Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 30 grudnia 2025 05:16
  • Data zakończenia: 30 grudnia 2025 05:58

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego składnika nie może zawierać przewód zasilający rozdzielnię główną w pomieszczeniu przemysłowym, które jest niebezpieczne pod kątem pożarowym?

A. Powłoki polietylenowej
B. Żył aluminiowych
C. Zewnętrznego oplotu włóknistego
D. Pancerza stalowego
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem dla kabel zasilający rozdzielnicę główną w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod względem pożarowym. Takie pomieszczenia wymagają zastosowania materiałów, które są odporne na działanie wysokich temperatur oraz ognioodporne. Oplot włóknisty, choć może być stosowany w mniej ryzykownych warunkach, nie spełnia wymagań dotyczących odporności na ogień. W praktyce oznacza to, że w przypadku pożaru, oplot włóknisty mógłby się szybko zapalić i przyczynić się do rozprzestrzenienia ognia. Aby zapewnić bezpieczeństwo, kabel w pomieszczeniach niebezpiecznych powinien być wykonany z materiałów, które są zgodne z normami, takimi jak PN-EN 60529 czy PN-EN 60332, które definiują wymagania dotyczące ochrony przed ogniem i wysoką temperaturą. Przykładem odpowiedniego rozwiązania są kable zasilające z pancerzem stalowym, które nie tylko chronią przed uszkodzeniami mechanicznymi, ale również mają właściwości ognioodporne, co czyni je idealnym wyborem dla rozdzielnic w krytycznych środowiskach przemysłowych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaka powinna być wartość prądu znamionowego bezpiecznika chroniącego uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeżeli przewidziano go do pracy z maksymalnym obciążeniem rezystancyjnym 200 W?

A. 0,8 A
B. 0,5 A
C. 1,0 A
D. 0,4 A
Wartość prądu znamionowego bezpiecznika do zabezpieczenia uzwojenia pierwotnego transformatora bezpieczeństwa 230/24 V powinna wynosić 1,0 A. Obliczając wartość prądu, korzystamy ze wzoru: P = U * I, gdzie P to moc (w watach), U to napięcie (w woltach), a I to prąd (w amperach). W przypadku naszego transformatora, przy maksymalnym obciążeniu rezystancyjnym 200 W i napięciu 230 V, obliczamy prąd znamionowy: I = P / U = 200 W / 230 V ≈ 0,87 A. Ze względów bezpieczeństwa oraz dobrych praktyk inżynieryjnych, zaleca się zastosowanie bezpiecznika o wartości minimalnie wyższej niż obliczona, co w tym przypadku daje 1,0 A. Dobrze dobrany bezpiecznik nie tylko chroni transformator, ale także zapobiega potencjalnym zagrożeniom elektrycznym. Istotne jest również, aby bezpiecznik był dostosowany do charakterystyki obciążenia; w przypadku obciążeń rezystancyjnych, jak lampy czy grzejniki, bezpieczniki szybkie są bardziej odpowiednie. Takie podejście zapewnia zgodność z normami bezpieczeństwa, takimi jak PN-EN 60269, która reguluje dobór i zastosowanie elementów zabezpieczających.

Pytanie 4

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Wzrost prędkości obrotowej wirnika silnika
B. Całkowite zniszczenie wirnika silnika
C. Nawrót wirnika silnika
D. Spadek prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 5

Głowica kablowa napowietrzna SN przedstawiona na rysunku zaliczana jest do grupy technologicznej osprzętu

Ilustracja do pytania
A. taśmowego.
B. nasuwanego.
C. termokurczliwego.
D. żywicznego.
Głowica kablowa napowietrzna SN, przedstawiona na rysunku, klasyfikowana jest jako osprzęt termokurczliwy ze względu na zastosowanie materiałów, które kurczą się pod wpływem podgrzewania. Takie rozwiązanie zapewnia hermetyczne i szczelne połączenia, co jest kluczowe w systemach elektroenergetycznych, gdzie narażenie na czynniki atmosferyczne może wpływać na trwałość i niezawodność instalacji. Przykładowo, w sytuacjach, kiedy przewody kablowe są narażone na intensywne działanie wilgoci, zastosowanie osprzętu termokurczliwego minimalizuje ryzyko korozji oraz uszkodzeń mechanicznych. Zgodnie z normą IEC 60529, osprzęt ten powinien zapewniać odpowiednią klasę szczelności, co jest istotne dla zachowania bezpieczeństwa i efektywności systemów energetycznych. Użycie technologii termokurczliwej jest szeroko rekomendowane w najlepszych praktykach branżowych, a jej wykorzystanie w głowicach kablowych przyczynia się do wydłużenia żywotności instalacji.

Pytanie 6

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
B. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
C. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
D. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
Zrozumienie procedur bezpieczeństwa przed pracami przy instalacjach elektrycznych jest kluczowe dla uniknięcia niebezpieczeństw. W sytuacji, gdy najpierw potwierdzamy brak napięcia lub uziemiamy instalację przed zabezpieczeniem jej przed powtórnym załączeniem, narażamy się na poważne ryzyko. Potwierdzenie braku napięcia jest ważnym krokiem, ale jego wcześniejsze wykonanie bez odpowiednich zabezpieczeń może prowadzić do sytuacji, w której instalacja zostanie przypadkowo załączona podczas wykonywania prac. Z tego powodu, nie jest wystarczające jedynie potwierdzenie braku napięcia, ponieważ w tym momencie pracujący elektryk może być narażony na kontakt z energią elektryczną. Uziemienie systemu elektrycznego przed zabezpieczeniem przed załączeniem również nie jest właściwą praktyką; uziemienie powinno być ostatnim krokiem, aby zapewnić, że wszelkie ewentualne pozostałe ładunki są odprowadzone, ale nie przed podjęciem odpowiednich środków ostrożności. Kluczowe jest, aby zawsze najpierw zastosować blokady, które fizycznie uniemożliwiają włączenie zasilania, a następnie upewnić się o braku napięcia, co pozwala na bezpieczne przeprowadzenie dalszych działań. Tego rodzaju zaniedbanie w przestrzeganiu kolejności działań może prowadzić do tragicznych wypadków oraz poważnych konsekwencji zdrowotnych dla osób wykonujących prace w instalacjach elektrycznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. induktor
B. pirometr
C. przekładnik napięciowy
D. prądnicę tachometryczną
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadprądowymi nie musi obejmować

A. specyfikacji technicznej instalacji
B. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
C. opisu doboru urządzeń zabezpieczających
D. spisu terminów oraz zakresów prób i badań kontrolnych
W kontekście eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadprądowymi, kluczowe jest zrozumienie zakresu informacji, które powinny być zawarte w instrukcji eksploatacyjnej. Odpowiedzi, które sugerują, że opis doboru urządzeń zabezpieczających jest konieczny, mija się z celem funkcji dokumentacji. W rzeczywistości, opis doboru urządzeń zabezpieczających dotyczy etapu projektowania, a nie eksploatacji. Instrukcja powinna zawierać informacje praktyczne, takie jak wykaz prób i pomiarów kontrolnych, które umożliwiają monitorowanie funkcjonowania instalacji, oraz zasady bezpieczeństwa przy wykonywaniu prac, które są niezbędne dla ochrony ludzi i mienia. Ponadto, charakterystyka techniczna instalacji jest również istotna, ponieważ dostarcza informacji o właściwościach systemu, co może być pomocne w przypadku awarii lub przeglądów. Użytkownicy, którzy koncentrują się na doborze urządzeń, mogą zignorować kluczowe aspekty związane z codziennym użytkowaniem instalacji, co prowadzi do niewłaściwego zarządzania i potencjalnych zagrożeń. Zrozumienie różnicy pomiędzy projektowaniem a eksploatacją instalacji elektrycznych jest fundamentem skutecznego zarządzania systemami elektrycznymi w obiektach.

Pytanie 11

Gdy prace pomiarowe i kontrolne w instalacjach elektrycznych są wymagane do wykonania przez dwie osoby, to osoba przeprowadzająca pomiary powinna mieć odpowiednie kwalifikacje, a druga osoba wspierająca

A. nie musi mieć świadectwa kwalifikacji, jeśli przeszła odpowiednie szkolenie
B. nie jest zobowiązana do posiadania świadectwa kwalifikacji, jeśli ukończyła szkołę zawodową
C. powinna posiadać świadectwo kwalifikacyjne na stanowisku eksploatacji w zakresie pomiarów
D. musi dysponować świadectwem kwalifikacyjnym na stanowisku dozoru, lecz bez zakresu pomiarów
Odpowiedź jest prawidłowa, ponieważ obecne przepisy oraz normy branżowe, takie jak PN-EN 50110-1, wskazują, że dla niektórych prac pomiarowych obecność osoby wspomagającej jest niezbędna, jednak nie wymaga się od niej posiadania świadectwa kwalifikacji, o ile przeszła odpowiednie szkolenie. Taki model pracy ma na celu zwiększenie bezpieczeństwa oraz efektywności przeprowadzanych pomiarów. W praktyce oznacza to, że osoba wspierająca, mimo że nie jest w pełni wykwalifikowana, powinna dobrze rozumieć procedury bezpieczeństwa oraz potrafić reagować w sytuacjach awaryjnych. Przykładami mogą być prace polegające na pomiarach rezystancji uziemienia czy pomiarach napięcia. W takich przypadkach, osoba wspomagająca może zajmować się przygotowaniem sprzętu, monitorowaniem warunków pracy, a także wspieraniem głównego pomiarowca w zakresie organizacyjnym, co jest zgodne z zasadami efektywnej współpracy w zespole. Dzięki temu, można minimalizować ryzyko wystąpienia błędów pomiarowych oraz zwiększać bezpieczeństwo całego procesu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80
A. 32,66 A
B. 38,64 A
C. 30,82 A
D. 37,72 A
Wybór złej odpowiedzi może wynikać z różnych nieporozumień. Przede wszystkim, warto ogarnąć, że temperatura wpływa na to, jak dobrze przewody przewodzą prąd. W przypadku PVC, im wyższa temperatura, tym obciążalność jest niższa. Niektórzy ludzie mogą myśleć, że obciążalność zostaje taka sama lub spada tylko minimalnie, co nie prowadzi do dobrych obliczeń. A jak się zapomni o normach jak PN-IEC 60364, można łatwo pominąć ważne zasady przy projektowaniu. W praktyce, zwłaszcza w instalacjach przemysłowych, gdzie przewody mogą być mocno nagrzane, istotne jest, żeby dostosować obciążalność do rzeczywistych warunków. Ignorowanie tych rzeczy może skończyć się niebezpiecznie, nawet uszkodzeniami przewodów, co w skrajnych sytuacjach oznacza ryzyko pożaru. Myśląc, że temperatura powietrza nie robi dużej różnicy, można wprowadzić w błąd zabezpieczenia, więc ta wiedza o współczynnikach poprawkowych ma ogromne znaczenie dla każdego, kto działa w branży elektrycznej.

Pytanie 14

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Wzrośnie o 21%
B. Spadnie o 19%
C. Wzrośnie o 10%
D. Spadnie o 10%
Transformator jednofazowy działa na zasadzie przekładni napięciowej, która jest definiowana jako stosunek liczby zwojów uzwojenia wysokiego napięcia do liczby zwojów uzwojenia niskiego napięcia. W przypadku, gdy nawinięto o 10% więcej zwojów na stronie dolnego napięcia, liczba zwojów w uzwojeniu niskiego napięcia wzrasta, co prowadzi do zmiany przekładni. Jeśli oznaczymy liczbę zwojów uzwojenia niskiego napięcia jako N1, uzwojenia wysokiego napięcia jako N2, to nowa liczba zwojów uzwojenia niskiego napięcia wyniesie 1,1 * N1. Nowa przekładnia napięciowa (U2/U1) oblicza się jako N2/(1,1 * N1), co skutkuje zmniejszeniem przekładni o około 10%. W praktyce, zwiększenie liczby zwojów po stronie dolnego napięcia oznacza, że transformator będzie w stanie obniżyć napięcie w mniejszym stopniu, co ma znaczenie w aplikacjach wymagających stabilizacji napięcia, takich jak zasilanie urządzeń elektronicznych, gdzie precyzyjne napięcie jest kluczowe. W przemyśle energetycznym zrozumienie przekładni napięciowej jest niezbędne do projektowania transformatorów oraz ich optymalizacji. Zmiany w liczbie zwojów mogą być korzystne w niektórych warunkach operacyjnych, co podkreśla znaczenie regularnych przeglądów i modernizacji transformatorów.

Pytanie 15

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H07VV-U 5G2,5
B. H03V2V2H2-F 2X2,5
C. H03V2V2-F 3G2,5
D. H07RR-F 5G2,5
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem
B. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
C. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
D. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
Kiedy podejmujemy decyzję o kolejności działań przed rozpoczęciem prac konserwacyjnych, kluczowe jest zrozumienie, jak błędy w sekwencji mogą prowadzić do zagrożeń. Zaczynanie od zabezpieczenia obwodu przed przypadkowym załączeniem, a następnie sprawdzanie braku napięcia, wprowadza ryzyko oszacowania, że urządzenie jest całkowicie bezpieczne, zanim upewnimy się, że nie ma napięcia. Z kolei uziemienie i zwarcie wszystkich faz bez wcześniejszego sprawdzenia braku napięcia może prowadzić do niebezpiecznych sytuacji, zwłaszcza w przypadku, gdy w urządzeniu występują nieoczekiwane napięcia, które mogą być spowodowane przez różne czynniki, takie jak indukcja czy błędy w instalacji elektrycznej. Niedostateczne zabezpieczenia mogą skutkować poważnymi wypadkami, na przykład porażeniem prądem lub uszkodzeniem sprzętu. Istotne jest, aby zawsze stosować się do ustalonych norm, takich jak PN-IEC 60364, które jasno określają standardy bezpieczeństwa w instalacjach elektrycznych. Kluczowym błędem myślowym jest założenie, że urządzenie jest bezpieczne tylko dlatego, że zostało odłączone od źródła zasilania, co może prowadzić do nieodpowiedzialnych działań i narażenia zdrowia i życia osób pracujących w pobliżu instalacji.

Pytanie 20

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. prądowego po stronie wtórnej
B. napięciowego po stronie pierwotnej
C. prądowego po stronie pierwotnej
D. napięciowego po stronie wtórnej
Odpowiedź "prądowego po stronie wtórnej" jest prawidłowa, ponieważ zastosowanie bezpieczników w obwodzie przekładnika prądowego po stronie wtórnej może prowadzić do uszkodzenia izolacji uzwojeń. Przekładniki prądowe są wykorzystywane do pomiarów prądu oraz ochrony obwodów elektrycznych, a ich konstrukcja jest zaprojektowana tak, aby zachować integralność i dokładność pomiarów. Jeśli zastosujemy bezpiecznik po stronie wtórnej, w przypadku zwarcia lub nadmiernego prądu, może dojść do przerwania obwodu, co skutkuje powstaniem wysokiego napięcia, które może uszkodzić izolację. W praktyce, aby zapewnić bezpieczeństwo i niezawodność działania systemów pomiarowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak układy ograniczające prąd, a także monitorowanie obwodów za pomocą przyrządów pomiarowych, które mogą dostarczyć informacji o stanie przekładnika. Przykładem może być stosowanie odpowiednich przekładników do systemów zabezpieczeń, które są zgodne z normami IEC 60044, co podkreśla bezpieczeństwo i wydajność tych urządzeń w aplikacjach przemysłowych.

Pytanie 21

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
B. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
C. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
D. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
Gniazda wtykowe każdego pomieszczenia zasilać z osobnego obwodu to zalecenie, które nie znajduje zastosowania w standardach dotyczących instalacji elektrycznych w pomieszczeniach mieszkalnych. Według norm PN-IEC 60364-1 oraz wytycznych związanych z projektowaniem instalacji elektrycznych, obwody gniazd wtykowych mogą być grupowane, aby zminimalizować koszty i uprościć instalację. Zazwyczaj zaleca się, aby gniazda wtykowe w jednym pomieszczeniu były zasilane z jednego obwodu, co pozwala na efektywne wykorzystanie energii oraz ogranicza liczbę wymaganych obwodów w rozdzielnicy. Przykładowo, w typowej kuchni lub salonie, gdzie wykorzystuje się wiele gniazd wtykowych, projektowanie obwodów z wykorzystaniem jednego obwodu dla danego pomieszczenia jest praktycznym rozwiązaniem. Ponadto, stosując się do takich zasad, można uniknąć niepotrzebnej komplikacji w instalacji oraz eksploatacji, co sprzyja bezpieczeństwu użytkowania."

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. 4 000 Ω
B. Około 830 Ω
C. Około 1 660 Ω
D. 2 000 Ω
Wybór niewłaściwej rezystancji uziomu może prowadzić do poważnych konsekwencji, takich jak zwiększone ryzyko porażenia prądem. Odpowiedzi sugerujące rezystancję 830 Ω, 2 000 Ω czy 4 000 Ω są nieprawidłowe, ponieważ nie spełniają norm bezpieczeństwa dotyczących ochrony przeciwporażeniowej. Na przykład, wartość 830 Ω jest zbyt niska w kontekście wymaganej ochrony, co może prowadzić do zbyt wysokiego prądu dotykowego, a tym samym zwiększenia ryzyka porażenia. Z kolei wartości 2 000 Ω i 4 000 Ω są zdecydowanie za wysokie, co powoduje, że prąd różnicowy nie ma wystarczającej drogi do ziemi, co skutkuje niewłaściwym działaniem zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Takie podejście może prowadzić do sytuacji, w której urządzenia ochronne nie zadziałają w odpowiednim momencie, co stwarza zagrożenie dla życia i zdrowia użytkowników. W związku z tym, ważne jest, aby projektanci instalacji elektrycznych i technicy kierowali się normami, które umożliwiają prawidłowe dobranie wartości rezystancji uziomu, aby zapewnić bezpieczeństwo w codziennym użytkowaniu instalacji elektrycznych. Ustalając właściwą rezystancję, można nie tylko chronić ludzi, ale również zminimalizować ryzyko uszkodzeń sprzętu elektrycznego.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Obwody PELV
B. Obwody SELV
C. Separacja elektryczna
D. Izolowanie stanowiska
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 27

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. uszkodzenie silnika.
B. zmniejszenie mocy silnika.
C. zadziałanie wyłącznika różnicowoprądowego.
D. zmniejszenie momentu rozruchowego.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 28

Przygotowując miejsce do przeprowadzenia badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz inspekcji oraz oceny stanu izolacji uzwojeń, uwzględnić między innymi wykonanie pomiarów

A. izolacji łożysk
B. charakterystyki stanu jałowego
C. rezystancji uzwojeń
D. drgań
Pomiar rezystancji uzwojeń trójfazowego silnika indukcyjnego jest kluczowy dla oceny jego stanu technicznego. Rezystancja uzwojeń pozwala na ocenę ich integralności oraz wykrycie potencjalnych uszkodzeń, takich jak zwarcia czy przerwy. W praktyce, pomiar ten jest często realizowany przy użyciu omomierza, a wartości rezystancji powinny być zgodne z danymi producenta. Niekiedy, po dokonaniu pomiaru, porównuje się wyniki z normami zawartymi w dokumentacji technicznej silnika. Dobrą praktyką jest także wykonywanie pomiarów rezystancji w różnych warunkach temperaturowych, ponieważ wpływ temperatury na rezystancję może być znaczący. Warto dodać, że w przypadku silników wykonanych z materiałów o wysokiej przewodności, takich jak miedź, rezystancja powinna być minimalna, co świadczy o ich dobrej kondycji. Regularne pomiary rezystancji uzwojeń mogą również pomóc w planowaniu działań konserwacyjnych oraz przewidywaniu potencjalnych awarii, co jest zgodne z zasadami zarządzania majątkiem technicznym.

Pytanie 29

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Ocena prawidłowego doboru przekroju kabli
B. Przeprowadzenie próby ciągłości przewodów ochronnych oraz połączeń wyrównawczych
C. Weryfikacja czasu samoczynnego odłączenia zasilania
D. Zmierzanie rezystancji izolacji instalacji elektrycznej
Sprawdzenie właściwego doboru przekroju przewodów jest kluczowym elementem oceny instalacji elektrycznej. Przekroje przewodów muszą być odpowiednio dobrane do obciążenia, jakie będą musiały znieść. Niewłaściwy dobór może prowadzić do przegrzewania się przewodów, co z kolei zwiększa ryzyko pożaru oraz uszkodzenia urządzeń elektrycznych. Zgodnie z normą PN-IEC 60364-5-52, należy uwzględnić zarówno parametry obciążeniowe, jak i długość przewodów oraz warunki ich ułożenia. Przykładowo, dla instalacji w domach jednorodzinnych, niezbędne jest, by przekrój przewodu zasilającego gniazdka był odpowiedni do przewidywanego obciążenia, co pozwala na bezpieczne użytkowanie. Dobre praktyki nakazują także regularne przeglądy instalacji elektrycznych, a w szczególności zwrócenie uwagi na te aspekty podczas inspekcji przed oddaniem budynku do użytku, co zapewnia bezpieczeństwo mieszkańców.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie jest najwyższe dozwolone różnicowe natężenie prądu znamionowego wyłącznika różnicowoprądowego w celu zapewnienia ochrony przeciwpożarowej?

A. 30 mA
B. 300 mA
C. 10 mA
D. 100 mA
Wybór wartości 30 mA, 100 mA lub 10 mA jako maksymalnego dopuszczalnego różnicowego prądu znamionowego dla wyłącznika różnicowoprądowego w kontekście ochrony przeciwpożarowej jest błędny. Prąd różnicowy 30 mA jest najczęściej stosowany w instalacjach do ochrony przed porażeniem elektrycznym ludzi, natomiast jego zastosowanie w kontekście ochrony przeciwpożarowej jest niewłaściwe. W tego typu sytuacjach, wyłączniki o wartości 30 mA mogą być niewystarczające, gdyż ich czułość nie jest zaprojektowana do detekcji prądów, które mogą prowadzić do zapłonu. Podobnie, wartości 100 mA i 10 mA również nie są adekwatne w kontekście ochrony przeciwpożarowej. Wyłączniki 100 mA mogą być stosowane w instalacjach przemysłowych, ale ich zastosowanie również nie zapewnia odpowiedniego poziomu ochrony przed ryzykiem pożaru, ponieważ nie są przeznaczone do wykrywania niewielkich prądów upływowych, które mogą być początkiem pożaru. Ponadto, wyłącznik 10 mA, choć oferuje wysoką czułość dla ochrony ludzi, nie jest rekomendowany dla ogólnej ochrony przeciwpożarowej, ponieważ jego zastosowanie w instalacjach elektrycznych o dużym obciążeniu może prowadzić do częstych fałszywych alarmów. W praktyce, właściwy dobór wyłączników różnicowoprądowych powinien opierać się na analizie ryzyk i zgodności z odpowiednimi normami, takimi jak normy IEC 61008 oraz IEC 60947, które definiują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Właściwy dobór wartości prądu gwarantuje nie tylko bezpieczeństwo ludzi, ale również minimalizuje ryzyko strat materialnych związanych z pożarami wywołanymi przez instalacje elektryczne.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W instalacji elektrycznej w łazience pojawiła się potrzeba dodania gniazda wtyczkowego w pierwszej strefie ochronnej, które ma być zasilane z obwodu zabezpieczonego przez SELV o napięciu nieprzekraczającym 25 V AC. Gdzie powinno być umieszczone źródło zasilania dla tego gniazda?

A. W obrębie strefy 1
B. Tylko na zewnątrz strefy 2
C. W obrębie strefy 0
D. Na zewnątrz stref 0 i 1
Wybór odpowiedzi związanych z montażem źródła zasilania w strefach 1 lub 0 jest błędny, głównie z powodu ignorowania zasad ochrony elektrycznej w kontekście wilgotnego otoczenia, jakim jest łazienka. Montaż w strefie 1, która znajduje się nad strefą 0, jest niebezpieczny, ponieważ w tej strefie istnieje podwyższone ryzyko kontaktu z wodą, co mogłoby prowadzić do sytuacji zagrożenia porażeniem prądem. Zgodnie z przepisami, w strefach, gdzie można spodziewać się kontaktu z wodą, jak strefa 0 czy strefa 1, zabronione jest umieszczanie elementów, które nie są odpowiednio zaprojektowane do pracy w takich warunkach. Dodatkowo, umieszczanie źródła zasilania w strefie 0, gdzie kontakt z wodą jest najbardziej prawdopodobny, stanowi poważne naruszenie norm bezpieczeństwa. Takie podejście może prowadzić do mylnego założenia, że zasilanie niskonapięciowe jest całkowicie bezpieczne we wszystkich warunkach, co jest nieprawidłowe. W praktyce, przestrzeganie zasad wyznaczonych przez normy, takie jak PN-EN 60364, jest kluczowe dla zapobiegania wypadkom oraz zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych w łazienkach.

Pytanie 35

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Umieszczenia elementów z napięciem poza zasięgiem ręki
B. Izolowania części czynnych
C. Instalowania osłon i barier
D. Samoczynnego szybkiego wyłączenia napięcia
Wybierając odpowiedzi, które nie dotyczą samoczynnego szybkiego wyłączenia napięcia, można napotkać na szereg nieporozumień odnośnie metod ochrony przed dotykiem pośrednim. Instalowanie osłon i zagrodzeń, mimo że jest zalecaną praktyką w wielu instalacjach, nie zapewnia wystarczającej ochrony w sytuacji, gdy dojdzie do awarii izolacji. Osłony mogą jedynie ograniczyć dostęp do części czynnych, ale ich skuteczność zależy od prawidłowego ich montażu i utrzymania. Ponadto, umieszczanie elementów pod napięciem poza zasięgiem ręki, chociaż może zapobiec przypadkowemu dotykaniu, nie eliminuje ryzyka porażenia w przypadku uszkodzenia tych elementów. Ostatecznie, izolowanie części czynnych jest istotne, ale nie wystarczające jako jedyne zabezpieczenie. Gdy izolacja ulegnie uszkodzeniu, nie można polegać wyłącznie na niej dla bezpieczeństwa. Z perspektywy norm i przepisów, kluczowe jest implementowanie zintegrowanych systemów ochrony, gdzie samoczynne szybkie wyłączenie napięcia działa jako krytyczny mechanizm awaryjny, który powinien być stosowany równolegle z innymi metodami, aby zapewnić maksymalne bezpieczeństwo. Warto zauważyć, że błędne wnioski często wynikają z pomijania złożoności problemu oraz niepełnego zrozumienia zasady działania poszczególnych elementów ochrony przeciwporażeniowej.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. aM
B. aL
C. gB
D. gR
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.