostownicza przepuszcza prąd w jednym kierunku, co jest podstawą jej zastosowania w prostowaniu sygnałów. Często myli się także kondensatory elektrolityczne z diodami ze względu na podobny kształt i oznaczenie biegunowości. Aby unikać takich pomyłek, warto zwrócić większą uwagę na specyfikację elementów i ich oznaczenia na schematach i płytkach PCB, co jest zgodne z dobrymi praktykami w elektronice.

Pytanie 19

Urządzenie przedstawione na ilustracji to

Ilustracja do pytania
A. panel operatorski.
B. zasilacz impulsowy.
C. sterownik PLC.
D. koncentrator sieciowy.
Urządzenie przedstawione na ilustracji nie jest panelem operatorskim, zasilaczem impulsowym ani koncentratorem sieciowym. Panel operatorski to urządzenie, które pozwala operatorowi na interakcję z maszynami poprzez wyświetlanie danych procesowych i pozwalanie na wprowadzanie danych lub poleceń. Z reguły charakteryzuje się dużym ekranem dotykowym i intuicyjnym interfejsem. W przeciwieństwie do PLC, jego główną funkcją jest zapewnienie użytkownikowi komunikacji z systemem, a nie bezpośrednie sterowanie procesami. Zasilacz impulsowy to urządzenie służące do zasilania innych urządzeń elektrycznych, cechujące się wysoką sprawnością i kompaktowymi rozmiarami. Jego zadaniem jest przetwarzanie napięcia wejściowego na stabilizowane napięcie wyjściowe, co zapewnia odpowiednie warunki pracy dla zasilanych urządzeń. Koncentrator sieciowy, z kolei, to urządzenie używane w sieciach komputerowych do łączenia wielu urządzeń sieciowych w celu współdzielenia danych. Działa na zasadzie przekazywania danych między różnymi segmentami sieci. Często mylony z routerem, nie posiada jednak zaawansowanych funkcji zarządzania ruchem sieciowym. Błąd polegający na utożsamianiu powyższych urządzeń ze sterownikiem PLC wynika często z niewiedzy na temat specyficznych funkcji i zastosowań każdego z nich. Każde z tych urządzeń pełni inną rolę w systemach przemysłowych i IT, dlatego zrozumienie ich różnic jest kluczowe dla efektywnej pracy w tych dziedzinach.

Pytanie 20

Kolejność dokręcania śrub mocujących płytę jest następująca:

Ilustracja do pytania
A. 4 – 3 – 1 – 2
B. 4 – 3 – 2 – 1
C. 1 – 3 – 4 – 2
D. 1 – 2 – 3 – 4
Prawidłowa kolejność dokręcania to 1–3–4–2. W praktyce technicznej oznacza to, że śruby dokręca się na krzyż, czyli naprzemiennie po przekątnej. Dzięki temu docisk płyty do powierzchni jest równomierny, a naprężenia w materiale rozkładają się symetrycznie. Taki sposób montażu zapobiega wykrzywieniu lub pęknięciu płyty, a także nieszczelnościom w połączeniu – szczególnie gdy pod spodem znajduje się uszczelka. Z mojego doświadczenia wynika, że warto najpierw dokręcać śruby lekko, z momentem wstępnym, a dopiero potem dociągnąć je końcowo momentem zalecanym przez producenta (np. wg normy ISO 898-1). W mechanice, hydraulice i motoryzacji ten sposób jest standardem przy montażu głowic silników, kołnierzy czy obudów przekładni. Równomierne dokręcanie na krzyż to niby drobiazg, ale decyduje o trwałości całego połączenia.

Pytanie 21

Do przykręcania lub odkręcania nakrętki przedstawionej na rysunku przeznaczony jest klucz

Ilustracja do pytania
A. imbusowy.
B. nasadowy.
C. hakowy.
D. czołowy.
Nakrętka przedstawiona na rysunku to nakrętka rowkowa, do której przykręcania lub odkręcania stosuje się klucz hakowy. Ten typ klucza jest specjalnie zaprojektowany, aby pasować do rowków lub otworów w nakrętce, umożliwiając łatwe manewrowanie nawet w trudno dostępnych miejscach. Klucze hakowe są powszechnie używane w przemyśle maszynowym i motoryzacyjnym, gdzie precyzja i siła są kluczowe. Ich konstrukcja umożliwia równomierne rozłożenie siły, co minimalizuje ryzyko uszkodzenia elementów złącznych. Przy pracy z maszynami, nakrętki rowkowe często są stosowane do mocowania łożysk lub elementów obrotowych, a użycie klucza hakowego zapewnia, że proces ten jest bezpieczny i efektywny. Standardy przemysłowe, takie jak DIN 1810, określają wymiary i specyfikacje dla kluczy hakowych, co jest kluczowe dla utrzymania kompatybilności i bezpieczeństwa w pracy. W praktyce, klucz hakowy to niezastąpione narzędzie w warsztatach i fabrykach, a jego użycie jest często preferowane ze względu na wygodę i niezawodność w trudnych warunkach.

Pytanie 22

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Problem z nieprawidłowymi odpowiedziami polega na niezrozumieniu zasady działania histerezy w układach regulacji temperatury. Wykresy, które pokazują zbyt częste przełączanie wyjścia przekaźnikowego, jak w przypadku niektórych błędnych odpowiedzi, wskazują na brak zastosowania właściwej histerezy. Jeśli wyjście włącza się i wyłącza zbyt szybko, powoduje to nadmierne zużycie elementów przekaźnikowych oraz zwiększone zużycie energii. Taki mechanizm nie jest efektywny, ani praktyczny w rzeczywistych zastosowaniach, jak systemy HVAC czy przemysłowe piece grzewcze. Typowym błędem jest myślenie, że im szybciej system reaguje, tym lepiej, podczas gdy w rzeczywistości prowadzi to do niepożądanych oscylacji w systemie. Brak właściwej histerezy może także prowadzić do niestabilności temperaturowej, co jest niekorzystne dla delikatnych procesów technologicznych. Dlatego tak ważne jest, aby zrozumieć, jak histereza działa jako element buforujący, stabilizujący cały proces regulacji. W systemach automatyki przemysłowej, takich jak sterowniki PLC, właściwe zaimplementowanie histerezy jest kluczem do efektywnego i trwałego działania systemu regulacji temperatury. Z mojego doświadczenia, często spotyka się błędne założenie, że mniejsza histereza oznacza lepszą kontrolę, podczas gdy w rzeczywistości optymalny dobór histerezy to kompromis między efektywnością a stabilnością.

Pytanie 23

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 60 mm
B. 10 mm
C. 20 mm
D. 30 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 24

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. podkładek dystansowych.
C. kołków rozprężnych.
D. pierścieni Segera.
Narzędzie przedstawione na ilustracjach to specjalna forma szczypiec do montażu zabezpieczeń E-ring. Te niewielkie zabezpieczenia są powszechnie stosowane w mechanice do utrzymywania elementów na osiach lub wałkach. Szczypce mają charakterystyczne końcówki, które umożliwiają zakleszczenie się w otworze E-ring i jego bezpieczne zamontowanie. W praktyce, zabezpieczenia te stosuje się w przekładniach, silnikach oraz innych mechanizmach, gdzie konieczne jest szybkie i bezpieczne mocowanie elementów. Przy stosowaniu tych narzędzi zaleca się przestrzeganie odpowiednich norm, takich jak DIN 471 lub ISO 10642, które definiują wymiary i wymagania dotyczące tego typu zabezpieczeń. Dzięki temu mamy pewność, że montujemy elementy zgodnie z wymogami technicznymi. E-ringi są cenione za prostotę montażu oraz demontażu, co znacząco przyspiesza procesy serwisowe. Często można je spotkać w urządzeniach codziennego użytku, co świadczy o ich uniwersalności i niezawodności. Samo narzędzie jest ergonomicznie zaprojektowane, aby zapewnić komfort pracy i precyzję, co jest kluczowe w zastosowaniach technicznych.

Pytanie 25

Do pomiaru wilgotności powietrza stosuje się

A. barometr.
B. higrometr.
C. manometr.
D. termometr.
Higrometr to urządzenie, które jest niezastąpione w wielu dziedzinach technicznych i naukowych. Dzięki niemu możemy precyzyjnie zmierzyć wilgotność powietrza, co ma kluczowe znaczenie w różnych branżach. Na przykład, w przemyśle tekstylnym wilgotność wpływa na właściwości materiałów, a w elektronicznym na funkcjonowanie urządzeń. W rolnictwie kontrola wilgotności jest istotna dla zdrowia roślin i plonów. Warto też wiedzieć, że higrometry mogą działać na różne sposoby, np. wykorzystując włosie, które zmienia długość pod wpływem wilgoci, czy też za pomocą technologii elektronicznej, jak czujniki pojemnościowe. Z mojego doświadczenia, w laboratoriach często spotyka się higrometry psychrometryczne, które używają dwóch termometrów - suchego i mokrego. W praktyce, dobrze skalibrowany higrometr to podstawa w miejscach, gdzie warunki atmosferyczne mogą wpływać na procesy produkcyjne czy zdrowie pracowników. Dlatego w wielu normach ISO znajdziemy wytyczne dotyczące precyzyjnego pomiaru wilgotności, co podkreśla znaczenie tego urządzenia w utrzymaniu jakości i bezpieczeństwa.

Pytanie 26

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 4.
Ilustracja do odpowiedzi A
B. Przewód 2.
Ilustracja do odpowiedzi B
C. Przewód 1.
Ilustracja do odpowiedzi C
D. Przewód 3.
Ilustracja do odpowiedzi D
Właściwy wybór to przewód 1. Ten typ przewodu jest przeznaczony do zasilania silników 3-fazowych z przemiennikiem częstotliwości (falownikiem). Ma on ekran z oplotu miedzianego lub aluminiowego, który ogranicza emisję zakłóceń elektromagnetycznych (EMC) oraz chroni przed ich przenikaniem do innych urządzeń. Przewody tego typu są odporne na drgania, wyższe temperatury i impulsy napięciowe generowane przez falownik. Dodatkowo posiadają izolację z materiałów trudnopalnych, często w klasie odporności na promieniowanie UV i oleje, co pozwala stosować je zarówno wewnątrz, jak i na zewnątrz obiektów przemysłowych. Z mojego doświadczenia wynika, że takie przewody – np. typu Ölflex Servo, BiTservo lub Helukabel Topflex – są niezbędne, aby uniknąć problemów z czujnikami, sterownikami PLC i komunikacją sieciową. Standard PN-EN 60204-1 wyraźnie zaleca stosowanie ekranowanych kabli przy połączeniach silników z falownikami właśnie ze względu na ograniczenie zakłóceń harmonicznych.

Pytanie 27

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 4
B. 2
C. 1
D. 3
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.

Pytanie 28

Który element silnika tłokowego wskazuje strzałka?

Ilustracja do pytania
A. Korbowód.
B. Dźwignię.
C. Wodzik.
D. Wał korbowy.
Podczas analizy elementów silnika tłokowego można łatwo pomylić niektóre z nich, szczególnie jeśli nie ma się doświadczenia w tej dziedzinie. Zacznijmy od wodzika. Wodzik w rzeczywistości nie jest częścią silnika tłokowego, a raczej elementem przekładni, który pełni funkcję łącznika w mechanizmach dźwigniowych. Może być używany w innych typach maszyn, ale w kontekście silnika tłokowego to zupełnie co innego. Dźwignia, z drugiej strony, to element, który może być używany w różnych mechanizmach do przenoszenia siły, ale w silniku tłokowym nie znajduje się w bezpośrednim połączeniu z tłokiem. Korbowód, co jest najczęściej mylonym elementem, jest rzeczywiście kluczową częścią silnika tłokowego, ale jego rolą jest połączenie tłoka z wałem korbowym, co pozwala na przeniesienie ruchu liniowego na obrotowy. W praktyce, błędne zrozumienie funkcji i konstrukcji tych elementów może prowadzić do problemów podczas projektowania czy naprawy silnika. Warto znać standardy branżowe i funkcje każdego z elementów silnika, aby prawidłowo go serwisować i diagnozować ewentualne problemy.

Pytanie 29

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 100 Ω
B. 500 Ω
C. 0 Ω
D. 1 000 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 30

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 2.
B. Rozrusznik 3.
C. Rozrusznik 4.
D. Rozrusznik 1.
Rozrusznik 3, ATS01N125, jest idealny do zastosowania w środowisku wysokiego zapylenia dzięki swojej obudowie o stopniu ochrony IP 67. To oznacza, że jest całkowicie odporny na kurz i może wytrzymać zanurzenie w wodzie do określonej głębokości i czasu. To kluczowy aspekt, gdy planujesz montaż urządzeń w trudnych warunkach środowiskowych, gdzie pył może wpływać na działanie sprzętu. Moim zdaniem, wybór odpowiedniego stopnia ochrony to absolutna podstawa w takich sytuacjach. Dodatkowo, ten model obsługuje napięcia 1x230 V, co jest zgodne z potrzebami dla silnika jednofazowego. Zastosowanie softstartu nie tylko wydłuża żywotność silnika, ale także zmniejsza zużycie energii podczas uruchamiania, co jest korzystne z punktu widzenia ekonomii i ochrony środowiska. Dzięki temu można uniknąć nagłych skoków prądu, które mogą uszkodzić inne komponenty systemu. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi i standardami branżowymi, gdzie zawsze warto kierować się niezawodnością i bezpieczeństwem.

Pytanie 31

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Ta odpowiedź jest prawidłowa, ponieważ prawidłowo przedstawia początek sekwencji współbieżnej w sieci SFC (Sequential Function Chart). Sekwencja współbieżna to taki typ organizacji procesu, gdzie równocześnie mogą być wykonywane różne zadania, co jest osiągane dzięki odpowiedniemu rozdzieleniu kroków. Na rysunku widzimy, że po kroku 1, sekwencja rozdziela się na dwa równoległe kroki: krok 2 i krok 3, co jest zgodne z zasadami projektowania SFC. W praktyce takie podejście jest niezwykle przydatne w systemach automatyki przemysłowej, gdzie konieczne jest jednoczesne wykonanie kilku niezależnych procesów. Standardy takie jak IEC 61131-3 jasno określają, jak powinny wyglądać diagramy sekwencyjne, a poprawne ich stosowanie zwiększa czytelność i efektywność systemów sterowania. Ważne jest, aby zrozumieć, że każda linia pozioma na diagramie SFC oznacza punkt synchronizacji, zapewniający, że wszystkie równoległe czynności są zakończone przed przejściem do następnego etapu. Dzięki temu możemy utrzymać pełną kontrolę nad sekwencją zdarzeń, co jest kluczowe w środowiskach wymagających wysokiej niezawodności.

Pytanie 32

Do przykręcenia zaworu za pomocą śruby przedstawionej na rysunku należy użyć

Ilustracja do pytania
A. wkrętaka gwiazdkowego.
B. klucza „francuskiego”.
C. klucza imbusowego.
D. klucza hydraulicznego nastawnego.
Klucz imbusowy jest nieodzownym narzędziem w przypadku pracy ze śrubami posiadającymi sześciokątne gniazdo. Ten typ śruby, znany jako śruba z łbem na klucz imbusowy, jest szeroko stosowany w wielu dziedzinach, od meblarstwa po inżynierię mechaniczną. Klucz imbusowy, czasami nazywany kluczem sześciokątnym, cechuje się prostotą budowy, co czyni go niezwykle praktycznym w użyciu. Jednym z głównych powodów popularności tego rozwiązania jest możliwość uzyskania dużego momentu obrotowego bez ryzyka uszkodzenia łba śruby. Użycie klucza imbusowego jest zgodne ze standardami ISO dla narzędzi ręcznych, co gwarantuje jego uniwersalność i zgodność z większością śrub tego typu na całym świecie. W praktyce, śruby na klucz imbusowy są często wykorzystywane w konstrukcjach, gdzie dostęp jest ograniczony, ponieważ klucz imbusowy może być stosowany pod kątem. To także narzędzie, które z powodzeniem znajdziemy w wielu zestawach do samodzielnego montażu, popularnych wśród skandynawskich firm meblowych. Moim zdaniem, jeśli ktoś często pracuje z montażem lub demontażem różnych elementów, posiadanie zestawu kluczy imbusowych to absolutna konieczność.

Pytanie 33

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 4.
B. w pozycji 1.
C. w pozycji 3.
D. w pozycji 2.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 34

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. areometry.
B. barometry.
C. manometry.
D. higrometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 35

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. NOT
B. NAND
C. AND
D. OR
Uszkodzona bramka to AND. Analizując schemat krok po kroku: pierwsza bramka to OR (oznaczenie ≥1) – przy wejściach 1 i 1 daje wyjście 1, co jest poprawne. Następnie sygnał trafia do bramki AND wraz z sygnałem 0 z dolnej gałęzi. Działanie logiczne AND wymaga, by oba wejścia były równe 1, aby wyjście było również 1. Tymczasem na rysunku widać, że przy wejściach 1 i 0 wyjście bramki AND wynosi 1 – co jest sprzeczne z jej funkcją logiczną. Prawidłowo wynik powinien wynosić 0. To jednoznacznie wskazuje, że bramka AND nie działa prawidłowo – jest uszkodzona. Moim zdaniem to klasyczny przykład diagnostyki prostych układów cyfrowych, gdzie analiza tablicy prawdy pozwala natychmiast wykryć błąd w logice. W praktyce, przy testowaniu rzeczywistych układów, takie błędy można potwierdzić miernikiem logicznym lub oscyloskopem. Czasem uszkodzenie bramki objawia się właśnie nieprawidłowym utrzymywaniem stanu wysokiego mimo niskiego sygnału wejściowego, co wskazuje na zwarcie wewnętrzne lub przebicie tranzystora wyjściowego. Dobrą praktyką serwisową jest porównanie wyników z modelem symulacyjnym albo sprawnym układem, by uniknąć pomyłki przy interpretacji stanów logicznych.

Pytanie 36

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. P
B. PD
C. PI
D. PID
Odpowiedź PI wskazuje na regulator proporcjonalno-całkujący. Na wykresie widzimy charakterystyczny skok, a następnie liniowy przyrost w czasie. To typowe dla PI, który reaguje zarówno na bieżący błąd, jak i jego całkę w czasie. Dlatego jest skuteczny w eliminowaniu uchybu ustalonego. Zastosowanie regulatora PI znajdziesz w systemach, gdzie wymagana jest stabilność i precyzja, jak w regulacji temperatury pieca czy prędkości silnika. W praktyce PI jest często używany, bo łączy prostotę P z eliminacją błędu stałego przez I. Standardy branżowe często zalecają PI w procesach, gdzie nie są potrzebne szybkie reakcje na zakłócenia, jak w przypadku PD lub PID. PI daje stabilność w systemach z długimi czasami odpowiedzi. Z mojego doświadczenia, PI jest nieoceniony w aplikacjach, gdzie precyzja jest kluczowa, a zakłócenia mają charakter wolno zmieniający się.

Pytanie 37

Do pomiaru luzów pomiędzy współpracującymi powierzchniami służy

A. szczelinomierz.
B. przymiar kreskowy.
C. liniał sinusowy.
D. mikrometr.
Szczelinomierz to narzędzie powszechnie stosowane w przemyśle, gdy chcemy zmierzyć niewielkie luki między powierzchniami. Złożony jest z zestawu cienkich blaszek o różnej grubości, które pozwalają na dokładne określenie wielkości szczeliny. Wyobraź sobie sytuację, w której montujesz dwie metalowe części i musisz upewnić się, że pasują do siebie idealnie. W takim przypadku szczelinomierz jest nieoceniony. Często używają go mechanicy samochodowi do ustawiania luzów zaworowych w silnikach spalinowych. Z mojego doświadczenia wynika, że umiejętne posługiwanie się szczelinomierzem potrafi zaoszczędzić wiele problemów związanych z nadmiernym zużyciem części lub hałasem. W standardach przemysłowych często wymaga się precyzyjnego dopasowania elementów, a szczelinomierz jest narzędziem, które umożliwia sprostanie tym wymaganiom. Pamiętaj, że właściwy dobór narzędzi pomiarowych w dużym stopniu wpływa na jakość gotowego produktu, co jest kluczowe, szczególnie w produkcji masowej. Dodatkowo, użycie szczelinomierza jest stosunkowo proste i szybkie, nie wymaga skomplikowanych procedur kalibracyjnych, co czyni go idealnym wyborem w wielu sytuacjach przemysłowych.

Pytanie 38

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornik PWM.
B. przetwornica napięcia.
C. analogowo-cyfrowy konwerter USB.
D. zadajnik cyfrowo-analogowy.
Odpowiedź jest prawidłowa, ponieważ pokazany na rysunku układ to faktycznie analogowo-cyfrowy konwerter USB. To urządzenie działa jako pomost między sygnałami analogowymi a cyfrowymi, co jest kluczowe w wielu zastosowaniach przemysłowych i naukowych. W praktyce, takie konwertery są używane do przetwarzania sygnałów z czujników analogowych, takich jak termometry czy czujniki ciśnienia, na dane cyfrowe, które mogą być analizowane przez komputer. Standard USB zapewnia łatwość integracji z systemami komputerowymi oraz szeroką kompatybilność. Moim zdaniem, to niezbędne narzędzie w laboratoriach i przemyśle, gdzie precyzyjne pomiary są kluczowe. Dodatkowo, izolacja galwaniczna widoczna na schemacie chroni sprzęt przed różnicami potencjałów, co jest zgodne z dobrymi praktykami inżynierskimi. Dzięki temu, urządzenie można bezpiecznie używać w trudnych warunkach przemysłowych, gdzie mogą wystąpić zakłócenia elektromagnetyczne. Warto też wspomnieć, że taki konwerter umożliwia jednoczesne monitorowanie wielu kanałów pomiarowych, co znacząco zwiększa jego funkcjonalność.

Pytanie 39

Do pomiaru temperatury należy zastosować przyrząd pomiarowy przedstawiony na rysunku oznaczonym literą

A. Przyrząd 2.
Ilustracja do odpowiedzi A
B. Przyrząd 3.
Ilustracja do odpowiedzi B
C. Przyrząd 4.
Ilustracja do odpowiedzi C
D. Przyrząd 1.
Ilustracja do odpowiedzi D
Przyrząd przedstawiony na pierwszym zdjęciu to termometr bimetaliczny, służący do pomiaru temperatury. Zakres wskazań na skali podany jest w stopniach Celsjusza (°C), co jednoznacznie wskazuje na jego zastosowanie. Wewnątrz obudowy znajduje się spiralny element bimetaliczny złożony z dwóch metali o różnym współczynniku rozszerzalności cieplnej. Pod wpływem zmiany temperatury element ten wygina się, powodując obrót wskazówki. Tego typu termometry stosowane są w przemyśle, w instalacjach grzewczych, chłodniczych, a także w laboratoriach, ponieważ są proste w obsłudze i odporne na wstrząsy. Ich zaletą jest brak konieczności zasilania elektrycznego, a odczyt jest natychmiastowy. Moim zdaniem to klasyczny przykład niezawodnego przyrządu – prosty mechanicznie, a jednocześnie bardzo trwały. W codziennej praktyce warto pamiętać, że dokładność pomiaru zależy od właściwego montażu czujnika – końcówka pomiarowa musi znajdować się w pełnym kontakcie z medium, którego temperaturę mierzymy.

Pytanie 40

Które elementy na schematach układów pneumatycznych są oznaczane literą V?

A. Zawory.
B. Silniki.
C. Pompy.
D. Siłowniki.
Dokładnie, chodzi o zawory. W układach pneumatycznych, zawory są kluczowe dla kontrolowania przepływu powietrza. Oznaczane są literą V, co jest standardem w schematach technicznych. Zawory mogą spełniać różne funkcje, takie jak regulacja ciśnienia, kierunku przepływu czy rozdziału strumienia. Na przykład, zawory sterujące kierunkiem przepływu umożliwiają zmianę ruchu siłownika z jednego kierunku na drugi. W praktyce, w przemyśle, zawory są wykorzystywane w wielu miejscach, od prostych maszyn po zaawansowane systemy automatyzacji. Istnieje wiele typów zaworów, jak elektromagnetyczne, kulowe czy iglicowe, każdy z nich ma swoje specyficzne zastosowania. Z mojego doświadczenia wynika, że wybór odpowiedniego zaworu jest kluczowy dla efektywności i niezawodności całego układu. Prawidłowe oznaczenie i użycie zaworów zgodnie z normami, jak ISO 1219, zapewnia właściwe działanie systemu i ułatwia serwisowanie czy modernizację układu. To naprawdę fascynujące, jak wiele można osiągnąć dzięki prostym, ale skutecznym rozwiązaniom jak zawory. Warto się z nimi zaprzyjaźnić, bo to podstawa wielu systemów pneumatycznych.