Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 14:59
  • Data zakończenia: 9 grudnia 2025 15:09

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. zwrotny.
B. dławiący.
C. redukcyjny.
D. bezpieczeństwa.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 2

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PI
B. PID
C. P
D. PD
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 3

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 3
Ilustracja do odpowiedzi A
B. Przewód 4
Ilustracja do odpowiedzi B
C. Przewód 1
Ilustracja do odpowiedzi C
D. Przewód 2
Ilustracja do odpowiedzi D
Do połączenia silnika 3-fazowego z przemiennikiem częstotliwości należy użyć przewodu ekranowanego, takiego jak ten przedstawiony na zdjęciu. Jest to specjalny przewód silnikowy z oplotem miedzianym (ekranem), który tłumi zakłócenia elektromagnetyczne generowane przez falownik. Wewnątrz znajdują się trzy żyły fazowe oraz przewód ochronny PE, co w pełni odpowiada wymaganiom zasilania silnika 3-fazowego. Ekran musi być podłączony po obu stronach – do obudowy falownika oraz do korpusu silnika – aby skutecznie odprowadzać prądy zakłóceniowe. Z mojego doświadczenia, tego typu przewody (oznaczenia np. ÖLFLEX SERVO, Bitner BiTservo, Helukabel TOPFLEX) są odporne na drgania, oleje i podwyższoną temperaturę, co ma duże znaczenie w aplikacjach przemysłowych. Dzięki ekranowi sygnały sterujące i komunikacyjne w sąsiednich przewodach są chronione przed interferencją. W praktyce warto też zwrócić uwagę, by długość przewodu między falownikiem a silnikiem była możliwie krótka – to minimalizuje emisję zakłóceń EMC.

Pytanie 4

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. V2
B. V3
C. N2
D. N4
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.

Pytanie 5

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”
B. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
C. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
D. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
Podłączenie napięcia zasilania 24 V DC do zacisków 3 i 4 jest zgodne z dokumentacją przedstawioną na schemacie. Zacisk 3 służy jako punkt podłączenia „-”, a zacisk 4 jako „+”. To typowe oznaczenie dla zasilania urządzeń elektronicznych, gdzie biegunowość ma znaczenie dla prawidłowego działania układów. W schemacie wyraźnie widać, że obwód dla 24 V DC jest oddzielony od obwodu 230 V AC, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w elektronice. W praktyce często stosuje się zaciski oznaczone jako „+” i „-” w urządzeniach zasilanych napięciem stałym, co zapobiega błędnemu podłączeniu i potencjalnym uszkodzeniom. Dlatego, jeśli pracujesz z urządzeniami elektronicznymi, zawsze zwracaj uwagę na poprawne oznaczenie zacisków. I pamiętaj, że przy pracy z napięciem, nawet tak niskim jak 24 V, kluczowe jest przestrzeganie zasad bezpieczeństwa. Z mojego doświadczenia wynika, że takie detale jak poprawna biegunowość to podstawa w pracy z elektroniką.

Pytanie 6

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 3
Ilustracja do odpowiedzi A
B. Miernik 1
Ilustracja do odpowiedzi B
C. Miernik 2
Ilustracja do odpowiedzi C
D. Miernik 4
Ilustracja do odpowiedzi D
Poprawna odpowiedź to miernik numer 3, który ma zakres pomiarowy od –5 do +15 V. Jest to klasyczny woltomierz analogowy do pomiaru napięcia stałego (DC), idealny do sprawdzenia sygnału wyjściowego +Q1 z czujnika analogowego. W schemacie układu pomiarowego widać, że napięcie wyjściowe zawiera się w zakresie 0–10 V, więc miernik o takim zakresie zapewni odpowiednią dokładność i bezpieczeństwo pomiaru. Dodatkowo posiada on podziałkę symetryczną z częścią ujemną, co umożliwia kontrolę również błędnych polaryzacji lub sygnałów odwróconych. W praktyce technicznej takie mierniki stosuje się do diagnostyki czujników, regulatorów PID, przetworników sygnałów oraz wyjść analogowych PLC. Z mojego doświadczenia wynika, że warto używać mierników o zakresie nieco szerszym od mierzonego napięcia – w tym wypadku 15 V zamiast 10 V – żeby nie przeciążyć ustroju pomiarowego. W przemyśle automatyki miernik o takim zakresie jest często montowany w szafie sterowniczej, by umożliwić bieżący podgląd sygnału sterującego zaworem, siłownikiem czy czujnikiem położenia.

Pytanie 7

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Pomiar wielkości procesowych.
B. Wizualizacja przebiegu procesu.
C. Zasilanie układu sterowania.
D. Programowanie układu.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 8

Na schemacie układu sterowania wskaż, dla którego odcinka przewodu została błędnie wpisana wartość rezystancji.

Ilustracja do pytania
A. S0:2/WE1 0,1
B. S1:4/WE2 ∞
C. V0:A2/V1:A2 0,1
D. WY1/V0:A1 0,1
Analizując pozostałe odcinki przewodów, warto zwrócić uwagę na kilka kluczowych aspektów. Dla odcinków takich jak S0:2/WE1 i WY1/V0:A1, rezystancja wynosi 0,1 Ω. Tak niski poziom rezystancji jest typowy dla dobrze połączonych przewodów w systemach sterowania, co zapewnia prawidłowy przepływ prądu. W praktyce, wartości takie są pożądane, ponieważ minimalizują straty energii i gwarantują skuteczne działanie obwodu. W przypadku odcinka V0:A2/V1:A2, również mamy do czynienia z rezystancją 0,1 Ω, co sugeruje, że przewód jest w pełni funkcjonalny i gotowy do pracy. Typowym błędem może być założenie, że każda niezerowa wartość rezystancji jest problematyczna. Jednak w systemach elektrycznych, pewien minimalny opór jest nieunikniony, a wartości takie jak 0,1 Ω są akceptowalne i technicznie poprawne. Często początkujący technicy mogą błędnie interpretować te wartości, myśląc, że każda rezystancja wskazuje na problem, podczas gdy w rzeczywistości kluczowe jest, aby zrozumieć, jakie wartości są normalne i akceptowalne w danym kontekście. Warto również pamiętać, że stosowanie odpowiednich norm i standardów, takich jak IEC lub NEMA, może pomóc w właściwej ocenie prawidłowości działania układów sterowania.

Pytanie 9

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 4
Ilustracja do odpowiedzi A
B. Wynik 2
Ilustracja do odpowiedzi B
C. Wynik 3
Ilustracja do odpowiedzi C
D. Wynik 1
Ilustracja do odpowiedzi D
Poprawna odpowiedź to wynik 3. Dla przewodu YLY 3x10 mm² o długości około 8 metrów rezystancja pojedynczej żyły powinna być bardzo mała – w granicach kilku miliomów, maksymalnie kilkudziesięciu miliomów (czyli poniżej 0,1 Ω). Wartość 1,01 Ω, widoczna na zdjęciu nr 3, jest wystarczająco niska, by potwierdzić ciągłość przewodu, uwzględniając niedoskonały styk sond pomiarowych i opór przewodów pomiarowych miernika. W praktyce elektrycznej uznaje się, że wynik poniżej 1–2 Ω wskazuje na zachowaną ciągłość żyły, a wartości znacznie wyższe oznaczają przerwę lub uszkodzenie przewodu. Moim zdaniem ten pomiar wygląda wiarygodnie – w instalacjach zasilających przewody o przekroju 10 mm² mają bardzo niską rezystancję, a więc przepływ prądu nie jest ograniczany. W praktyce pomiary ciągłości wykonuje się często funkcją „brzęczyka” (test diody), ale przy większych przekrojach stosuje się pomiar rezystancji rzeczywistej, jak tu. Dobrą praktyką jest przed pomiarem zwarcie przewodów pomiarowych i zanotowanie oporu własnego, by odjąć go od wyniku. 1 Ω to zatem w tym kontekście wartość potwierdzająca, że przewód jest sprawny, a żyła ma ciągłość.

Pytanie 10

Element zaznaczony na rysunku strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. silnik prądu stałego.
B. multimetr cyfrowy.
C. opornik dekadowy.
D. autotransformator.
Autotransformator to urządzenie elektryczne, które mimo swojej prostoty, odgrywa kluczową rolę w wielu aplikacjach. Jego główną funkcją jest zmiana poziomu napięcia przemiennego, co jest niezwykle przydatne w różnych systemach elektroenergetycznych. W przeciwieństwie do klasycznych transformatorów, autotransformator ma tylko jedno uzwojenie, co czyni go bardziej kompaktowym i efektywnym pod względem materiałowym. Z mojego doświadczenia, autotransformatory są nie tylko tańsze, ale także bardziej energooszczędne, co jest zgodne z trendami oszczędzania energii. Jest to szczególnie ważne w czasach, gdy optymalizacja zużycia energii staje się priorytetem. Autotransformatory znalazły zastosowanie nie tylko w dużych systemach elektroenergetycznych, ale także w codziennych urządzeniach, takich jak regulatory napięcia czy zasilacze laboratoryjne. Dzięki możliwości płynnej regulacji napięcia są one niezastąpione w miejscach, gdzie precyzyjne ustawienie napięcia jest kluczowe. Warto też zauważyć, że autotransformatory mogą pracować zarówno jako transformatory obniżające, jak i podwyższające napięcie, co czyni je niezwykle wszechstronnymi. Dobre praktyki branżowe zalecają stosowanie autotransformatorów w miejscach, gdzie wymagana jest stabilizacja napięcia przy jednoczesnym zachowaniu wysokiej efektywności energetycznej.

Pytanie 11

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. cewkę.
B. styki.
C. zworę.
D. rdzeń.
Zwróć uwagę na wskazanie strzałki w rysunku – jest to kluczowy element rozpoznawania zwory w przekaźniku. Zwora to ruchoma część przekaźnika, która pełni rolę mostka zamykającego lub otwierającego obwód w momencie przyciągnięcia przez elektromagnes. To właśnie dzięki zworze możemy kontrolować przepływ prądu w obwodach za pomocą sygnałów sterujących. Dzięki temu przekaźniki znajdują zastosowanie w wielu dziedzinach, od prostych układów automatyki po złożone systemy sterowania. Pamiętaj, że zwora działa skutecznie tylko wtedy, gdy jest dobrze zintegrowana z resztą elementów przekaźnika - cewką, rdzeniem i stykami. W praktyce kluczowe jest zapewnienie, że mechanizm zwory nie ulega zacięciom i jest dobrze skalibrowany. Warto również pamiętać o standardach, takich jak IEC 61810, które definiują wymagania dotyczące przekaźników. Zwory muszą działać precyzyjnie, co jest szczególnie ważne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa.

Pytanie 12

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. pola magnetycznego.
C. naprężeń.
D. temperatury.
To, co widzisz na zdjęciu, to typowy czujnik pola magnetycznego zwany kontaktronem. Kontaktrony są szeroko stosowane w systemach alarmowych i detekcji otwarcia drzwi czy okien. Działa to na zasadzie zamykania lub otwierania obwodu elektrycznego w obecności pola magnetycznego. W momencie, gdy magnes zbliża się do kontaktronu, jego wewnętrzne styki zbliżają się do siebie, co pozwala na przepływ prądu. To niesamowicie proste, ale skuteczne rozwiązanie. W branży standardem jest stosowanie takich czujników w miejscach, gdzie wymagana jest niezawodność i niskie koszty utrzymania. Kontaktrony są też często stosowane w licznikach energii elektrycznej, gdzie wykrywają nielegalne interwencje z zewnątrz. Moim zdaniem, to genialne, jak coś tak prostego może mieć tak szerokie zastosowanie w technologii i życiu codziennym. Warto też dodać, że kontaktrony są odporne na większość zakłóceń elektromagnetycznych, co czyni je idealnym wyborem w trudnych warunkach przemysłowych.

Pytanie 13

Urządzenie, którego schemat przedstawiono na rysunku, pracuje w sposób oscylacyjny. Który zawór należy zamontować w miejscu oznaczonym X, aby prędkość wysuwania tłoczyska siłownika była większa od prędkości wsuwania?

Ilustracja do pytania
A. Przełącznik obiegu.
B. Podwójnego sygnału.
C. Progowy.
D. Dławiąco-zwrotny.
Odpowiedź dławiąco-zwrotny jest prawidłowa, ponieważ ten zawór pozwala na regulację przepływu cieczy lub powietrza w jednym kierunku, jednocześnie umożliwiając swobodny przepływ w przeciwnym. W kontekście siłowników dwustronnego działania, taki zawór umożliwia precyzyjne dostosowanie prędkości wysuwania tłoczyska, co jest kluczowe w wielu aplikacjach przemysłowych oraz automatyce. Dzięki temu można zwiększyć efektywność i precyzję działania maszyn. Instalacja zaworu dławiąco-zwrotnego to standardowa praktyka w systemach pneumatycznych i hydraulicznych, gdzie kontrola prędkości ruchu jest istotna. Praktyczne zastosowanie takiego rozwiązania można znaleźć w liniach produkcyjnych, gdzie różne fazy operacji muszą być zsynchronizowane. Ten zawór jest również często wykorzystywany w maszynach CNC, gdzie precyzyjne sterowanie elementami roboczymi jest niezbędne. Dzięki zastosowaniu zaworów dławiąco-zwrotnych można również zmniejszyć zużycie energii poprzez optymalizację przepływu, co jest ważne z punktu widzenia ekonomii produkcji i ochrony środowiska.

Pytanie 14

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 500 Ω
B. 0 Ω
C. 1 000 Ω
D. 100 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 15

Przetwornik poziomu, o zakresie pomiarowym 0 cm ÷ 100 cm, przetwarza liniowo zmierzony poziom na natężenie prądu z przedziału 4 mA ÷ 20 mA. Przy wzroście poziomu z wartości 55 cm na 75 cm natężenie prądu wyjściowego z przetwornika

A. zmaleje o 3,2 mA
B. zmaleje o 1,6 mA
C. wzrośnie o 1,6 mA
D. wzrośnie o 3,2 mA
Przetwornik poziomu o zakresie 0 cm do 100 cm, który przetwarza poziom na prąd w zakresie 4 mA do 20 mA, działa na zasadzie proporcjonalności. Oznacza to, że każdy centymetr zmiany poziomu odpowiada określonej zmianie prądu. W tym przypadku, mamy do czynienia z pełnym zakresem 100 cm, który odpowiada rozpiętości 16 mA (od 4 mA do 20 mA). Oznacza to, że każdy centymetr zmiany poziomu odpowiada zmianie prądu o 0,16 mA. Skoro poziom wzrasta z 55 cm na 75 cm, to zmienia się o 20 cm. Przy zmianie o 20 cm, prąd wzrośnie o 20 * 0,16 mA, co daje 3,2 mA. To dokładnie ta różnica, którą obliczyliśmy. W praktyce, takie przetworniki są często stosowane w przemyśle, na przykład w zbiornikach magazynujących płyny, gdzie precyzyjny odczyt poziomu jest kluczowy dla zarządzania zasobami i uniknięcia przepełnienia. Technicy często kalibrują takie urządzenia, aby zapewnić, że działają zgodnie z oczekiwaniami, co jest zgodne z dobrymi praktykami branżowymi. Dzięki temu, mamy pewność, że systemy te działają precyzyjnie i niezawodnie, co jest niezwykle ważne w kontekście automatyzacji procesów przemysłowych.

Pytanie 16

Do montażu przewodów do złączki przedstawionej na zdjęciu należy użyć

Ilustracja do pytania
A. wkrętaka płaskiego.
B. klucza nasadowego.
C. klucza oczkowego.
D. wkrętaka krzyżowego.
Użycie wkrętaka płaskiego do montażu przewodów w złączkach jest standardową procedurą w wielu zastosowaniach elektrycznych. Wkrętak płaski, znany również jako śrubokręt płaski, idealnie pasuje do śrub z prostymi nacięciami, które są często stosowane w tego typu złączkach. Tego typu śruby są powszechnie używane ze względu na swoją prostotę i dostępność. Praktyka ta jest wspierana przez wiele standardów branżowych, które zalecają stosowanie odpowiednich narzędzi do konkretnego typu śrub, aby uniknąć ich uszkodzenia i zapewnić bezpieczne połączenie. Moim zdaniem, warto zainwestować w dobrej jakości wkrętak płaski, który ułatwi pracę i zwiększy jej efektywność. Przykładem mogą być instalacje elektryczne w domu, gdzie często spotykamy się z koniecznością montażu przewodów w rozdzielnicach czy puszkach przyłączeniowych. Dobrze dobrane narzędzie nie tylko przyspiesza pracę, ale również minimalizuje ryzyko uszkodzenia urządzeń czy przewodów.

Pytanie 17

Wzrost wartości częstotliwości wyjściowej przemiennika częstotliwości zasilającego silnik indukcyjny prądu przemiennego powoduje

A. spadek prędkości obrotowej wału silnika.
B. wzrost prędkości obrotowej wału silnika.
C. spadek rezystancji uzwojeń silnika.
D. wzrost rezystancji uzwojeń silnika.
Silnik indukcyjny prądu przemiennego jest niezwykle popularnym wyborem w aplikacjach przemysłowych z powodu swojej prostoty i niezawodności. Wzrost wartości częstotliwości wyjściowej przemiennika częstotliwości, który zasila taki silnik, prowadzi do wzrostu prędkości obrotowej wału silnika. Wynika to z fundamentalnej zależności między częstotliwością zasilania a prędkością obrotową, którą opisuje wzór n = (120 * f) / p, gdzie n to prędkość obrotowa w obr./min, f to częstotliwość zasilania w Hz, a p to liczba biegunów silnika. Zwiększając częstotliwość, zwiększamy także prędkość obrotową, co jest niezwykle użyteczne w aplikacjach wymagających zmiennej prędkości, takich jak wentylatory czy pompy. W praktyce, przemienniki częstotliwości pozwalają na płynne sterowanie prędkością obrotową bez konieczności zmiany konstrukcji samego silnika. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują efektywność energetyczną i elastyczność zastosowań. Dodatkowo, regulacja prędkości za pomocą przemienników częstotliwości może przyczynić się do redukcji zużycia energii oraz przedłużenia żywotności sprzętu, co czyni je kluczowym elementem w nowoczesnych systemach automatyki przemysłowej.

Pytanie 18

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 2.
B. Tabliczka 4.
C. Tabliczka 3.
D. Tabliczka 1.
Twoja odpowiedź jest prawidłowa, ponieważ tabliczka 1 wskazuje na silnik przeznaczony do pracy ciągłej, co opisuje symbol S1. Praca ciągła oznacza, że silnik może działać bez przerw przez długi czas na stałym obciążeniu bez ryzyka przegrzania. To jest istotne w wielu zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe, np. w produkcji masowej lub liniach montażowych. Standard IEC 60034, który jest podany na tabliczce, zapewnia zgodność z międzynarodowymi normami dotyczącymi wydajności i bezpieczeństwa silników elektrycznych. Ważne jest, aby silniki do pracy ciągłej były prawidłowo chłodzone i miały odpowiednią klasę ochrony IP, jak IP54, co oznacza ochronę przed kurzem i rozbryzgami wody. Praktyczne zastosowanie takiego silnika może być widoczne w przypadku ciągłej pracy pomp, wentylatorów czy taśm produkcyjnych, gdzie przestoje mogą prowadzić do strat finansowych. Ważne jest, aby zawsze dobierać silnik odpowiedni do specyfiki pracy, co zwiększa jego trwałość i niezawodność.

Pytanie 19

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 1,50 V
B. 6,00 V
C. 0,15 V
D. 15,00 V
Wskazanie wynosi 1,5 V, bo skala woltomierza jest wyskalowana od 0 do 100, a pełny zakres pomiarowy wynosi 5 V. Wskazówka zatrzymała się na wartości 30, co oznacza 30% pełnego wychylenia. Wystarczy więc obliczyć 30/100 × 5 V = 1,5 V. To klasyczny przykład miernika analogowego z podziałką procentową, gdzie rzeczywiste napięcie odczytuje się po przeliczeniu proporcji. W praktyce takie rozwiązanie stosuje się po to, żeby jeden przyrząd mógł pracować w różnych zakresach – zmienia się jedynie wartość Umax, a skala procentowa pozostaje ta sama. To rozwiązanie często spotykane w szkolnych laboratoriach, a także w starszych multimetrów analogowych. Moim zdaniem dobrze to pokazuje, jak ważne jest zwracanie uwagi na opis przyrządu – bez informacji o zakresie (Umax) trudno byłoby poprawnie odczytać wartość napięcia.

Pytanie 20

W przekaźniku elektromagnetycznym symbolami A1 i A2 oznaczone są zaciski

A. cewki przekaźnika.
B. styków zwiernych.
C. układów ochronnych.
D. styków rozwiernych.
W przekaźnikach elektromagnetycznych symbole A1 i A2 to oznaczenia zacisków cewki przekaźnika, która jest kluczowym elementem tego urządzenia. Cewka jest odpowiedzialna za generowanie pola magnetycznego, które w efekcie przyciąga kotwicę przekaźnika, zmieniając jego stan. Jest to mechanizm podstawowy, lecz niezmiernie istotny w automatyce i elektronice. Dzięki cewce, przekaźniki mogą sterować sygnałami w obwodach elektrycznych, umożliwiając kontrolę nad różnymi urządzeniami. W praktyce, cewki są stosowane w układach zabezpieczeń, automatyce budynkowej czy w przemyśle, gdzie wymagana jest precyzyjna kontrola przepływu prądu elektrycznego. Standardy, takie jak IEC 61810, określają szczegółowe wymagania dotyczące konstrukcji i działania przekaźników, w tym oznaczeń zacisków, co ułatwia identyfikację i podłączanie urządzeń. Znajomość tych zasad jest kluczowa dla każdego, kto chce efektywnie i bezpiecznie korzystać z przekaźników w praktycznych zastosowaniach. Moim zdaniem, zrozumienie roli cewki w przekaźniku to fundament, który otwiera drzwi do świata bardziej zaawansowanej elektroniki.

Pytanie 21

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. pierścieni Segera.
C. podkładek dystansowych.
D. kołków rozprężnych.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do montażu zabezpieczeń E-ring. E-ring to popularny typ zabezpieczenia osiowego, często stosowany w układach mechanicznych, gdzie wymagane jest szybkie i pewne osadzenie elementu zabezpieczającego. Dzięki swojej konstrukcji zapewniają one pewne mocowanie na wałkach lub osiach. Szczypce do E-ringów posiadają charakterystyczne końcówki, które umożliwiają łatwe rozchylenie i precyzyjne umieszczenie pierścienia na właściwym miejscu. W praktyce, E-ring jest wykorzystywany w wielu aplikacjach przemysłowych, od mechanizmów precyzyjnych po duże maszyny, gdzie ważne jest szybkie i pewne mocowanie. Standardowo, narzędzie to jest wykonane z trwałych materiałów, często odpornych na korozję, co przedłuża jego żywotność. Moim zdaniem, takie szczypce to nieodzowny element w warsztacie, zwłaszcza tam, gdzie praca z mechaniką wymaga wielokrotnych i szybkich montażów. Warto pamiętać, że poprawne narzędzie to podstawa bezpiecznej i efektywnej pracy.

Pytanie 22

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. 5 oraz L
B. O oraz L
C. 2 oraz L
D. H oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 23

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Wkrętak krzyżakowy.
B. Klucz oczkowy.
C. Klucz nasadowy.
D. Wkrętak płaski.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 24

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 2
Ilustracja do odpowiedzi A
B. Narzędzie 3
Ilustracja do odpowiedzi B
C. Narzędzie 1
Ilustracja do odpowiedzi C
D. Narzędzie 4
Ilustracja do odpowiedzi D
Wiele osób mylnie uznaje, że każde narzędzie o ostrzu i uchwycie nadaje się do zdejmowania izolacji, ale w tym przypadku tylko jedno z nich – narzędzie numer 1 – nie służy do takiego celu. To obcinak do rur z tworzyw sztucznych, wykorzystywany głównie przez hydraulików i monterów instalacji wodnych lub pneumatycznych. Narzędzia 2, 3 i 4 to różne wersje ściągaczy izolacji (automatycznych lub ręcznych), przeznaczone do pracy z przewodami elektrycznymi. Obcinak z pierwszego zdjęcia ma półokrągłe ostrze i mechanizm dźwigniowy, który generuje dużą siłę cięcia – w kontakcie z kablem elektrycznym nie ściągnie izolacji, tylko całkowicie go przetnie. Typowym błędem początkujących monterów jest używanie takich narzędzi, bo „dobrze leżą w dłoni”, jednak efekt to przecięte żyły lub uszkodzona powłoka zewnętrzna. W praktyce elektrycznej do przewodów wielożyłowych stosuje się precyzyjne ściągacze z regulacją średnicy i automatycznym dopasowaniem do przekroju. Dzięki nim można zdjąć izolację z pojedynczej żyły bez ryzyka przerwania drutu. Właśnie dlatego w tym pytaniu poprawną odpowiedzią jest narzędzie nr 1 – to nie sprzęt elektryka, tylko hydraulika.

Pytanie 25

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik pomiarowy prądu lub napięcia AC
B. regulowany wzmacniacz napięć lub prądów zmiennych.
C. przetwornik napięcia AC na prąd AC
D. konwerter łącza szeregowego na łącze światłowodowe.
Wybrałeś konwerter łącza szeregowego na łącze światłowodowe, co jest trafnym wyborem. Tego typu urządzenia są kluczowe w systemach komunikacji, gdyż pozwalają na przesył danych na duże odległości bez strat sygnału. Konwersja sygnału z RS232 na transmisję światłowodową eliminuje problemy z zakłóceniami elektromagnetycznymi, które są częste w tradycyjnych kablach miedzianych. Z mojego doświadczenia, tego rodzaju konwertery są standardem w przemyśle, gdzie niezawodność i odporność na zakłócenia są kluczowe. Zastosowanie światłowodów również zwiększa bezpieczeństwo transmisji danych, co jest istotne w aplikacjach przemysłowych i wojskowych. Standard RS232, choć stary, nadal jest powszechnie używany ze względu na swoją prostotę i niezawodność, a jego integracja ze światłowodami dodatkowo przedłuża jego użyteczność. Konwertery te są często stosowane w automatyce przemysłowej oraz systemach sterowania, gdzie istotna jest precyzja i stabilność sygnału. Warto także wspomnieć, że światłowody mają o wiele większą przepustowość w porównaniu do tradycyjnych kabli, co w przyszłości może być kluczowe w przypadku rosnącej ilości przesyłanych danych.

Pytanie 26

Który przyrząd kontrolno-pomiarowy służy do wypoziomowania skrzynki nakładanej jako osłona na zamontowany elektrozawór?

A. Kątomierz.
B. Poziomnica.
C. Liniał.
D. Suwmiarka.
Użycie poziomnicy do wypoziomowania skrzynki nakładanej jako osłona na zamontowany elektrozawór jest kluczowe, ponieważ ten przyrząd pozwala precyzyjnie ustawić powierzchnię w poziomie. W branży instalacyjnej poziomnica jest podstawowym narzędziem, które pozwala na zachowanie odpowiednich poziomów w montażu różnych elementów instalacyjnych. Dzięki temu można uniknąć potencjalnych problemów związanych z nieprawidłowym położeniem, które mogłyby prowadzić do nieszczelności lub uszkodzeń. Standardem jest, aby wszystkie elementy instalacyjne były montowane z zachowaniem poziomości, co nie tylko wpływa na estetykę, ale przede wszystkim na funkcjonalność i trwałość instalacji. Poziomnice są dostępne w różnych rozmiarach, co pozwala dopasować je do specyficznych zadań. Moim zdaniem, umiejętność korzystania z poziomnicy to absolutny „must-have” dla każdego, kto zajmuje się montażem instalacji hydraulicznych czy elektrycznych. Dodatkowo, poziomnice nie tylko pomagają przy montażu elektrozaworów, ale są również używane przy innych elementach, takich jak rury, przewody czy elementy konstrukcyjne. Dlatego inwestycja w dobrą poziomnicę zawsze się zwraca, zarówno w jakości wykonania, jak i w zadowoleniu klienta.

Pytanie 27

Przedstawiony fragment programu realizuje funkcję

Ilustracja do pytania
A. AND
B. NAND
C. OR
D. NOR
Odpowiedź OR jest poprawna, ponieważ program zrealizowany w języku drabinkowym (Ladder Diagram) wykorzystuje operację OR, która jest logicznym lub. Instrukcja LD (Load) ładuje wartość wejścia X1:I0.0, a następnie instrukcja OR dodaje do tego wartość wejścia X2:I0.1. Wynik operacji jest zapisywany w wyjściu Y1:Q0.0 za pomocą instrukcji ST (Store). Logika OR działa w ten sposób, że wynik jest prawdą, jeśli przynajmniej jedno z wejść jest prawdą. Praktyczne zastosowanie takiego schematu można znaleźć w automatyce przemysłowej, na przykład kiedy chcemy uruchomić maszynę, jeśli jeden z dwóch różnych czujników wykryje określony stan. Standardy programowania PLC, takie jak IEC 61131-3, wskazują na stosowanie drabinkowych schematów do tworzenia czytelnych logik dla techników. Logika OR jest jednym z podstawowych bloków budujących bardziej złożone systemy automatyki, gdzie często wymagana jest elastyczność w reagowaniu na wiele warunków wejściowych. Moim zdaniem w automatyce przemysłowej umiejętność czytania i interpretacji takich prostych programów jest kluczowa do szybkiego diagnozowania i naprawy systemów.

Pytanie 28

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PID
B. PI
C. PD
D. P
Odpowiedź PI wskazuje na regulator proporcjonalno-całkujący. Na wykresie widzimy charakterystyczny skok, a następnie liniowy przyrost w czasie. To typowe dla PI, który reaguje zarówno na bieżący błąd, jak i jego całkę w czasie. Dlatego jest skuteczny w eliminowaniu uchybu ustalonego. Zastosowanie regulatora PI znajdziesz w systemach, gdzie wymagana jest stabilność i precyzja, jak w regulacji temperatury pieca czy prędkości silnika. W praktyce PI jest często używany, bo łączy prostotę P z eliminacją błędu stałego przez I. Standardy branżowe często zalecają PI w procesach, gdzie nie są potrzebne szybkie reakcje na zakłócenia, jak w przypadku PD lub PID. PI daje stabilność w systemach z długimi czasami odpowiedzi. Z mojego doświadczenia, PI jest nieoceniony w aplikacjach, gdzie precyzja jest kluczowa, a zakłócenia mają charakter wolno zmieniający się.

Pytanie 29

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DS-w
B. LY-w
C. DG-w
D. DY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 30

Do pomiaru wilgotności powietrza stosuje się

A. barometr.
B. higrometr.
C. termometr.
D. manometr.
Higrometr to urządzenie, które jest niezastąpione w wielu dziedzinach technicznych i naukowych. Dzięki niemu możemy precyzyjnie zmierzyć wilgotność powietrza, co ma kluczowe znaczenie w różnych branżach. Na przykład, w przemyśle tekstylnym wilgotność wpływa na właściwości materiałów, a w elektronicznym na funkcjonowanie urządzeń. W rolnictwie kontrola wilgotności jest istotna dla zdrowia roślin i plonów. Warto też wiedzieć, że higrometry mogą działać na różne sposoby, np. wykorzystując włosie, które zmienia długość pod wpływem wilgoci, czy też za pomocą technologii elektronicznej, jak czujniki pojemnościowe. Z mojego doświadczenia, w laboratoriach często spotyka się higrometry psychrometryczne, które używają dwóch termometrów - suchego i mokrego. W praktyce, dobrze skalibrowany higrometr to podstawa w miejscach, gdzie warunki atmosferyczne mogą wpływać na procesy produkcyjne czy zdrowie pracowników. Dlatego w wielu normach ISO znajdziemy wytyczne dotyczące precyzyjnego pomiaru wilgotności, co podkreśla znaczenie tego urządzenia w utrzymaniu jakości i bezpieczeństwa.

Pytanie 31

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. RS-232
B. 8P8C
C. USB
D. OBD II
Dokładnie, interfejs 8P8C jest właściwym wyborem dla tego sterownika PLC. Znany także jako RJ-45, to standardowy port stosowany najczęściej w sieciach komputerowych do łączenia urządzeń za pomocą kabli Ethernet. W kontekście PLC, używa się go do komunikacji z innymi urządzeniami w sieci lokalnej, co umożliwia integrację z systemami SCADA czy HMI. Dzięki temu, można monitorować i sterować procesami przemysłowymi z dowolnego miejsca w sieci. Jest to zgodne z dobrą praktyką stosowania znormalizowanych interfejsów komunikacyjnych, które zapewniają niezawodność i kompatybilność. Wartość tego rozwiązania polega na prostocie konfiguracji oraz szerokim wsparciu w oprogramowaniu przemysłowym. Systemy oparte na interfejsie 8P8C zyskują na elastyczności i łatwości integracji, co jest kluczowe w nowoczesnych fabrykach zorientowanych na Przemysł 4.0.

Pytanie 32

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Natlenienia.
B. Temperatury.
C. Ciśnienia.
D. Natężenia przepływu.
Przetwornik przedstawiony na rysunku to przetwornik ciśnienia, co można rozpoznać po kilku charakterystycznych elementach. Po pierwsze, zakres pomiarowy podany w jednostkach bar (0-10 bar) jednoznacznie wskazuje na pomiar ciśnienia. Przetworniki ciśnienia są powszechnie używane w różnych branżach, od przemysłu chemicznego po systemy HVAC, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa i efektywności procesów. Standardowy sygnał wyjściowy 4-20 mA jest szeroko stosowany w automatyce przemysłowej ze względu na swoją odporność na zakłócenia i możliwość przesyłania sygnałów na duże odległości. Przetworniki ciśnienia mogą być stosowane do monitorowania ciśnienia w systemach hydraulicznych, pneumatycznych, a także w aplikacjach związanych z kontrolą procesów. Dodatkowo, przetworniki takie są niezbędne w aplikacjach związanych z bezpieczeństwem, gdzie monitorowanie ciśnienia może zapobiec awariom. Moim zdaniem, znajomość działania i zastosowań przetworników ciśnienia to podstawa dla każdego inżyniera zajmującego się automatyką przemysłową.

Pytanie 33

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. areometry.
B. manometry.
C. higrometry.
D. barometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 34

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. zaciskania tulejek .
B. obcinania przewodów koncentrycznych.
C. ściągania izolacji kabli koncentrycznych.
D. oznaczania przewodów.
To narzędzie, które widzisz, jest przeznaczone do obcinania przewodów koncentrycznych. Przewody koncentryczne są szeroko stosowane w telekomunikacji i przesyłaniu sygnałów wideo. Ich specyficzna budowa, czyli centralna żyła przewodząca otoczona izolacją, ekranem z przewodzącej plecionki i zewnętrzną osłoną, wymaga precyzyjnego cięcia. Użycie odpowiedniego narzędzia, takiego jak te, które widzisz, gwarantuje czyste i równe cięcie bez uszkodzenia ekranu lub centralnej żyły. Technicy cenią sobie te narzędzia za możliwość pracy w trudno dostępnych miejscach i szybkość działania. Dodatkowo takie obcinarki są zaprojektowane tak, by minimalizować ryzyko zmiażdżenia przewodu, co jest kluczowe dla utrzymania integralności sygnału. Moim zdaniem, każdy kto zajmuje się instalacjami RTV powinien mieć przy sobie takie narzędzie, bo ułatwia ono życie na co dzień. W branży to po prostu standardowa praktyka, by korzystać z dedykowanych narzędzi do określonych rodzajów kabli.

Pytanie 35

Czujnik indukcyjny służy do detekcji elementów

A. metalowych.
B. drewnianych.
C. plastikowych.
D. szklanych.
Czujnik indukcyjny to jedno z najczęściej stosowanych urządzeń w automatyce przemysłowej. Jego głównym zadaniem jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego generowanego przez cewkę wewnątrz czujnika. Gdy metalowy przedmiot znajdzie się w polu działania czujnika, następuje zmiana indukcyjności, co jest interpretowane jako sygnał obecności. Taka technologia jest niezwykle przydatna w środowiskach produkcyjnych, gdzie detekcja metalowych elementów jest kluczowa, na przykład w systemach montażowych czy liniach produkcyjnych. W przeciwieństwie do czujników optycznych, czujniki indukcyjne są odporne na zabrudzenia i kurz, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych. Normy takie jak IEC 60947-5-2 określają wymagania dotyczące czujników zbliżeniowych, zapewniając ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Moim zdaniem, wiedza o tych czujnikach to podstawa dla każdego, kto chce zrozumieć współczesną automatykę. Dzięki temu można lepiej projektować systemy, które są bardziej wydajne i mniej podatne na awarie.

Pytanie 36

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Twoja odpowiedź jest prawidłowa, ponieważ wykres nr 2 doskonale oddaje zasadę działania regulatora z histerezą. W momencie, gdy temperatura spada poniżej dolnej granicy histerezy (89°C), wyjście przekaźnikowe zostaje włączone, co uruchamia element grzewczy. Dzięki temu temperatura znowu wzrasta do poziomu górnej granicy histerezy (91°C), po czym przekaźnik zostaje wyłączony. Takie działanie zapewnia stabilność pracy systemu, unikając zbyt częstych przełączeń, co mogłoby prowadzić do zużycia elementów mechanicznych. W praktycznych zastosowaniach, takich jak ogrzewanie pomieszczeń czy procesy przemysłowe, takie podejście zapewnia efektywność energetyczną i dłuższą żywotność urządzeń. Dobór odpowiedniej histerezy jest kluczowy, aby zbalansować komfort i oszczędność energii. Standardy w branży automatyki, jak np. normy IEC, podkreślają znaczenie tego typu rozwiązań, szczególnie gdy mowa o sterownikach PLC. Warto również pamiętać, że histereza może być różna w zależności od specyficznych wymagań systemu. Moim zdaniem, zrozumienie tej koncepcji to podstawa w pracy z systemami sterowania, gdyż pozwala unikać nadmiernego zużycia energii i przedłuża żywotność urządzeń.

Pytanie 37

Do wykonania połączeń w przedstawionej na rysunku puszce zaciskowej silnika elektrycznego należy wykorzystać

Ilustracja do pytania
A. klucz imbusowy.
B. wkrętak torx.
C. klucz płaski.
D. wkrętak płaski.
Do wykonania połączeń w puszce zaciskowej przedstawionej na zdjęciu należy użyć klucza płaskiego. Widoczne na fotografii śruby z sześciokątnymi łbami to typowe elementy stosowane w połączeniach elektrycznych silników trójfazowych – najczęściej do montażu mostków (zwór) w konfiguracji gwiazdy lub trójkąta. Klucz płaski pozwala na dokładne i równomierne dokręcenie tych połączeń, co jest bardzo istotne, ponieważ zbyt słabe dokręcenie może prowadzić do grzania się styków, a w konsekwencji do uszkodzenia izolacji lub nawet pożaru. Z kolei zbyt mocne dociśnięcie może zniszczyć końcówki oczkowe lub pęknięcie gwintu. W praktyce warto stosować klucz o odpowiednim rozmiarze (najczęściej 8, 10 lub 13 mm w zależności od silnika). Moim zdaniem to jeden z tych przypadków, gdzie precyzja manualna i świadomość techniczna mają ogromne znaczenie – silnik z luźnym połączeniem fazy to gotowy przepis na awarię. Dodatkowo, w profesjonalnym serwisie używa się kluczy dynamometrycznych, by zachować właściwy moment dokręcania zgodny z normami producenta.

Pytanie 38

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 7,00 mm
B. 7,80 mm
C. 7,25 mm
D. 6,80 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 39

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 2
Ilustracja do odpowiedzi A
B. Ilustracja 3
Ilustracja do odpowiedzi B
C. Ilustracja 4
Ilustracja do odpowiedzi C
D. Ilustracja 1
Ilustracja do odpowiedzi D
Na ilustracjach 2, 3 i 4 widoczne są zupełnie inne elementy pneumatyki i automatyki, które często bywają mylone z zaworami szybkiego spustu. Drugi element to zawór rozdzielający (najczęściej 5/2 lub 4/2) sterowany ręcznie – służy do zmiany kierunku przepływu powietrza, a nie do jego szybkiego upustu. Trzeci element to zawór dławiąco-zwrotny, którego zadaniem jest regulacja prędkości przepływu powietrza w jednym kierunku (czyli kontrola szybkości ruchu siłownika). Czwarty element natomiast to wyłącznik krańcowy (mechaniczny), wykorzystywany w automatyce do sygnalizacji położenia elementu ruchomego, nie mający żadnego związku z pneumatyką przepływową. Zawór szybkiego spustu można rozpoznać po masywnej, często metalowej obudowie i trzech przyłączach – jedno do zasilania, jedno do siłownika i jedno odpowietrzające. W praktyce stosuje się go bezpośrednio przy siłowniku, żeby skrócić czas opróżniania przewodu roboczego. Typowym błędem jest użycie zwykłego zaworu sterującego zamiast szybkiego spustu, co prowadzi do spowolnienia ruchu tłoka. W układach przemysłowych taki zawór zwiększa efektywność i pozwala osiągnąć większą częstotliwość cykli pracy urządzenia. Rozpoznanie właściwego elementu opiera się więc na analizie jego funkcji – szybkie odprowadzenie powietrza po stronie roboczej jest jednoznacznym zadaniem zaworu szybkiego spustu.

Pytanie 40

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. grzechotkowy.
B. przegubowy.
C. udarowy.
D. dynamometryczny.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.