Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 11 listopada 2025 01:06
  • Data zakończenia: 11 listopada 2025 01:24

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gR
B. aM
C. gG
D. aL
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 2

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik zostanie zasilony prądem przeciwnym.
B. silnik znajdzie się w stanie jałowym.
C. wirnik silnika zostanie dogoniony.
D. wirnik silnika będzie w bezruchu.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 3

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO > Zs ∙ Ia
B. UO < Zs ∙ Ia
C. UO < Zs ∙ 2Ia
D. UO > Zs ∙ 2Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 4

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. żółty
B. szary
C. zielony
D. niebieski
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 5

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki
Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź C. jest prawidłowa, ponieważ dokładnie odzwierciedla działanie układu sterowania oświetleniem przedstawionego na rysunku oraz diagramu działania przekaźnika. W sekwencji 0, gdy żadne z styków nie są aktywne, obie żarówki pozostają zgaszone. Następnie w sekwencji 1, aktywacja styku 1-2 powoduje świecenie żarówki R1, co pokazuje zastosowanie przekaźników w prostych układach sterujących. W sekwencji 2, aktywacja styku 3-4 skutkuje załączeniem żarówki R2, co ilustruje możliwość niezależnego sterowania różnymi źródłami światła. W sekwencji 3, w której oba styki są aktywne, zarówno R1, jak i R2 świecą, co pokazuje, jak można zintegrować różne obwody w jednym układzie. Na koniec, w sekwencji 4, układ wraca do stanu początkowego, co jest typowym zachowaniem w układach sterujących, gdzie ważna jest możliwość cyklicznego powracania do stanu zerowego. Takie podejście jest zgodne z najlepszymi praktykami w automatyzacji i sterowaniu, umożliwiając efektywne zarządzanie oświetleniem w różnych aplikacjach.

Pytanie 6

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. wiązanej.
B. natynkowej.
C. prefabrykowanej.
D. podtynkowej.
Bruzdownica, znana również jako przecinarka do betonu lub stali, jest narzędziem wykorzystywanym w instalacjach podtynkowych w celu wykonywania rowków w ścianach i stropach. Takie rowki są niezbędne do osadzenia przewodów elektrycznych czy rur hydraulicznych, co pozwala na estetyczne i funkcjonalne wykończenie wnętrz. Wykonywanie instalacji podtynkowej, która jest schowana w ścianach, wymaga precyzyjnego cięcia, a bruzdownica umożliwia to z dużą dokładnością oraz w stosunkowo krótkim czasie. Ponadto, przy użyciu bruzdownicy można dostosować szerokość i głębokość rowków do specyfiki używanych materiałów oraz przewodów, co jest istotne z punktu widzenia bezpieczeństwa i norm budowlanych. W praktyce, aby uzyskać najlepsze rezultaty, operator bruzdownicy powinien przestrzegać zaleceń producenta oraz standardów BHP, co przyczynia się do zwiększenia efektywności pracy oraz zmniejszenia ryzyka wypadków. Prawidłowe stosowanie bruzdownicy ma także wpływ na późniejsze etapy wykończenia, takie jak tynkowanie czy malowanie, które powinny być przeprowadzane na równych i gładkich powierzchniach, stworzonych przez profesjonalnie wykonane rowki.

Pytanie 7

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak ochrony przed wilgocią i pyłem.
B. Brak klasy ochronności przed porażeniem.
C. Najwyższy poziom ochrony.
D. Wykorzystanie separacji ochronnej.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 8

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-S
B. IT
C. TT
D. TN-C
Wybory układów TN-S, TN-C oraz TT wskazują na niepełne zrozumienie zasad działania systemów elektroenergetycznych. W układzie TN-S, punkt neutralny jest uziemiony, co oznacza, że w razie uszkodzenia izolacji, prąd zwarciowy przepływa bezpośrednio do ziemi, co zwiększa ryzyko porażenia prądem. Nie ma w nim miejsca na dodatkowy bezpiecznik iskiernikowy, ponieważ jest on niekompatybilny z zasadą bezpośredniego uziemienia. Podobnie w przypadku TN-C, gdzie neutralny i ochronny przewód są połączone, ryzyko uszkodzenia izolacji jest wysokie, a wprowadzenie iskiernika w tym układzie byłoby zbędne i niewłaściwe. Układ TT również zakłada, że punkt neutralny jest uziemiony, a zatem straciłby sens użycie bezpiecznika iskiernikowego, ponieważ nie zapewnia on właściwej izolacji i bezpieczeństwa. Zrozumienie różnic między tymi systemami jest kluczowe dla prawidłowego projektowania instalacji elektrycznych, gdzie odpowiedni dobór układu ma wpływ na bezpieczeństwo i niezawodność dostaw energii elektrycznej. W praktyce, błędne podejście do klasyfikacji układów może prowadzić do poważnych konsekwencji, zarówno finansowych, jak i zdrowotnych.

Pytanie 9

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193C25
B. S193B25
C. S191C25
D. S191B25
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 10

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik indukcyjny uziemień
B. miernik obwodu zwarcia
C. megaomomierz
D. omomierz
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 11

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
B. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
D. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
Wprowadzenie przewodu YDYt 3×2,5 zamiast ADYt 3×2,5 wiąże się z koniecznością zrozumienia różnic w ich konstrukcji i zastosowaniu. Przewody ADYt, będące przewodami aluminiowymi, mają ograniczone właściwości mechaniczne i elektryczne w porównaniu do ich miedziowych odpowiedników. Zmniejszenie wartości prądu dopuszczalnego długotrwale, jak sugerują niektóre odpowiedzi, jest wynikiem mylnego pojmowania właściwości materiałów. Przewody YDYt, wykonane z miedzi, mają znacznie lepsze przewodnictwo elektryczne, co oznacza, że mogą przewodzić większe prądy bez ryzyka przegrzania. Wartości rezystancji izolacji są także kluczowe przy ocenie jakości przewodu; błędne założenie, że wymiana na przewód YDYt zmniejsza tę rezystancję, jest niezgodne z rzeczywistością. Wyższa rezystancja izolacji w przewodach YDYt przyczynia się do ich większej niezawodności i odporności na czynniki atmosferyczne. Ponadto, w praktyce stosowanie przewodów miedziowych w miejscach o dużym obciążeniu prądowym jest normą, a ich zastosowanie w instalacjach elektrycznych zgodnych z normami IEC oraz PN zwiększa bezpieczeństwo i efektywność energetyczną. Zatem, przy wyborze przewodów elektrycznych, kluczowe jest zrozumienie ich specyfikacji oraz warunków, w jakich będą eksploatowane, aby uniknąć nieporozumień związanych z ich parametrami.

Pytanie 12

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Tylko przed uruchomieniem nowych maszyn
B. Co pięć lat
C. Co najmniej raz na rok
D. Po każdej naprawie maszyn
Warto zaznaczyć, że przegląd instalacji elektrycznej tylko przed uruchomieniem nowych maszyn nie jest wystarczający. Wprowadzenie nowego sprzętu do istniejącej instalacji wymaga sprawdzenia jej zgodności, ale nie zastępuje regularnych przeglądów. Nowe maszyny mogą wprowadzać dodatkowe obciążenie na system, co zwiększa ryzyko przeciążenia lub awarii. Ponadto, przegląd po każdej naprawie maszyn również nie jest wystarczający. Choć istotne jest, aby po naprawie sprawdzić poprawność działania, nie zapewnia to bieżącego monitorowania stanu całej instalacji. Regularne przeglądy są konieczne, aby identyfikować ukryte problemy, które mogą się pojawić podczas normalnej eksploatacji. Z kolei przeglądy co pięć lat są zdecydowanie zbyt rzadkie. Taka częstotliwość nie pozwala na wystarczająco szybkie wykrycie problemów, co może prowadzić do niebezpiecznych sytuacji i nieplanowanych przestojów w pracy zakładu. Dlatego też normy i przepisy branżowe zalecają częstsze przeglądy, aby zapewnić bezpieczeństwo i efektywność działania instalacji elektrycznych. Zignorowanie tych zasad może skutkować nie tylko przerwami w produkcji, ale także poważnymi zagrożeniami dla życia i zdrowia pracowników.

Pytanie 13

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd znamionowy.
B. Napięcie znamionowe i prąd zadziałania.
C. Napięcie probiercze i prąd znamionowy.
D. Napięcie probiercze i prąd zadziałania.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 14

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/300 V
B. 600/1000 V
C. 300/500 V
D. 450/750 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 15

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Waromierza
C. Watomierza
D. Reflektometru
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 16

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. jednotorowy ze stykiem kontrolnym
B. trójtorowy bez styku kontrolnego
C. trójtorowy ze stykiem kontrolnym
D. jednotorowy bez styku kontrolnego
Przekaźnik termobimetalowy trójtorowy ze stykiem sterującym jest idealnym rozwiązaniem do zabezpieczania silników trójfazowych przed przeciążeniem. Dzięki zastosowaniu tego typu przekaźnika możemy monitorować prąd w trzech fazach jednocześnie, co pozwala na szybsze wykrycie nadmiernego obciążenia oraz wyłączenie silnika w przypadku wystąpienia awarii. W praktyce, takie rozwiązanie jest zgodne z normami ochrony silników, jak IEC 60947, które zalecają stosowanie przekaźników termicznych w celu zapewnienia bezpieczeństwa pracy urządzeń elektrycznych. Przykładowo, w przypadku silników o większej mocy lub w aplikacjach wymagających wysokiej niezawodności, takich jak przemysł ciężki, stosowanie trójtorowego przekaźnika termobimetalowego staje się standardem. Dodatkowo, styk sterujący umożliwia integrację z układami automatyki oraz systemami alarmowymi, co zwiększa efektywność i bezpieczeństwo operacji. W rezultacie, wybór przekaźnika trójtorowego ze stykiem sterującym jest nie tylko najlepszą praktyką, ale też wymogiem w wielu zastosowaniach przemysłowych.

Pytanie 17

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Automat zmierzchowy.
C. Przekaźnik czasowy.
D. Przekaźnik priorytetowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 18

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Przekaźnik priorytetowy
B. Odgromnik
C. Czujnik zaniku fazy
D. Stycznik elektromagnetyczny
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 19

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Współczynnika mocy.
B. Spadku napięcia.
C. Odkształceń przebiegu napięcia.
D. Częstotliwości.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 20

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,7 A
B. 11,1 A
C. 10,5 A
D. 12,2 A
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.

Pytanie 21

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Z PVC lub gumowe
B. Tylko metalowe
C. Metalowe lub gumowe
D. Tylko z PVC
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 22

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Wymienić wszystkie przewody na nowe o większej średnicy
B. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
C. Zaizolować uszkodzoną część izolacji przewodu taśmą
D. Wymienić uszkodzony przewód na nowy o identycznej średnicy
Wybór wymiany uszkodzonego przewodu na nowy o takim samym przekroju jest najlepszym rozwiązaniem w tej sytuacji. Uszkodzenia izolacji przewodów mogą prowadzić do poważnych konsekwencji, takich jak zwarcia, przegrzewanie się lub nawet pożary. Przewody elektryczne muszą być w pełni sprawne, aby zapewnić bezpieczeństwo i prawidłowe działanie instalacji. Wymiana na przewód o takim samym przekroju gwarantuje, że nie dojdzie do przeciążenia obwodu, co mogłoby wystąpić w przypadku zastosowania przewodu o większym przekroju. Zgodnie z normami PN-IEC 60364, przewody powinny być dobrane do obciążenia, a ich izolacja musi być nienaruszona. Praktyka wymiany przewodów na nowe jest zgodna z dobrymi praktykami branżowymi, które zalecają stosowanie materiałów wysokiej jakości oraz przestrzeganie zasad BHP podczas pracy z instalacjami elektrycznymi.

Pytanie 23

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
B. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
C. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej w momencie, gdy sieć jest odłączona, prowadzi do znacznych zniekształceń wyników. W takim przypadku nie uwzględniamy rzeczywistej interakcji między elementami systemu, co skutkuje pomiarami, które nie odzwierciedlają rzeczywistych warunków pracy. Odpowiedzi, które zakładają odłączenie sieci i pomijają impedancję transformatorów, zapominają o fundamentalnej roli, jaką te urządzenia odgrywają w systemach zasilania. W przypadku zwarcia, transformatorzy przyczyniają się do zmiany impedancji, poprzez swoją własną impedancję zwarciową, co może znacząco wpłynąć na prąd zwarciowy i czas reakcji zabezpieczeń. Pomiar przeprowadzony w tej konfiguracji może prowadzić do zbyt niskich lub zbyt wysokich wartości impedancji, co w praktyce może skutkować nieadekwatnym dobraniem zabezpieczeń. Typowym błędem myślowym jest przekonanie, że pomiar w czasie odłączenia jest wystarczający i dostarcza pełnego obrazu zachowania systemu. Należy pamiętać, że odpowiednie wytyczne, takie jak normy IEC, zalecają przeprowadzanie tych pomiarów w warunkach operacyjnych, aby zapewnić rzetelność i bezpieczeństwo instalacji elektrycznych.

Pytanie 24

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Zwarcie doziemne przewodu neutralnego
B. Przerwa w przewodzie ochronnym
C. Przerwa w przewodzie neutralnym
D. Uszkodzenie izolacji przewodu ochronnego
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 25

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik świecznikowy
B. Łącznik schodowy pojedynczy
C. Łącznik schodowy podwójny
D. Łącznik krzyżowy
Wybór innego typu łącznika, takiego jak łącznik schodowy podwójny, prowadzi do nieporozumienia dotyczącego jego funkcji i zastosowania. Łącznik schodowy podwójny jest zaprojektowany do pracy w układzie schodowym, gdzie umożliwia kontrolę nad tym samym źródłem światła z dwóch różnych miejsc. Posiada on jednak inną liczbę zacisków oraz inny sposób podłączenia w porównaniu do łącznika świecznikowego. Dodatkowo, łącznik schodowy pojedynczy również nie jest odpowiednią odpowiedzią, ponieważ jego konstrukcja zakłada jedynie jeden klawisz i dwa zaciski, co nie spełnia warunków postawionych w pytaniu. Z kolei łącznik krzyżowy, choć jest elementem integrującym w bardziej złożonych systemach oświetleniowych, nie odpowiada wymaganiom związanym z dwoma klawiszami i trzema zaciskami. Kluczowym błędem myślowym, który może prowadzić do nieprawidłowych wyborów, jest niezrozumienie różnicy między funkcjami różnych typów łączników i ich zastosowaniem w praktyce. Wybierając nieodpowiedni typ łącznika, można nie tylko zakłócić działanie całej instalacji elektrycznej, ale również zwiększyć ryzyko awarii. Świadomość różnic pomiędzy poszczególnymi typami łączników to klucz do efektywnego projektowania oraz bezpiecznej eksploatacji systemów oświetleniowych.

Pytanie 26

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. profilowania żył przewodów.
B. zdejmowania powłoki z przewodu.
C. zaciskania końcówek tulejkowych.
D. zaciskania końcówek oczkowych.
Zarówno zdejmowanie powłoki z przewodu, zaciskanie końcówek oczkowych, jak i zaciskanie końcówek tulejkowych wymagają użycia innych rodzajów narzędzi. W przypadku zdejmowania powłoki z przewodu najczęściej stosuje się nożyce lub specjalistyczne narzędzia do ściągania izolacji, które są zaprojektowane tak, aby precyzyjnie usunąć zewnętrzną warstwę bez uszkadzania wrażliwych żył wewnętrznych. Użycie szczypiec okrągłych w tym kontekście jest niewłaściwe, ponieważ ich konstrukcja nie sprzyja precyzyjnemu ściąganiu izolacji. Z kolei zaciskanie końcówek oczkowych i tulejkowych z reguły wymaga użycia odpowiednich szczypiec zaciskowych, które są dedykowane do tego celu. Użycie niewłaściwych narzędzi może prowadzić do nieszczelnych połączeń elektrycznych, co zwiększa ryzyko awarii lub uszkodzeń w instalacji. Powszechnym błędem myślowym jest przekonanie, że jedno narzędzie może zastąpić inne, co wynika z braku świadomości na temat specyfiki i funkcji poszczególnych narzędzi. Dobrze zrozumiane różnice pomiędzy różnymi rodzajami narzędzi oraz ich dedykowanymi zastosowaniami są kluczowe dla zachowania bezpieczeństwa i efektywności w pracach elektrycznych.

Pytanie 27

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YDY 5x2,5 mm2
B. YDY 5x1,5 mm2
C. YADY 5x6 mm2
D. YADY 5x4 mm2
Wybór przewodu YDY 5x2,5 mm2 do trójfazowej instalacji wtynkowej z wyłącznikiem B20 to dobry ruch. Ten przewód ma obciążalność prądową 26A, co spokojnie wystarcza na te 20A, które wymaga zabezpieczenie B20. W praktyce oznacza to, że nie ma ryzyka, że przewód się przegrzeje, a to jest kluczowe dla bezpieczeństwa. Kiedy dobierasz przewody, pamiętaj, żeby zawsze myśleć o maksymalnym obciążeniu, bo to ważne. W trójfazowych instalacjach dobór przewodów musi być starannie przemyślany, żeby zrównoważyć obciążenia na poszczególnych fazach. Fajnie, że bierzesz pod uwagę normy, jak PN-IEC 60364 – to pokazuje, że robisz to odpowiedzialnie. Zwróć też uwagę na czynniki zewnętrzne, takie jak temperatura czy położenie przewodów – mogą one wpłynąć na ich obciążalność.

Pytanie 28

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 6,73 MΩ
B. 7,48 MΩ
C. 6,87 MΩ
D. 6,18 MΩ
Analiza rezystancji izolacji uzwojeń silnika w różnych temperaturach może stanowić wyzwanie, zwłaszcza gdy nie są brane pod uwagę odpowiednie współczynniki przeliczeniowe. W przypadku, gdy odpowiedzi sugerują wartości 6,73 MΩ, 6,87 MΩ, 7,48 MΩ oraz 6,18 MΩ, istotne jest zrozumienie, że każda z tych odpowiedzi opiera się na błędnych założeniach. Wartość 6,18 MΩ, choć może wydawać się poprawna, została obliczona w sposób nieprawidłowy, ponieważ pomija uwzględnienie odpowiednich współczynników przeliczeniowych i ich wpływu na wynik. W przypadku obliczania rezystancji izolacji, temperatura ma kluczowe znaczenie, a różnice między 20°C a 23°C mogą znacząco wpływać na wyniki. Przyjmuje się, że wzrost temperatury wpływa na zmniejszenie rezystancji, co oznacza, że rezystancja w niższej temperaturze powinna być wyższa. Wartości 6,73 MΩ i 6,87 MΩ mogą wynikać z pomyłek w korzystaniu z tabeli współczynników lub niewłaściwego zastosowania wzoru, co prowadzi do zaniżenia wartości izolacji. Natomiast 7,48 MΩ, choć na pierwszy rzut oka może wydawać się bardziej wiarygodne, jest wynikiem błędnych obliczeń, które nie uwzględniają prawidłowego przeliczenia na podstawie temperatury. Wiedza na temat prawidłowego wyznaczania rezystancji izolacji uzwojeń jest niezwykle istotna w kontekście bezpieczeństwa urządzeń elektrycznych oraz ich niezawodności w długotrwałym użytkowaniu.

Pytanie 29

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. gG 20 A
C. aM 20 A
D. aM 16 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 30

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,69
C. 0,57
D. 0,82
Aby zrozumieć, dlaczego pozostałe odpowiedzi są niewłaściwe, ważne jest, aby przeanalizować proces obliczania współczynnika mocy. Wiele osób myli pojęcia związane z mocą czynną, mocą bierną i mocą pozorną. Odpowiedzi takie jak 0,69, 0,99 czy 0,57 mogą wynikać z błędnych założeń dotyczących tego, co oznacza współczynnik mocy. Na przykład, wartość 0,99 sugeruje praktycznie idealny współczynnik mocy, co rzadko zdarza się w rzeczywistych aplikacjach przemysłowych, szczególnie w przypadku silników indukcyjnych, które nie osiągają tak wysokiej efektywności. Z kolei współczynnik mocy 0,57 wskazuje na słabe wykorzystanie energii, co prowadzi do wysokich strat w systemie. W praktyce, niskie wartości współczynnika mocy mogą skutkować koniecznością stosowania dodatkowych kondensatorów w celu poprawy jakości energii elektrycznej, co wiąże się z dodatkowymi kosztami. Typowym błędem myślowym w ocenie współczynnika mocy jest pomijanie wpływu obciążeń indukcyjnych oraz ich charakterystyki na całkowite zużycie energii. Ważnym aspektem jest także to, że obliczając współczynnik mocy, należy uwzględnić zarówno moc czynną, jak i moc bierną, co pozwala na bardziej precyzyjne zaplanowanie wymagań energetycznych dla danej instalacji. Dlatego też, zrozumienie i poprawne obliczenie współczynnika mocy jest kluczowe dla efektywności energetycznej i optymalizacji kosztów związanych z eksploatacją silników elektrycznych.

Pytanie 31

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 4,0 mm2
B. 25 mm2
C. 16 mm2
D. 10 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 32

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. stosowanie separacji ochronnej
B. zerową klasę ochrony przed porażeniem
C. najwyższy poziom ochronności
D. brak zabezpieczenia przed kurzem i wilgocią
Oznaczenie IP00 zgodnie z normą IEC 60529 wskazuje na brak ochrony przed pyłem oraz wilgocią. Pierwsza cyfra '0' oznacza, że urządzenie nie oferuje żadnej ochrony przed wnikaniem ciał stałych, co może prowadzić do uszkodzeń mechanicznych lub zanieczyszczenia wewnętrznych komponentów. Druga cyfra również '0' informuje użytkownika, że urządzenie nie jest odporne na działanie cieczy. W praktyce oznacza to, że takie urządzenia powinny być używane wyłącznie w suchych i czystych środowiskach, gdzie nie ma ryzyka kontaktu z wodą lub pyłem. Przykładem mogą być niektóre urządzenia biurowe, które są projektowane do pracy w kontrolowanych warunkach. Zastosowanie tych informacji w praktyce jest kluczowe dla zapewnienia długowieczności i bezpieczeństwa użytkowania urządzeń elektrycznych, dlatego zaleca się, aby przed zakupem sprawdzić stopień ochrony IP urządzenia, aby dobrać je odpowiednio do warunków pracy.

Pytanie 33

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
B. Montaż ochronników przepięciowych w głównej rozdzielnicy
C. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
D. Użycie transformatora separacyjnego do zasilania
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 34

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy różnicowoprądowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy przepięciowy
D. Dwubiegunowy podnapięciowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 35

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Nie wszystkie wymienione zestawy narzędzi są odpowiednie do montażu aparatury elektrycznej i wykonywania połączeń w rozdzielnicy. Wśród dostępnych opcji brakuje kluczowych narzędzi, które zapewniają prawidłowe i bezpieczne połączenia elektryczne. Na przykład, szczypce płaskie oraz młotek, chociaż mogą się wydawać użyteczne, nie są kluczowe w kontekście precyzyjnego montażu instalacji elektrycznej. Użycie młotka do montażu może prowadzić do uszkodzenia delikatnych komponentów, co jest niepożądane w przypadku rozdzielnic, gdzie precyzja jest kluczowa. Ponadto, przymiar taśmowy, mimo że użyteczny przy pomiarach, nie jest narzędziem niezbędnym do samego montażu i połączeń elektrycznych. Wiele osób może myśleć, że nóż monterski wystarczy do usunięcia izolacji, co jest błędne; niewłaściwe użycie noża może prowadzić do uszkodzenia przewodów. Również wkrętarka, choć użyteczna w niektórych sytuacjach, nie jest podstawowym narzędziem do pracy z przewodami, a korzystanie z niej może nie gwarantować właściwego dokręcenia połączeń. Kluczową kwestią jest zrozumienie, że do pracy w rozdzielnicy potrzebne są specjalistyczne narzędzia, które zapewniają nie tylko efektywność, ale także bezpieczeństwo, co jest niezbędne do prawidłowego działania całej instalacji elektrycznej.

Pytanie 36

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
B. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
C. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań dotyczących dokumentacji technicznej po wykonaniu modernizacji sieci. Kluczowym błędem jest pomijanie istotnych informacji, co może prowadzić do problemów w przyszłości, takich jak trudności w ustaleniu odpowiedzialności czy brak możliwości weryfikacji wyników badań. Na przykład, odpowiedzi sugerujące dodanie nazwy zakładu energetycznego zamiast nazwiska zleceniodawcy nie uwzględniają faktu, że to właśnie osoby fizyczne (zleceniodawcy i wykonawcy) są odpowiedzialne za realizację projektu oraz jakość wykonania pomiarów. Istotne jest, aby protokół odnosił się do konkretnych osób, co ma kluczowe znaczenie w kontekście odpowiedzialności prawnej. W przypadku, gdyby wystąpiły jakiekolwiek nieprawidłowości w funkcjonowaniu sieci, łatwiejsze będzie ustalenie, kto był odpowiedzialny za konkretne etapy pracy. Ważne jest także, aby czas wykonywania pomiarów został udokumentowany, ponieważ pozwala to na analizę ewentualnych opóźnień i ich wpływu na projekt. Prawidłowo sporządzony protokół powinien być zgodny z obowiązującymi normami branżowymi, co pozwala na zachowanie wysokich standardów jakości. Dlatego pominięcie jakiejkolwiek z tych informacji prowadzi do niekompletności dokumentacji, a tym samym do potencjalnych problemów w przyszłości.

Pytanie 37

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Generują napięcie remanentu
B. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
C. Usuwają niekorzystne efekty wynikające z działania twornika
D. Obniżają rezystancję obwodu twornika
Uzwojenia pomocnicze w silniku prądu stałego to naprawdę ważny temat, bo mają spory wpływ na to, jak ten silnik działa. Kiedy silnik jest w ruchu, to nieuniknione są pewne zjawiska, jak efekt rozbiegowy czy spadek momentu obrotowego. Uzwojenia pomocnicze, poprzez swoje połączenia, pomagają w stabilizacji tego momentu obrotowego i wpływają na ogólną wydajność silnika. W praktyce widać to na przykład w elektromagnesach czy w napędach maszyn przemysłowych, gdzie te uzwojenia zwiększają stabilność pracy silnika. Co więcej, ich zastosowanie pomaga w poprawie charakterystyk silnika, gdy obciążenie się zmienia, co jest naprawdę istotne w inżynierii elektrycznej. Warto też zwrócić uwagę na to, że dobrze zaprojektowane uzwojenia pomocnicze mogą zmniejszyć wahania prądu i wydłużyć żywotność silnika. Zgodność z normami IEC i IEEE przy ich implementacji jest kluczowa, żeby silnik działał na optymalnym poziomie i był niezawodny przez długi czas.

Pytanie 38

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Przekrój poprzeczny przewodów
B. Długość zamontowanych przewodów
C. Metoda ułożenia przewodów
D. Rodzaj materiału izolacyjnego
Przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów są elementami, które mają istotny wpływ na dopuszczalną obciążalność długotrwałą instalacji elektrycznej. Przekrój poprzeczny żył wpływa na opór przewodów; im większy przekrój, tym mniejszy opór, co przekłada się na możliwość przewodzenia większych prądów bez przegrzewania się. Z kolei materiał izolacji ma kluczowe znaczenie dla wydolności cieplnej przewodów; różne materiały mają różne właściwości termiczne i dielektryczne, co w praktyce wpływa na bezpieczeństwo użytkowania. Sposób ułożenia przewodów również jest istotny – na przykład, przewody ułożone w szczelnych kanałach mogą wymagać zmniejszenia dopuszczalnej obciążalności ze względu na ograniczony przepływ powietrza i trudności w odprowadzaniu ciepła. Typowe błędy myślowe obejmują mylenie długości przewodów z ich zdolnością do przewodzenia prądu. Choć długa trasa kablowa może zwiększać spadek napięcia, nie wpływa na maksymalną wartość prądu, jaki przewody mogą bezpiecznie przewodzić. Dlatego istotne jest, aby projektując instalacje, kierować się zaleceniami zawartymi w normach oraz wytycznymi branżowymi, aby uniknąć nieprawidłowych wniosków dotyczących obciążalności przewodów.

Pytanie 39

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
B. prasę hydrauliczną
C. cęgi do zdejmowania izolacji oraz wkrętak
D. nóż monterski
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 40

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 10,00 V
B. 6,40 V
C. 4,50 V
D. 7,07 V
Wartości napięcia podawane w odpowiedziach niepoprawnych mogą prowadzić do błędnych wniosków, zwłaszcza w przypadku analizy prostowników. Niektóre z tych wartości mogą wynikać z nieprawidłowego zrozumienia podstawowych koncepcji związanych z prostowaniem napięcia zmiennego. Na przykład, odpowiedź sugerująca 6,40 V mogła być obliczona na podstawie niewłaściwego pomiaru lub założenia dotyczącego średniej z całego cyklu napięcia AC, co nie uwzględnia faktu, że w przypadku prostownika jednopołówkowego napięcie jest prostowane tylko w jednej połówce sinusoidy. Z kolei odpowiedź 7,07 V może wskazywać na mylne zrozumienie wartości szczytowej, a nie średniej, co jest częstym błędem w obliczeniach. Istotne jest, aby rozróżniać między wartością skuteczną, szczytową a średnią, ponieważ każdy z tych terminów ma swoje specyficzne definicje i zastosowanie. Zrozumienie, jak oblicza się te wartości, jest kluczowe w praktycznych zastosowaniach elektrotechnicznych, na przykład w projektowaniu obwodów prostowniczych, gdzie błędne obliczenia mogą prowadzić do nieprawidłowego działania zasilaczy oraz uszkodzenia komponentów. Dlatego tak istotna jest znajomość wzorów oraz zasad rządzących działaniem prostowników, by uniknąć powszechnych pułapek w analizie elektronicznej.