Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:55
  • Data zakończenia: 7 grudnia 2025 12:03

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie jest minimalne natężenie prądu wymagane do pomiaru ciągłości przewodu ochronnego?

A. 200 mA
B. 400 mA
C. 100 mA
D. 500 mA
Wiesz, że minimalna wartość prądu do pomiaru ciągłości przewodów ochronnych wynosi 200 mA? To jak najbardziej zgodne z normami, m.in. IEC 60364 i wytycznymi Polskiego Komitetu Normalizacyjnego. Dzięki takiemu prądowi możesz skutecznie sprawdzić, czy nie ma żadnych przerw albo uszkodzeń w przewodach ochronnych. To mega ważne, bo takie usterki mogą prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych. Jak masz odpowiednie mierniki, jak multitesty, to łatwo możesz to wszystko sprawdzić. Na przykład w zakładach przemysłowych, gdzie przewody mogą być narażone na różne uszkodzenia, to 200 mA jest wręcz niezbędne, żeby zapewnić bezpieczeństwo. Pomiary te są kluczowe dla niezawodności instalacji i zapobiegają zagrożeniom związanym z prądem.

Pytanie 2

W łazience mieszkania konieczna jest wymiana uszkodzonej oprawy oświetleniowej, która znajduje się w odległości 30 cm od strefy prysznica. Jaki minimalny stopień ochrony powinna posiadać nowa oprawa?

A. IPX4
B. IPX1
C. IPX2
D. IPX7
Wybór stopnia ochrony niższego niż IPX4, takiego jak IPX1, IPX2 czy IPX7, nie jest odpowiedni w kontekście wymagań dotyczących oświetlenia w pobliżu kabiny prysznicowej. Oznaczenie IPX1 wskazuje na odporność na krople wody padające w kierunku pionowym, co jest niewystarczające w warunkach łazienki, gdzie może występować intensywniejsze zachlapanie. IPX2 również nie zabezpiecza przed wodą, ponieważ chroni jedynie przed kroplami padającymi pod kątem do 15 stopni od pionu. Wybór IPX7, który przewiduje krótkotrwałe zanurzenie w wodzie, również nie jest w pełni uzasadniony, ponieważ nie ma potrzeby tak wysokiego stopnia ochrony w przypadku odległości 30 cm od kabiny prysznicowej. W praktyce, zastosowanie oprawy z niższym stopniem ochrony może prowadzić do uszkodzeń elektrycznych, a tym samym stwarzać zagrożenie dla użytkowników. Dlatego kluczowe jest zrozumienie, że odpowiedni stopień ochrony powinien być dostosowany do specyficznych warunków panujących w danym pomieszczeniu, co jest zgodne z normami bezpieczeństwa elektrycznego oraz wytycznymi producentów.

Pytanie 3

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Podłączenie obudowy do uziemienia ochronnego
B. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
C. Izolacja robocza
D. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
Podłączenie obudowy do uziemienia ochronnego jest często mylone z podstawową ochroną przeciwporażeniową, jednak w przypadku grzejnika elektrycznego pracującego w sieci TN-S to podejście nie jest wystarczające. Uziemienie ma na celu zabezpieczenie przed skutkami awarii w sytuacji, gdy izolacja robocza zawiedzie, jednak nie eliminuje konieczności stosowania izolacji jako pierwszej linii obrony. Uziemienie chroni użytkownika w przypadku, gdy obudowa urządzenia staje się naładowana wskutek uszkodzenia, ale nie chroni przed porażeniem w sytuacji, gdy elementy elektryczne są w kontakcie z użytkownikiem, zanim dojdzie do zadziałania systemu uziemiającego. Izolacja robocza zapewnia, że nawet w przypadku uszkodzenia, nie dojdzie do sytuacji, w której prąd elektryczny może przepłynąć przez obudowę grzejnika. Ponadto zastosowanie wyłącznika różnicowoprądowego lub instalacyjnego nadprądowego to metody zabezpieczające, które działają w momencie wykrycia nieprawidłowości, ale nie eliminują ryzyka podczas normalnej pracy urządzenia. Błędem może być zatem postrzeganie uziemienia lub wyłączników jako samodzielnych rozwiązań ochronnych, zamiast traktowania ich jako uzupełniających elementów systemu ochrony, który powinien zawsze obejmować odpowiednią izolację roboczą, jako fundamentalny wymóg bezpieczeństwa w instalacjach elektrycznych.

Pytanie 4

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Piezorezystor
B. Pozystor
C. Halotron
D. Tensometr
Pozystor, to element elektroniczny wykorzystywany głównie w obwodach elektronicznych jako czujnik temperatury. Choć może wydawać się atrakcyjny do pomiarów, to jednak nie jest odpowiedni do pomiaru momentu obrotowego, ponieważ nie może bezpośrednio mierzyć deformacji mechanicznych ani sił działających na wał. Jego działanie opiera się na zmianie oporu elektrycznego w reakcji na temperaturę, co nie ma związku z dynamiką momentu obrotowego. Halotron to kolejny typ czujnika, który jest wykorzystywany w pomiarach pola magnetycznego, a nie do analizy momentu obrotowego. Jego zasada działania opiera się na detekcji zmian w polu magnetycznym, co nie jest związane z pomiarem siły mechanicznej. Piezorezystor, mimo że może reagować na zmiany ciśnienia lub deformacji, również nie jest idealnym rozwiązaniem w kontekście pomiaru momentu obrotowego, ponieważ jego zastosowanie jest bardziej skoncentrowane na pomiarach w systemach ciśnienia. Przykłady zastosowania piezorezystorów obejmują czujniki ciśnienia, a nie pomiar momentu obrotowego. Typowe błędy w myśleniu, które prowadzą do wyboru nieodpowiednich czujników, obejmują mylenie charakterystyki pomiarowej z warunkami pracy oraz nieznajomość zastosowania konkretnego przetwornika w praktyce. Właściwy dobór przetwornika jest kluczowy dla uzyskania precyzyjnych i wiarygodnych rezultatów pomiarowych.

Pytanie 5

Który z podanych przewodów powinien zostać wybrany w celu zastąpienia uszkodzonego przewodu zasilającego silnik trójfazowy zainstalowany w odbiorniku ruchomym?

A. YLY 3x2,5 mm2
B. YDY 4x2,5 mm2
C. OP4x2,5 mm2
D. SM3x2,5 mm2
Odpowiedź OP4x2,5 mm2 jest prawidłowa, ponieważ przewód ten spełnia wymagania dotyczące zasilania silników trójfazowych w aplikacjach przemysłowych. Przewód OP (olejoodporny) charakteryzuje się dużą odpornością na działanie olejów i substancji chemicznych, co jest kluczowe w środowiskach, gdzie takie czynniki mogą występować. Przekrój 2,5 mm2 zapewnia odpowiedni przepływ prądu dla silników o mocy do około 5,5 kW, co jest standardem w wielu instalacjach. Użycie przewodów zgodnych z normami PN-IEC 60364-1 oraz PN-EN 60228 gwarantuje bezpieczeństwo i niezawodność systemu. W praktyce, przewody te stosuje się w różnych mechanizmach, takich jak taśmy transportowe czy maszyny produkcyjne, gdzie mobilność i odporność na uszkodzenia mechaniczne są kluczowe. Zastosowanie odpowiedniego przewodu zasilającego jest istotne nie tylko dla prawidłowego działania urządzeń, ale też dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 6

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L3
B. Przewód L2
C. Przewód N
D. Przewód L1
W instalacjach trójfazowych przewody oznaczone jako L1, L2 i L3 pełnią rolę przewodów fazowych. Każdy z nich dostarcza prąd przemienny o przesunięciu fazowym 120 stopni względem pozostałych, co pozwala na efektywne wykorzystanie mocy elektrycznej. Przewody te są podstawowymi elementami w systemach trójfazowych, które są powszechnie stosowane ze względu na ich zdolność do przenoszenia większych mocy i lepszej stabilności w porównaniu do systemów jednofazowych. Często błędnie zakłada się, że przewód neutralny również pełni funkcję fazową, co nie jest prawdą. Przewody fazowe L1, L2 i L3 są odpowiedzialne za dostarczanie energii do odbiorników, podczas gdy przewód neutralny służy do zamykania obwodu i wyrównywania potencjałów. Błędne myślenie polega na traktowaniu wszystkich przewodów w instalacjach trójfazowych jako fazowych, co może prowadzić do nieporozumień i błędów w projektowaniu i konserwacji systemów. Zrozumienie odmiennych funkcji tych przewodów pozwala na bardziej efektywne i bezpieczne zarządzanie instalacjami elektrycznymi, co jest kluczowe dla techników zajmujących się eksploatacją urządzeń elektrycznych. Wiedza ta jest niezbędna dla prawidłowego projektowania, montażu i utrzymania instalacji, co w konsekwencji minimalizuje ryzyko awarii i zwiększa bezpieczeństwo użytkowania.

Pytanie 7

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
B. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
D. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
Zmniejszenie napięcia zasilającego silnik indukcyjny prowadzi do obniżenia momentu obrotowego, co skutkuje zmniejszeniem przeciążalności silnika. Tego rodzaju silniki są projektowane w taki sposób, aby pracować w określonym zakresie napięcia. Obniżenie napięcia wpływa negatywnie na wydajność silnika, co może prowadzić do błędnego założenia, że przeciążalność wzrośnie. Odpowiedzi, które sugerują zwiększenie przeciążalności silnika, wynikają z nieporozumienia dotyczącego charakterystyki pracy silników indukcyjnych. Zwiększenie prądu pobieranego z sieci nie jest w rezultacie zjawiskiem korzystnym, gdyż może prowadzić do przegrzewania się uzwojeń i uszkodzenia izolacji. Producenci silników podkreślają, że przy spadku napięcia musimy też brać pod uwagę spadek sprawności samego urządzenia. Zmniejszenie napięcia nie tylko wpływa na prąd, ale również na aspekty termiczne silnika, co jest szczególnie istotne w kontekście standardów bezpieczeństwa. W praktyce, przy obciążeń przekraczających nominalne, silnik nie jest w stanie przenieść momentu obrotowego, co prowadzi do ryzyka jego uszkodzenia. W branżach, gdzie wymagane są precyzyjne parametry pracy, takie jak przemysł spożywczy czy chemiczny, zachowanie odpowiednich wartości napięcia zasilania jest kluczowe dla bezpieczeństwa i efektywności procesów produkcyjnych.

Pytanie 8

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 60 V
B. 25 V
C. 50 V
D. 12 V
Istniejące nieprawidłowe odpowiedzi związane z wartością skuteczną napięcia dotykowego dotykają kluczowych aspektów bezpieczeństwa elektrycznego, które są niezwykle istotne w kontekście ochrony życia i zdrowia ludzi. Odpowiedzi sugerujące ilości mniejsze niż 50 V, jak 12 V, 25 V czy 60 V, mogą wprowadzać w błąd co do rzeczywistego ryzyka związanego z narażeniem na działanie prądu przemiennego. Po pierwsze, 12 V to napięcie, które w większości przypadków uznawane jest za bezpieczne, ale w praktyce, zwłaszcza w warunkach wilgotnych, nawet niskie napięcia mogą stanowić zagrożenie, jeśli nie są odpowiednio zabezpieczone. 25 V również nie jest wystarczająco zabezpieczone, biorąc pod uwagę, że normy bezpieczeństwa w różnych aplikacjach zazwyczaj uwzględniają wyższe wartości. Co więcej, 60 V, choć bliskie rzeczywistego niebezpieczeństwa, przekracza zalecaną wartość 50 V, co wyraźnie narusza zasady ochrony przeciwporażeniowej. Warto również podkreślić, że w przypadku napięć przekraczających 50 V, znaczenie ma nie tylko ich wartość, ale również czas ekspozycji oraz warunki otoczenia. Błędem jest zakładanie, że napięcie poniżej 50 V jest zawsze bezpieczne, co ignoruje złożoność interakcji między prądem a organizmem ludzkim. Z tego powodu kluczowe jest przestrzeganie standardów, takich jak IEC 60479, które stanowią fundament dla bezpiecznego projektowania instalacji elektrycznych.

Pytanie 9

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT/NH DC
B. WT-2gTr
C. WT-00 gF
D. WT/NHaM
Wybór nieodpowiedniej wkładki topikowej do zabezpieczenia silnika indukcyjnego może prowadzić do poważnych skutków, w tym uszkodzenia silnika lub awarii całego systemu. Wybrane opcje, takie jak WT/NH DC, WT-2gTr oraz WT-00 gF, nie są optymalne w kontekście ochrony silników indukcyjnych. Wkładka WT/NH DC, przeznaczona głównie do systemów prądu stałego, nie jest przystosowana do warunków pracy, w jakich funkcjonują silniki indukcyjne zasilane prądem zmiennym, co może prowadzić do niewłaściwej reakcji na zwarcia. Z kolei WT-2gTr nie jest odpowiednia ze względu na swoje ograniczenia w obszarze prądów zwarciowych, mogących być znacznie wyższe w przypadku silników indukcyjnych. Wkładka WT-00 gF, mimo że może znaleźć zastosowanie w innych obszarach, również nie jest dedykowana do ochrony silników, bowiem nie zapewnia wymaganej charakterystyki prądowej oraz czasowej reakcji. Typowe błędy myślowe związane z tymi odpowiedziami mogą obejmować nieprawidłowe założenie, że każda wkładka bezpiecznikowa jest uniwersalna, co jest sprzeczne z zasadami inżynierii elektrycznej. Właściwy dobór ochrony nadprądowej powinien opierać się na specyfikacjach danego urządzenia oraz warunkach jego pracy, aby zapewnić maksymalną efektywność ochrony.

Pytanie 10

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz

A. In = 1 A, Un = 200 V
B. In = 2 A, Un = 200 V
C. In = 2 A, Un = 400 V
D. In = 1 A, Un = 400 V
Wybór zakresów prądowych i napięciowych watomierzy jest kluczowy dla prawidłowego pomiaru mocy elektrycznej silników. W przypadku odpowiedzi, które sugerują mniejsze wartości prądów, jak In = 1 A, są one nieadekwatne do znamionowych parametrów silnika. Silnik o mocy 1,1 kW przy napięciu 3×400 V i prądzie 3,2 A wymaga zastosowania watomierzy, które mogą komfortowo mierzyć prąd powyżej tej wartości, co sprawia, że wybór 1 A jest niewłaściwy. Dodatkowo, odpowiedzi sugerujące napięcie Un = 200 V są błędne, ponieważ silnik jest zasilany napięciem 400 V w układzie trójfazowym, co z całą pewnością eliminuje możliwość zastosowania niższego napięcia. Typowymi błędami prowadzącymi do tych nieprawidłowych wniosków są nieprecyzyjne obliczenia oraz nieprawidłowe zrozumienie zasad połączeń w układach elektrycznych, w tym połączeń w gwiazdę, które wymagają dokładnej analizy parametrów znamionowych silnika. Ignorowanie tych zasad może prowadzić do nieefektywności w pomiarach oraz potencjalnie do uszkodzeń sprzętu pomiarowego, dlatego tak ważne jest stosowanie się do norm branżowych oraz dobrych praktyk inżynieryjnych.

Pytanie 11

Wybierz odpowiedni wyłącznik nadprądowy do ochrony przed przeciążeniem w obwodzie jednofazowym o napięciu znamionowym 230 V, z którego jednocześnie będą zasilane grzejnik oporowy o mocy nominalnej 2 kW oraz chłodziarka o mocy nominalnej 560 W i współczynniku mocy cos ? = 0,7?

A. C20
B. B16
C. B10
D. C10
Wybranie wyłącznika nadprądowego B16 jest prawidłowe, ponieważ zapewnia on odpowiednią ochronę dla obwodu jednofazowego o napięciu znamionowym 230 V, w którym zasilane są grzejnik oporowy o mocy 2 kW oraz chłodziarka o mocy 560 W. Łączna moc obciążenia wynosi 2 kW + 0,56 kW = 2,56 kW. Aby obliczyć prąd, możemy skorzystać z wzoru I = P / U, gdzie P to moc, a U to napięcie. Prąd obliczamy: I = 2560 W / 230 V = 11,13 A. Wobec powyższego, wyłącznik B16, który ma nominalny prąd 16 A, jest odpowiedni, ponieważ pozostawia wystarczający margines na przypadkowe przeciążenia. Zastosowanie wyłącznika z wyższym prądem, jak C20, może prowadzić do braku ochrony przed przeciążeniem, co z kolei naraża instalację na uszkodzenia. W praktyce, wyłącznik B16 jest standardowo stosowany w obwodach z urządzeniami o podobnych parametrach, co potwierdzają normy PN-EN 60898, które precyzują zasady doboru zabezpieczeń. Zastosowanie wyłącznika o zbyt wysokim prądzie znamionowym mogłoby prowadzić do uszkodzeń urządzeń zasilanych w wyniku braku odpowiedniej ochrony w przypadku zwarcia lub przeciążenia.

Pytanie 12

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. opisu doboru urządzeń zabezpieczających
B. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
C. spisu terminów oraz zakresów testów i pomiarów kontrolnych
D. charakterystyki technicznej instalacji
Odpowiedzi, które wskazują na wykaz terminów oraz zakresów prób i pomiarów kontrolnych, zasady bezpieczeństwa przy wykonywaniu prac oraz charakterystykę instalacji, są błędne. Wydaje mi się, że wszystkie te elementy są super ważne w instrukcjach eksploatacji instalacji elektrycznych. Wykaz terminów i prób mówi nam, jakie testy zrobić i jak często – to kluczowe dla bezpieczeństwa instalacji. Zasady bezpieczeństwa przy pracach eksploatacyjnych to coś, co wszyscy powinni znać, żeby unikać wypadków. A charakterystyka techniczna daje szczegóły na temat tego, jak działają używane urządzenia, bez tego trudno zrozumieć, jak instalacja ma działać. Z perspektywy przepisów, każdy z tych elementów jest mega ważny - wpływa to nie tylko na bezpieczeństwo, ale i na to, jak sprawnie działa cała instalacja. Nie doceniając ich znaczenia, ryzykujemy, że będziemy źle zarządzać instalacjami elektrycznymi, a to po prostu mija się z praktykami w branży.

Pytanie 13

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zwiększenia napięcia znamionowego
B. Zmniejszenia prędkości obrotowej silników
C. Zmniejszenia strat energii i poprawy współczynnika mocy
D. Zwiększenia częstotliwości prądu
Kompensacja mocy biernej jest kluczowym zagadnieniem w kontekście instalacji przemysłowych, ponieważ wpływa bezpośrednio na efektywność energetyczną systemu. Moc bierna to ta część zużywanej energii elektrycznej, która nie wykonuje użytecznej pracy, ale jest niezbędna do podtrzymania pola elektromagnetycznego w urządzeniach takich jak transformatory i silniki indukcyjne. Zastosowanie kompensacji mocy biernej, zazwyczaj za pomocą baterii kondensatorów, prowadzi do poprawy współczynnika mocy, co oznacza, że więcej dostarczonej energii jest wykorzystywane na pracę użyteczną. Dzięki temu zmniejszają się straty energii w systemie, co przekłada się na niższe rachunki za energię i zmniejszenie obciążenia sieci energetycznej. Co więcej, poprawa współczynnika mocy może również prowadzić do zmniejszenia opłat za moc bierną, które są często naliczane przez dostawców energii jako kara za niską efektywność energetyczną. Dlatego kompensacja mocy biernej jest nie tylko korzystna z punktu widzenia efektywności, ale również może przynieść wymierne korzyści finansowe dla przedsiębiorstw.

Pytanie 14

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zbyt wysoka temperatura uzwojeń
B. Przepalony bezpiecznik topikowy w jednej z faz
C. Zadziałanie przekaźnika termicznego
D. Zwarcie w obwodzie wirnika
Przepalony bezpiecznik topikowy w jednej fazie to jedna z najczęstszych przyczyn nagłego spadku obrotów silnika indukcyjnego klatkowego. Silnik tego typu działa na zasadzie zasilania trójfazowego, a każdy z obwodów fazowych jest kluczowy dla prawidłowego funkcjonowania całego układu. W przypadku przepalenia bezpiecznika w jednej z faz, silnik zostaje zasilany tylko z dwóch faz, co prowadzi do znacznego spadku momentu obrotowego i w konsekwencji obrotów. Gdy obciążenie silnika osiąga wartość znamionową, a jedna z faz jest wyłączona, silnik nie jest w stanie dostarczyć wymaganego momentu obrotowego. Przykładem zastosowania tej wiedzy jest regularne monitorowanie stanu bezpieczników w instalacjach przemysłowych oraz korzystanie z systemów detekcji, które mogą zasygnalizować spadek wydajności zasilania. Dobrym rozwiązaniem jest także wprowadzenie systemów automatycznego wyłączania urządzeń w przypadku wykrycia problemów z zasilaniem, co może zapobiec uszkodzeniom silnika.

Pytanie 15

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 1 660 Ω
B. 4 000 Ω
C. 2 000 Ω
D. Około 830 Ω
Wybór niewłaściwej rezystancji uziomu może prowadzić do poważnych konsekwencji, takich jak zwiększone ryzyko porażenia prądem. Odpowiedzi sugerujące rezystancję 830 Ω, 2 000 Ω czy 4 000 Ω są nieprawidłowe, ponieważ nie spełniają norm bezpieczeństwa dotyczących ochrony przeciwporażeniowej. Na przykład, wartość 830 Ω jest zbyt niska w kontekście wymaganej ochrony, co może prowadzić do zbyt wysokiego prądu dotykowego, a tym samym zwiększenia ryzyka porażenia. Z kolei wartości 2 000 Ω i 4 000 Ω są zdecydowanie za wysokie, co powoduje, że prąd różnicowy nie ma wystarczającej drogi do ziemi, co skutkuje niewłaściwym działaniem zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Takie podejście może prowadzić do sytuacji, w której urządzenia ochronne nie zadziałają w odpowiednim momencie, co stwarza zagrożenie dla życia i zdrowia użytkowników. W związku z tym, ważne jest, aby projektanci instalacji elektrycznych i technicy kierowali się normami, które umożliwiają prawidłowe dobranie wartości rezystancji uziomu, aby zapewnić bezpieczeństwo w codziennym użytkowaniu instalacji elektrycznych. Ustalając właściwą rezystancję, można nie tylko chronić ludzi, ale również zminimalizować ryzyko uszkodzeń sprzętu elektrycznego.

Pytanie 16

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-2 gTr
B. WT/NH DC
C. WT-00 gF
D. WT/NH aM
Wkładka topikowa WT/NH aM jest odpowiednia do zabezpieczania silników indukcyjnych przed skutkami zwarć, ponieważ charakteryzuje się dużą zdolnością do przerwania prądu oraz odpowiednim czasem zadziałania. W porównaniu do innych wkładek, aM (motor) zapewnia lepszą ochronę w przypadku prądów rozruchowych, które mogą być znacznie wyższe od normalnych wartości roboczych. W praktyce, takie wkładki są stosowane w układach zasilających silników elektrycznych, które podczas rozruchu mogą generować prądy nawet 5-7 razy większe od nominalnych. Dzięki właściwościom aM, wkładki te pozwalają na dłuższe tolerowanie tych wysokich prądów, co znacząco zwiększa bezpieczeństwo i nie powoduje niepotrzebnych wyłączeń. Dodatkowo, zgodnie z normą IEC 60269, wkładki aM są przystosowane do ochrony silników przed przeciążeniem, co czyni je idealnym wyborem w aplikacjach przemysłowych. Warto zaznaczyć, że stosowanie wkładek zabezpieczających powinno odbywać się zgodnie z zaleceniami producentów urządzeń oraz normami bezpieczeństwa, co zwiększa ich efektywność i niezawodność.

Pytanie 17

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwójeniu V1 - V2
B. zwarciu międzyzwojowym w uzwojeniu Ul - U2
C. przerwie w uzwojeniu VI - V2
D. przerwie w uzwojeniu Wl - W2
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 18

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 1 rok
B. 4 lata
C. 2 lata
D. 3 lata
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 19

W którym z poniższych miejsc, podczas pracy z urządzeniami elektrycznymi, nie jest dopuszczalne stosowanie izolacji stanowiska jako środków ochrony przed dotykiem pośrednim?

A. Warsztacie sprzętu RTV
B. Placu budowy
C. Laboratorium
D. Pracowni edukacyjnej
Wydaje się, że wybrałeś odpowiedzi dotyczące pracowni szkolnej czy warsztatu RTV, ale coś tu nie pasuje. W pracowni szkolnej wszystko jest przemyślane i uczniowie znają zasady BHP. Izolacje tam są na porządku dziennym, co zwiększa bezpieczeństwo. W laboratoriach technicznych też jest to dobrze zorganizowane, bo warunki są tam bardziej kontrolowane. W warsztatach sprzętu RTV to samo – są normy i zabezpieczenia. Więc te odpowiedzi są trochę mylące, bo nie uwzględniają, że plac budowy to zupełnie inna bajka, gdzie potrzebne są bardziej zaawansowane rozwiązania.

Pytanie 20

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667
A. 10 mm2
B. 4 mm2
C. 16 mm2
D. 6 mm2
Dla instalacji trójfazowej z przewodami YDY umieszczonymi w rurze instalacyjnej na ścianie drewnianej (metoda B2), minimalny przekrój przewodów wynoszący 10 mm2 jest odpowiedni dla przewidywanego prądu obciążenia wynoszącego 36 A. Ten przekrój przewodów zapewnia, że obciążalność wynosząca 50 A jest znacznie wyższa niż wymagana, co gwarantuje bezpieczeństwo i niezawodność instalacji. Zastosowanie odpowiednich przekrojów przewodów jest kluczowe, aby uniknąć przegrzania oraz potencjalnych zagrożeń pożarowych. W praktyce, wybór przekroju przewodów powinien również uwzględniać długość trasy przewodów oraz rodzaj izolacji. W standardach instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie odpowiedniego doboru przekrojów w zależności od warunków instalacyjnych, co minimalizuje ryzyko awarii. Dla instalacji o wyższych obciążeniach, warto również rozważyć zastosowanie przewodów o większej obciążalności, aby mieć większy margines bezpieczeństwa w przypadku przyszłych zmian w obciążeniu.

Pytanie 21

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. wskazań aparatury kontrolno-pomiarowej
B. stanu szczotek
C. stanu osłon części wirujących
D. poziomu drgań
Choć niektóre z podanych opcji mogą wydawać się logiczne na pierwszy rzut oka, warto zwrócić uwagę na ich kontekst. Stan szczotek, mimo że istotny dla działania silnika elektrycznego, należy oceniać w momencie, gdy urządzenie jest wyłączone. Dlatego też monitoring ich stanu nie jest częścią oględzin przeprowadzanych na działającym urządzeniu. Z kolei poziom drgań jest jednym z kluczowych wskaźników kondycji mechanicznej urządzenia. Podczas pracy silnika, nadmierne drgania mogą wskazywać na problemy, takie jak niewyważenie wirnika czy uszkodzenia łożysk, co z pewnością wymaga natychmiastowej reakcji. Wskazania aparatury kontrolno-pomiarowej, takie jak prąd, napięcie czy temperatura, również są krytycznymi parametrami, które można monitorować w czasie pracy. Ich analiza pozwala na wczesne wykrywanie anomalii i podejmowanie działań prewencyjnych. Stan osłon części wirujących jest także kluczowy z punktu widzenia bezpieczeństwa; ich kontrola zapobiega narażeniu operatorów na ryzyko związane z obracającymi się elementami. W związku z tym, wykrywanie problemów w tych obszarach podczas pracy urządzenia jest nie tylko zalecane, ale według standardów BHP i ISO, także obligatoryjne. Ostatecznie, kluczowym aspektem pracy z urządzeniami napędowymi jest zrozumienie, które parametry można oceniać w czasie rzeczywistym, a które wymagają zatrzymania maszyny.

Pytanie 22

Jakie z wymienionych działań należy do inspekcji urządzenia napędowego z elektrycznym silnikiem podczas jego pracy?

A. Kontrola stanu zamocowania osłony wentylatora
B. Weryfikacja czystości obudowy
C. Sprawdzenie urządzeń ochronnych
D. Zbadanie poziomu nagrzewania obudowy i łożysk
W niniejszym przypadku wybór odpowiedzi dotyczącej sprawdzania czystości obudowy, kontroli urządzeń zabezpieczających oraz stanu zamocowania osłony wentylatora, choć istotny w kontekście ogólnego utrzymania urządzenia, nie odnosi się bezpośrednio do oględzin w ruchu. Sprawdzanie czystości obudowy, mimo że ma znaczenie dla trwałości materiałów i estetyki, nie dostarcza istotnych informacji o stanie technicznym urządzenia w trakcie pracy. Kontrola urządzeń zabezpieczających jest kluczowym elementem zapewnienia bezpieczeństwa, ale jej analiza zazwyczaj odbywa się w trybie postoju, a nie podczas eksploatacji. Natomiast kontrola stanu zamocowania osłony wentylatora, choć istotna, nie daje pełnego obrazu w kontekście oceny wydajności termicznej. Pomija ona kluczowy aspekt, jakim jest monitorowanie temperatury łożysk i obudowy, które są bezpośrednio narażone na działanie sił operacyjnych. Często zdarza się, że osoby oceniające stan urządzenia koncentrują się na aspektach wizualnych lub zabezpieczających, zapominając o fundamentalnym znaczeniu parametrów operacyjnych, takich jak temperatura. Ignorowanie tych czynników może prowadzić do poważnych awarii oraz kosztownych przestojów, co podkreśla znaczenie prawidłowego podejścia do monitorowania stanu technicznego urządzenia w trakcie jego pracy.

Pytanie 23

Jakim kolorem należy oznaczać nieizolowany przewód uziemiający punkt gwiazdowy transformatora SN/nn, który zasilają sieć TN-C, gdy jest wykonany w formie taśmy?

A. Czarny
B. Jasnoniebieski
C. Żółto-zielony
D. Zielony
Barwa żółto-zielona jest standardowym oznaczeniem przewodów uziemiających oraz przewodów ochronnych w systemach elektroenergetycznych. Zgodnie z normą PN-EN 60446, która reguluje oznaczenia kolorystyczne przewodów elektrycznych, żółto-zielony kolor jednoznacznie wskazuje na przewody uziemiające, co ma na celu zwiększenie bezpieczeństwa użytkowników oraz minimalizację ryzyka błędów związanych z nieprawidłowym podłączeniem przewodów. W przypadku punktu gwiazdowego transformatora SN/nn, zastosowanie przewodu uziemiającego w barwie żółto-zielonej jest kluczowe dla zapewnienia skutecznej ochrony przed porażeniem elektrycznym oraz dla prawidłowego funkcjonowania systemów zabezpieczeń. Praktyczne zastosowanie tej wiedzy obejmuje nie tylko instalacje elektryczne w budynkach, ale także w infrastrukturze przemysłowej, gdzie bezpieczeństwo urządzeń i ludzi jest priorytetem. Warto pamiętać, że stosowanie właściwych barw przewodów jest istotnym elementem bezpieczeństwa, a ich niewłaściwe oznaczenie może prowadzić do poważnych konsekwencji.

Pytanie 24

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Podłączyć urządzenie do sieci
B. Zmierzyć napięcie zasilania
C. Uziemić megomierz
D. Odłączyć zasilanie
Przed pomiarem rezystancji izolacji za pomocą megomierza należy bezwzględnie odłączyć zasilanie badanego obwodu. To kluczowy krok, który zapewnia bezpieczeństwo zarówno osoby wykonującej pomiar, jak i chroni sprzęt przed uszkodzeniem. Megomierz generuje wysokie napięcie, które w połączeniu z istniejącym zasilaniem mogłoby spowodować porażenie elektryczne lub uszkodzenie izolacji. Dodatkowo, odłączenie zasilania pozwala na uzyskanie dokładnych wyników, ponieważ eliminuje wpływ napięcia zasilającego na pomiar. W praktyce, przed rozpoczęciem pomiarów, należy również upewnić się, że obwód nie jest pod napięciem za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa pracy z urządzeniami elektrycznymi, które podkreślają znaczenie odłączenia zasilania przed jakimikolwiek pracami serwisowymi czy pomiarowymi.

Pytanie 25

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-B16/4
B. CLS6-B16/3
C. CLS6-B16/3N
D. CLS6-C16/1N
Pozostałe odpowiedzi nie spełniają wymagań dotyczących ochrony obwodu zasilającego grzejnik elektryczny. Odpowiedź CLS6-C16/1N nie jest właściwa, ponieważ jest to wyłącznik jednofazowy, a obwód, w którym zainstalowany jest grzejnik, jest trójfazowy. Zastosowanie wyłącznika jednofazowego w obwodzie trójfazowym prowadziłoby do nieprawidłowej ochrony, a w przypadku awarii mogłoby to skutkować poważnymi uszkodzeniami instalacji. Odpowiedź CLS6-B16/4 jest także błędna ze względu na to, że wyłącznik ten ma cztery bieguny, co nie ma zastosowania w obwodach trójfazowych z przewodem neutralnym. W instalacjach trójfazowych wykorzystuje się zazwyczaj wyłączniki trójbiegowe, co czyni tę opcję niewłaściwą. Z kolei wyłącznik CLS6-B16/3N, mimo że teoretycznie mógłby być odpowiedni z uwagi na obecność przewodu neutralnego, nie jest optymalnym wyborem dla obwodu głównie rezystancyjnego, jakim jest grzejnik elektryczny. Obciążenia rezystancyjne charakteryzują się stabilnym prądem, co oznacza, że wyłączniki B są bardziej odpowiednie niż N, które są zaprojektowane do ochrony obwodów z obciążeniami nieliniowymi. Dlatego ważne jest, aby dobór wyłącznika nadprądowego był zgodny z charakterem obciążenia oraz wymaganiami normatywnymi, co zapewnia bezpieczeństwo oraz odpowiednią funkcjonalność instalacji elektrycznej.

Pytanie 26

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Tłumicę
B. Hydronetkę
C. Gaśnicę proszkową
D. Gaśnicę płynową
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 27

Aby przeprowadzić pomiar rezystancji metodą techniczną, należy przygotować

A. mostek Thomsona
B. omomierz oraz woltomierz
C. amperomierz i woltomierz
D. mostek Wheatstone'a
Istnieją różne metody pomiaru rezystancji, jednak nie wszystkie z nich są odpowiednie do pomiarów technicznych w tym kontekście. Wykorzystanie mostka Wheatstone'a do pomiaru rezystancji jest jedną z popularnych metod, ale nie jest to podejście, które wykorzystuje amperomierz i woltomierz bezpośrednio. Mostek Wheatstone'a działa na zasadzie porównywania nieznanej rezystancji z rezystancjami znanymi, co wymaga bardziej złożonego układu, w którym zbalansowanie mostka jest kluczowe. Dodatkowo, mostek Thomsona, chociaż również używany do pomiaru rezystancji, jest bardziej skomplikowany i odnosi się do sytuacji, w których występują dodatkowe czynniki wpływające na pomiar, takie jak temperatura. Z kolei omomierz to urządzenie elektroniczne, które mierzy rezystancję i robi to automatycznie, ale w kontekście pytania o metodę techniczną, pomiar za pomocą omomierza nie odzwierciedla zasady Ohma w sposób bezpośredni, ponieważ nie uwzględnia pomiaru napięcia i natężenia prądu. Często pojawiają się mylne interpretacje, które prowadzą do przekonania, że inne urządzenia mogą zastąpić amperomierz i woltomierz. Kluczowe jest zrozumienie, że podstawowym warunkiem prawidłowego pomiaru rezystancji jest zastosowanie metody, która opiera się na bezpośrednich pomiarach napięcia i natężenia prądu, co umożliwia dokładne obliczenie rezystancji zgodnie z zasadą Ohma.

Pytanie 28

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 10 A
B. 1 A
C. 6 A
D. 16 A
Wybór wartości prądu znamionowego bezpiecznika aparaturowego jest kluczowy dla prawidłowego funkcjonowania obwodów elektrycznych. W przypadku analizowanej sytuacji, niewłaściwe odpowiedzi mogą wynikać z kilku błędnych koncepcji. Na przykład, wartość 6 A mogłaby sugerować nadmierne zabezpieczenie, które zmniejszyłoby efektywność działania transformatora, jednocześnie nie spełniając potrzeb obciążenia. Bezpiecznik o tej wartości mógłby nie zareagować odpowiednio na chwilowe przeciążenia, co prowadzi do ryzyka uszkodzenia transformatora. Z kolei odpowiedź 10 A wydaje się bliska, ale nadal jest wyższa niż rzeczywiste potrzeby, co może skutkować nadmiernym ryzykiem w przypadku wystąpienia zwarć. Podobnie, wybór 16 A jest niewłaściwy, ponieważ znacznie przekracza obliczony prąd obciążenia 15 A, co byłoby niezgodne z zasadą ochrony przed przeciążeniem i zwarciem. W praktyce, dobór wartości prądu znamionowego powinien być oparty na rzeczywistym obciążeniu, a także dostępnych normach dotyczących zabezpieczeń. Właściwy wybór nie tylko zapewnia bezpieczeństwo instalacji, ale także optymalizuje jej działanie, co ma kluczowe znaczenie w kontekście długotrwałej eksploatacji transformatorów w systemach ładowania akumulatorów.

Pytanie 29

Aby zapobiec przegrzewaniu uzwojeń silnika indukcyjnego, nie powinno się długotrwale

A. zwiększać oporu wirnika
B. zmniejszać współczynnika mocy
C. przekraczać prądu znamionowego
D. obniżać poślizgu
Zmniejszanie poślizgu silnika indukcyjnego, zwiększanie rezystancji wirnika czy też zmniejszanie współczynnika mocy to podejścia, które mogą wydawać się logiczne na pierwszy rzut oka, jednak nie są skutecznymi metodami zapobiegania przegrzaniu uzwojeń. Poślizg w silniku indukcyjnym to różnica między prędkością obrotową wirnika a prędkością pola magnetycznego. Zmniejszenie poślizgu może teoretycznie prowadzić do większej wydajności, jednak w praktyce zmniejszenie poślizgu, zwłaszcza poniżej wartości nominalnej, może powodować wzrost prądu roboczego, co w konsekwencji prowadzi do przegrzania silnika. Zwiększenie rezystancji wirnika, choć może być postrzegane jako poprawa stabilności prądu, w rzeczywistości powoduje wzrost strat mocy i ciepła, co może przyczynić się do przegrzania. Współczynnik mocy, będący miarą efektywności wykorzystania energii elektrycznej, jeśli jest zmniejszany, powoduje, że więcej energii jest przekształcane w ciepło, co dodatkowo zwiększa ryzyko przegrzania. Typowe błędy myślowe, które prowadzą do takich wniosków, to mylenie efektywności energetycznej z bezpieczeństwem pracy silnika. Należy pamiętać, że fundamentalną zasadą eksploatacji silników indukcyjnych jest zawsze przestrzeganie ich parametrów znamionowych, aby zapobiec uszkodzeniom i zapewnić długoterminowe działanie.

Pytanie 30

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Maksymalną temperaturę pracy uzwojeń
B. Minimalną temperaturę pracy uzwojeń
C. Minimalne napięcie zasilania
D. Maksymalne napięcie zasilania
Odpowiedzi dotyczące minimalnego i maksymalnego napięcia zasilania są nieprawidłowe, ponieważ klasa izolacji nie odnosi się do parametrów napięcia, a wyłącznie do temperatury pracy uzwojeń. Minimalne napięcie zasilania jest określane przez specyfikację techniczną silnika i nie jest związane z temperaturami, które osiągają jego uzwojenia. Z kolei maksymalne napięcie zasilania to granica, powyżej której silnik może ulec uszkodzeniu, ale również nie odnosi się bezpośrednio do klasy izolacji. Ponadto, odpowiedź sugerująca minimalną temperaturę pracy uzwojeń jest myląca. W rzeczywistości klasa izolacji nie definiuje minimalnej temperatury, a jedynie maksymalną, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy silników. Zrozumienie klasy izolacji jest istotne w kontekście projektowania i eksploatacji silników elektrycznych, ponieważ niewłaściwe dobranie klasy izolacji do warunków pracy może prowadzić do przedwczesnego zużycia materiałów izolacyjnych oraz awarii. W praktyce, przy wyborze silnika elektrycznego, należy uwzględniać zarówno klasę izolacji, jak i warunki, w jakich urządzenie będzie pracować, aby zapewnić optymalne działanie i uniknąć kosztownych napraw.

Pytanie 31

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
B. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
C. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
D. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
Wszystkie pozostałe działania, takie jak zwiększenie częstotliwości przeglądów maszyn elektrycznych, podnoszenie kwalifikacji pracowników czy uzyskiwanie większego przydziału mocy w Zakładzie Energetycznym, nie prowadzą bezpośrednio do poprawy współczynnika mocy, co może prowadzić do błędnych wniosków w zakresie zarządzania energetycznego. Zwiększenie częstotliwości przeglądów maszyn elektrycznych, chociaż istotne dla utrzymania ich sprawności i wydajności, nie wpływa na współczynnik mocy sam w sobie. Główne korzyści związane z przeglądami dotyczą zapobiegania awariom i przedłużenia żywotności sprzętu, a nie bezpośredniej poprawy PF. Podnoszenie kwalifikacji pracowników jest z pewnością korzystne dla ogólnej efektywności operacyjnej zakładu, jednak nie jest to działanie, które bezpośrednio wpłynie na poprawę współczynnika mocy. Natomiast uzyskanie większego przydziału mocy w Zakładzie Energetycznym może wręcz prowadzić do zwiększenia obciążeń, co często skutkuje pogorszeniem współczynnika mocy. Właściwa strategia zarządzania mocą powinna koncentrować się na optymalizacji istniejącego sprzętu oraz eliminacji nieefektywnych operacji, zamiast na zwiększaniu przydziału mocy, co może prowadzić do niepotrzebnych kosztów.

Pytanie 32

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Zwarcie w uzwojeniu pierwotnym
B. Zwarcie w uzwojeniu wtórnym
C. Przerwa w uzwojeniu wtórnym
D. Przerwa w uzwojeniu pierwotnym
Zwarcie w uzwojeniu pierwotnym transformatora obniżającego napięcie powoduje, że przy braku obciążenia (stan jałowy) napięcie na uzwojeniu pierwotnym nie może osiągnąć wartości znamionowej. W przypadku transformatora o przekładni napięciowej wynoszącej 5, napięcie wtórne powinno wynosić pięć razy mniejsze niż pierwotne, czyli przy napięciu 230 V na uzwojeniu pierwotnym, napięcie wtórne powinno wynosić 46 V. Jednak w omawianym przypadku zmierzono napięcia 230 V i 460 V, co sugeruje, że doszło do zwarcia w uzwojeniu pierwotnym. Takie uszkodzenie może prowadzić do znacznego wzrostu prądu, co jest niebezpieczne dla transformatora, a także dla sieci zasilającej. W praktyce, w celu weryfikacji stanu uzwojeń, stosuje się pomiary impedancji oraz testy napięciowe, które są zgodne z normami IEC i ANSI. W przypadku stwierdzenia zwarcia, konieczne jest szybkie odłączenie zasilania i przeprowadzenie naprawy oraz wymiany uszkodzonych elementów, aby przywrócić prawidłowe funkcjonowanie transformatora.

Pytanie 33

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w obwodzie twornika
B. Zwarcie w uzwojeniu komutacyjnym
C. Zwarcie w obwodzie twornika
D. Przerwa w uzwojeniu wzbudzenia
Zgłębiając temat przyczyn nagłego wzrostu prędkości obrotowej silnika bocznikowego prądu stałego, warto zauważyć, że przedstawione niepoprawne odpowiedzi odnoszą się do różnych aspektów funkcjonowania silników elektrycznych. Zwarcie w obwodzie twornika może prowadzić do znacznego wzrostu prądu, co w praktyce skutkuje przeciążeniem silnika, ale nie bezpośrednio do wzrostu prędkości obrotowej. W rzeczywistości, zwarcie w obwodzie twornika powoduje spadek napięcia, co z kolei zmniejsza moment obrotowy i może prowadzić do jego uszkodzenia. Oba te zjawiska są sprzeczne z zasadami działania silników prądu stałego, w których to napięcie i przepływ prądu są kluczowe dla generowania momentu obrotowego. Z kolei zwarcie w uzwojeniu komutacyjnym, chociaż może wpływać na działanie komutatora, nie jest bezpośrednią przyczyną wzrostu prędkości obrotowej. W przypadku przerwy w obwodzie twornika, silnik w zasadzie przestaje działać, co również nie prowadzi do wzrostu prędkości. Warto zatem nieco lepiej zrozumieć mechanizmy działania silników, aby unikać mylnych interpretacji związanych z zagadnieniami elektrycznymi i ich wpływem na wydajność urządzeń. Kluczowe jest zrozumienie, jak różne komponenty silników wpływają na ich działanie oraz jakie zabezpieczenia są potrzebne, aby zminimalizować ryzyko uszkodzeń w wyniku nieprawidłowego działania.

Pytanie 34

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zmniejszenie mocy silnika.
B. uszkodzenie silnika.
C. zmniejszenie momentu rozruchowego.
D. zadziałanie wyłącznika różnicowoprądowego.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 35

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2 25/0,03 zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli określ poprawność działania tych wyłączników.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowy IΔ
mA
135
225
A. Oba wyłączniki sprawne.
B. 1 – sprawny, 2 – niesprawny.
C. Oba wyłączniki niesprawne.
D. 1 – niesprawny, 2 – sprawny.
Wiele błędnych odpowiedzi wynika z nieporozumień dotyczących zasad działania wyłączników różnicowoprądowych. Często mylnie zakłada się, że jeśli wyłącznik zadziałał przy wartości prądu innej niż jego nominalna, to jest on sprawny, co jest absolutnie nieprawdziwe. Wyłącznik różnicowoprądowy powinien zadziałać przy maksymalnej wartości prądu różnicowego, która w tym przypadku wynosi 30 mA. Zadziałanie wyłącznika nr 1 przy wartości 35 mA oznacza, że nie spełnia on norm i stanowi zagrożenie dla użytkowników. Warto także zwrócić uwagę na powiązania między różnymi parametrami wyłączników a standardami bezpieczeństwa. Zastosowanie wyłączników, które działają przy wartościach prądów różnicowych wyższych niż wymagane, narusza zasady BHP i może prowadzić do tragicznych skutków. Ponadto, w odpowiedziach, które sugerują, że oba wyłączniki są niesprawne lub oba sprawne, brakuje właściwej analizy parametrów zadziałania. Każdy wyłącznik powinien być oceniany indywidualnie na podstawie przeprowadzonych testów, a nie na podstawie ogólnych założeń, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 36

Jaki dodatkowy komponent (urządzenie) jest wymagany do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f= 50 Hz?

A. Opornik
B. Kondensator
C. Bezpiecznik silnikowy
D. Bezpiecznik różnicowoprądowy
Kondensator jest niezbędnym elementem w przypadku zasilania silnika indukcyjnego trójfazowego napięciem jednofazowym. Silniki indukcyjne trójfazowe wymagają trzech faz zasilania dla uzyskania pełnej mocy oraz momentu obrotowego. Zasilanie jednofazowe powoduje, że silnik nie może wygenerować odpowiedniego momentu obrotowego oraz obrotu, dlatego kondensator służy jako środek do generowania drugiej fazy. W praktyce, kondensatory są stosowane w różnych konfiguracjach, takich jak kondensatory rozruchowe, które pomagają w uruchomieniu silnika, oraz kondensatory pracy, które poprawiają efektywność jego działania. Zastosowanie kondensatora pozwala na zrównoważenie obciążeń oraz zmniejszenie zniekształceń w sieci zasilającej, co jest zgodne z dobrymi praktykami zarządzania energią w instalacjach elektrycznych. W branży często stosuje się standardy IEC dotyczące urządzeń elektrycznych, w tym odpowiednich parametrów kondensatorów do silników, co zapewnia ich bezpieczeństwo i efektywność.

Pytanie 37

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy5 i Dy11
B. Dy1 i Dy5
C. Dy7 i Dy11
D. Dy3 i Dy9
Wybór innych grup połączeń transformatorów, takich jak Dy3, Dy9, Dy1, Dy7, czy Dy11 nie jest w pełni uzasadniony w kontekście zastosowań praktycznych, co prowadzi do zrozumienia nieprawidłowości w podejściu do wyboru odpowiedniej konfiguracji. Połączenie Dy3, oparte na trójkącie, jest wykorzystywane, gdy nie ma potrzeby redukcji harmonik, co skutkuje większymi stratami mocy w niektórych warunkach eksploatacyjnych. Z kolei Dy9, mimo że również ma swoje zastosowanie, nie jest rekomendowane do ogólnych zastosowań z uwagi na większe ryzyko wystąpienia problemów z jakością energii. Odpowiedzi takie jak Dy1 i Dy5 mogą prowadzić do nieefektywności, ponieważ Dy1 nie jest standardowym ani zalecanym połączeniem w normach, co przypisuje mu mniejsze zastosowanie w praktycznych systemach. Dy7 ma swoje specyficzne zastosowania, ale w kontekście ogólnych norm i praktyk, nie jest zalecanym wyborem. Istotne jest, aby przy podejmowaniu decyzji o wyborze połączeń brać pod uwagę nie tylko teoretyczne aspekty, ale także praktyczną efektywność, niezawodność oraz zgodność z normami branżowymi, co jest kluczowe w projektowaniu i eksploatacji systemów zasilania.

Pytanie 38

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojenia V1-V2.
B. uzwojeń U1-U2 i V1-V2.
C. uzwojenia U1-U2.
D. uzwojeń U1-U2 i W1-W2.
Odpowiedzi, które wskazują na uzwojenia V1-V2, W1-W2 oraz kombinacje tych uzwojeń, nie uwzględniają kluczowego elementu analizy rezystancji izolacji. Uzwojenia V1-V2 i W1-W2 mają znacznie wyższe wartości rezystancji izolacji wynoszące odpowiednio 6000 kΩ i 8000 kΩ, co sugeruje, że ich izolacja jest w dobrym stanie. To błędne podejście może wynikać z niepełnego zrozumienia zasadności norm dotyczących rezystancji izolacji, które jasno wskazują, że niższa wartość rezystancji wskazuje na potencjalne uszkodzenie. Wybierając uzwojenia na podstawie wyższej wartości rezystancji, można dojść do mylnego wniosku, że są one bardziej narażone na uszkodzenia. Może to prowadzić do nieuzasadnionych działań naprawczych, które nie rozwiązują rzeczywistego problemu, a jednocześnie generują dodatkowe koszty. W praktyce, zrozumienie i umiejętność interpretacji wyników pomiarów rezystancji izolacji jest kluczowe dla oceny stanu technicznego silników, co ma bezpośrednie przełożenie na bezpieczeństwo i efektywność operacyjną instalacji. Ignorowanie tego aspektu może prowadzić do poważnych awarii i zagrożenia dla bezpieczeństwa użytkowników oraz sprzętu.

Pytanie 39

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 12
B. 50
C. 35
D. 9
Wybór odpowiedzi 12, 50 lub 35 jest błędny, ponieważ nie odpowiada rzeczywistemu oznaczeniu wirnika szlifierki zawartemu w dokumentacji techniczno-ruchowej. Często zdarza się, że technicy i operatorzy nie zwracają dostatecznej uwagi na szczegóły w dokumentacji, co prowadzi do identyfikacji niewłaściwych części. Na przykład, numer 12 może być związany z inną częścią maszyny, taką jak wałek napędowy, co jest typowym błędem myślowym przy zbyt szybkim przeszukiwaniu dokumentacji bez dokładnej analizy. Numer 50 mógłby odnosić się do innego modelu szlifierki lub odrębnego rodzaju obrabiarki, co pokazuje, jak ważne jest zrozumienie kontekstu oznaczeń w dokumentacji. Ponadto, numer 35 nie jest związany z wirnikiem, co może prowadzić do poważnych problemów w przypadku wymiany uszkodzonej części. W takich sytuacjach, nieodpowiednie oznaczenie może skutkować wykorzystaniem niewłaściwych komponentów, co z kolei wprowadza ryzyko awarii maszyny. Dlatego tak kluczowe jest przeszkolenie w zakresie czytania i interpretacji dokumentacji technicznej, aby unikać takich pomyłek. Znajomość standardów branżowych i dobrych praktyk jest istotna, aby zapewnić prawidłowe funkcjonowanie maszyn oraz bezpieczeństwo ich użytkowania.

Pytanie 40

Aby naprawić uszkodzenie przerwanego przewodu pomiędzy sąsiednimi puszkami łączeniowymi w instalacji elektrycznej podtynkowej, która znajduje się w rurce, konieczne jest

A. pozostawić uszkodzony przewód, a puszki połączyć przewodem natynkowym
B. odkręcić w puszkach uszkodzony przewód, zlutować, zaizolować i połączyć
C. odkręcić w puszkach uszkodzony przewód, wymienić go na nowy i połączyć
D. wykuć bruzdę i wymienić rurkę instalacyjną z przewodami na przewód podtynkowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź polegająca na odkręceniu przerwanego przewodu w puszkach i zastąpieniu go nowym jest prawidłowa, ponieważ zapewnia trwałe i bezpieczne rozwiązanie problemu uszkodzonej instalacji elektrycznej. Zgodnie z zasadami dobrej praktyki, usunięcie uszkodzonego przewodu i zastąpienie go nowym jest kluczowe dla zapewnienia ciągłości obwodu oraz minimalizacji ryzyka wystąpienia zwarcia czy pożaru. W przypadku przerwania przewodu, jego naprawa poprzez zlutowanie może być nietrwała i narażać na ryzyko, zwłaszcza w instalacjach podtynkowych, gdzie dostęp do uszkodzeń jest ograniczony. Wymiana przewodu jest standardem w branży i pozwala na zachowanie pełnej funkcjonalności instalacji. Dodatkowo, przy wykonywaniu takiej naprawy należy stosować odpowiednie materiały, które przeznaczone są do instalacji elektrycznych, a także przestrzegać norm PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. Przykładowo, przy wyborze nowego przewodu warto kierować się jego parametrami elektrycznymi oraz odpowiednią izolacją, co zwiększy efektywność i bezpieczeństwo całej instalacji.