Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 16:37
  • Data zakończenia: 18 grudnia 2025 16:37

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaki wyłącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Nadprądowy.
B. Czasowy.
C. Różnicowoprądowy.
D. Silnikowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy to naprawdę ważne urządzenie w każdej instalacji elektrycznej. Jego głównym zadaniem jest ochrona nas przed porażeniem prądem. Działa to tak, że jeśli wykryje różnicę między prądem, który wpływa a tym, który wypływa z obwodu, to szybko odłącza zasilanie. Kiedy prąd upływowy przekroczy ustaloną wartość, najczęściej 30 mA, to wyłącznik po prostu wyłącza prąd. Fajnie jest wiedzieć, że takie wyłączniki są stosowane zwłaszcza w łazienkach, czy wszędzie tam, gdzie elektryczność ma kontakt z wodą. Warto zaznaczyć, że według normy PN-EN 61008, powinny być w każdej nowoczesnej instalacji, co świadczy o ich roli w dbaniu o nasze bezpieczeństwo. Poza tym, nowoczesne budynki zwykle są w nie wyposażone, co dodatkowo zwiększa bezpieczeństwo. Oprócz ochrony, wyłączniki różnicowoprądowe też pomagają monitorować stan instalacji, co jest istotne, by była ona w dobrym stanie.

Pytanie 2

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TN-S
B. IT
C. TT
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 3

Na podstawie przedstawionego schematu, przy odłączonych łącznikach, można wykonać pomiar

Ilustracja do pytania
A. stanu izolacji przewodów.
B. asymetrii napięcia zasilającego.
C. skuteczności samoczynnego wyłączenia napięcia.
D. stanu izolacji uzwojeń silnika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar stanu izolacji przewodów to naprawdę ważna rzecz, bo dzięki temu możemy mieć pewność, że instalacje elektryczne są bezpieczne i działają jak należy. Gdy łączniki są odłączone, to super moment, żeby przyjrzeć się przewodom zasilającym, bo to one są kluczowe dla całego systemu. Izolacja musi być w dobrym stanie, żeby uniknąć zwarć i innych nieprzyjemnych sytuacji. Z tego co wiem, normy takie jak IEC 60364 oraz nasze krajowe przepisy mówią, że regularne sprawdzanie izolacji to mus, szczególnie w instalacjach w fabrykach czy budynkach publicznych. Przykład? Gdyby izolacja się zepsuła, prąd mógłby uciekać do ziemi, a to naprawdę grozi porażeniem. Dlatego ważne jest, żeby korzystać z odpowiednich testerów izolacji, które działają, gdy łączniki są odłączone, bo to daje pewność, że pomiar jest dokładny. Powinno to być częścią planu konserwacji, żeby wszystko działało sprawnie i bezpiecznie przez dłuższy czas.

Pytanie 4

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. stanu obudów wszystkich elementów instalacji
B. poprawności działania wyłącznika różnicowoprądowego
C. nastaw urządzeń zabezpieczających w instalacji
D. wartości rezystancji izolacji przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, wartość rezystancji izolacji przewodów mówi nam, jak dobrze te przewody są izolowane. Fajnie, że znasz tę definicję! Ale w praktyce, w trakcie sprawdzania instalacji elektrycznych w mieszkaniach nie ma wymogu, żeby to sprawdzać. Normy, jak PN-IEC 60364, mówią głównie o bezpieczeństwie użytkowników i tym, żeby instalacja działała jak należy. Gdy przeglądasz instalację, skup się na tym, żeby ocenić stan obudów i elementów zabezpieczających. Te rzeczy są na prawdę ważne. Wyłączniki różnicowoprądowe też warto sprawdzić, bo są kluczowe dla ochrony przed porażeniem elektrycznym. Możesz to zrobić, wciskając przycisk testowy, co jest dość standardowe. Dzięki temu łatwiej zauważysz, czy coś jest nie tak. Taki sposób działania pomaga uniknąć problemów i sprawia, że instalacja będzie bezpieczna i zgodna z normami.

Pytanie 5

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik nadmiarowoprądowy.
B. Odłącznik bezpiecznikowy.
C. Rozłącznik bezpiecznikowy.
D. Wyłącznik przepięciowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozłącznik bezpiecznikowy to kluczowe urządzenie w instalacjach elektrycznych, które pełni rolę zabezpieczającą i kontrolującą. Na przedstawionym rysunku widać charakterystyczne elementy, takie jak miejsca na wkładki bezpiecznikowe, które pozwalają na szybką wymianę zabezpieczeń w przypadku ich przepalenia. Rozłącznik bezpiecznikowy nie tylko chroni obwody elektryczne przed skutkami przeciążenia, ale także umożliwia bezpieczne odłączenie obwodu od źródła zasilania, co jest istotne w przypadku prac konserwacyjnych i naprawczych. W praktyce, zastosowanie rozłącznika bezpiecznikowego jest niezwykle istotne w budynkach mieszkalnych, przemysłowych oraz w infrastrukturze krytycznej, gdzie ciągłość zasilania i bezpieczeństwo użytkowników są priorytetem. Zgodnie z normami PN-EN 60947-3, rozłączniki te muszą spełniać określone wymagania dotyczące odporności na zwarcia, co zapewnia ich niezawodność i efektywność w ochronie instalacji.

Pytanie 6

Który aparat przedstawiony jest na rysunku?

Ilustracja do pytania
A. Rozłącznik izolacyjny.
B. Ogranicznik przepięć.
C. Wyłącznik nadmiarowo-prądowy.
D. Selektywny wyłącznik nadprądowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadmiarowo-prądowy jest niezwykle ważnym elementem w ochronie instalacji elektrycznych. Jego głównym zadaniem jest automatyczne przerywanie obwodu w momencie, gdy natężenie prądu przekroczy ustalony bezpieczny poziom. Dzięki temu urządzeniu możliwe jest zabezpieczenie przed skutkami przeciążeń, które mogą prowadzić do uszkodzeń instalacji lub pożarów. W praktyce wyłączniki nadmiarowo-prądowe są wykorzystywane w różnorodnych aplikacjach, zarówno w domowych instalacjach elektrycznych, jak i w przemysłowych systemach zasilania. Kluczowe jest, aby dobierać odpowiednie urządzenia zgodnie z normami EN 60898, które definiują wymagania dotyczące wyłączników nadprądowych. Dobre praktyki wskazują na regularne testowanie tych urządzeń, co pozwala na upewnienie się, że działają one zgodnie z oczekiwaniami i są w stanie skutecznie chronić instalację przed przeciążeniami i zwarciami.

Pytanie 7

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 8

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Wyłączników nadprądowych.
B. Wyłączników różnicowoprądowych.
C. Transformatorów.
D. Styczników.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 9

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 10

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. CC
B. FPE
C. E
D. TE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź CC jest prawidłowa, ponieważ w dokumentacji technicznej instalacji elektrycznych przewód wyrównawczy rzeczywiście oznaczany jest symbolem literowym CC, co pochodzi od angielskiego terminu "Combined Conductor". Przewód wyrównawczy ma na celu zapewnienie ochrony przed porażeniem prądem elektrycznym poprzez wyrównanie potencjałów elektrycznych w instalacji. W praktyce oznacza to, że w przypadku wystąpienia uszkodzenia, prąd może być odprowadzany do ziemi, co minimalizuje ryzyko porażenia użytkowników sprzętu. Przewody te są szczególnie istotne w instalacjach przemysłowych oraz w obiektach użyteczności publicznej, gdzie istnieje duże ryzyko kontaktu z wodą lub innymi czynnikami mogącymi prowadzić do porażenia. Zgodnie z normami IEC 60364, każdy system elektryczny powinien być odpowiednio zabezpieczony, a przewody wyrównawcze odgrywają kluczową rolę w tych zabezpieczeniach, na przykład poprzez zastosowanie w instalacjach zasilających, gdzie wymagane jest zachowanie wysokiego poziomu bezpieczeństwa.

Pytanie 11

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-L
B. Z L-PE
C. Z L-N
D. Z L-PE(RCD)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarcia w instalacjach elektrycznych jest kluczowy dla oceny ich bezpieczeństwa. Odpowiedź "Z L-PE(RCD)" jest prawidłowa, ponieważ umożliwia przeprowadzenie pomiaru w sytuacji, gdy w układzie obecny jest wyłącznik różnicowoprądowy (RCD). RCD mają na celu ochronę przed porażeniem prądem elektrycznym, jednak ich obecność może wpłynąć na wyniki pomiarów impedancji w standardowych konfiguracjach. Wykorzystanie pomiaru "Z L-PE(RCD)" zapewnia, że wyniki będą dokładne, co jest niezbędne dla prawidłowego doboru zabezpieczeń. Zgodnie z normą PN-EN 61557-1, każdy system elektryczny powinien być testowany pod kątem skuteczności działania zabezpieczeń, a pomiar impedancji pętli zwarcia jest integralnym elementem tych testów. Przykładem praktycznym może być wykonanie pomiarów w instalacjach domowych, gdzie RCD są powszechnie stosowane, co wymaga zastosowania odpowiednich technik pomiarowych. Tylko poprzez właściwe pomiary można zagwarantować bezpieczeństwo użytkowników oraz prawidłowe działanie systemu ochrony.

Pytanie 12

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Rezystancji uziemienia
B. Rezystancji izolacji
C. Prądu zadziałania wyłącznika RCD
D. Czasu działania wyłącznika RCD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja izolacji jest kluczowym parametrem w kontekście ochrony przeciwporażeniowej podstawowej, gdyż pomaga ocenić, czy elementy instalacji elektrycznej są odpowiednio zabezpieczone przed przenikaniem prądu do ziemi. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane, co minimalizuje ryzyko porażenia prądem w przypadku uszkodzenia. Zgodnie z normą PN-EN 61010-1, rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla urządzeń o napięciu do 1000 V. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach przemysłowych, gdzie odpowiednia izolacja jest niezbędna dla bezpieczeństwa pracowników. Regularne pomiary rezystancji izolacji mogą wykrywać problemy, zanim dojdzie do uszkodzenia, co jest szczególnie ważne w przypadku starszych instalacji, które mogą mieć uszkodzenia wynikające z degradacji materiałów izolacyjnych.

Pytanie 13

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
B. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
C. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
D. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 14

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 1000 A
B. 230 A
C. 25 A
D. 0,03 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość I<sub>N</sub> (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 15

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przez zastosowanie bardzo niskiego napięcia.
B. Ochrony uzupełniającej.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony podstawowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 16

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. ochronny.
B. odgromowy.
C. wyrównawczy.
D. neutralny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 17

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. brak zabezpieczenia przed kurzem i wilgocią
B. najwyższy poziom ochronności
C. zerową klasę ochrony przed porażeniem
D. stosowanie separacji ochronnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie IP00 zgodnie z normą IEC 60529 wskazuje na brak ochrony przed pyłem oraz wilgocią. Pierwsza cyfra '0' oznacza, że urządzenie nie oferuje żadnej ochrony przed wnikaniem ciał stałych, co może prowadzić do uszkodzeń mechanicznych lub zanieczyszczenia wewnętrznych komponentów. Druga cyfra również '0' informuje użytkownika, że urządzenie nie jest odporne na działanie cieczy. W praktyce oznacza to, że takie urządzenia powinny być używane wyłącznie w suchych i czystych środowiskach, gdzie nie ma ryzyka kontaktu z wodą lub pyłem. Przykładem mogą być niektóre urządzenia biurowe, które są projektowane do pracy w kontrolowanych warunkach. Zastosowanie tych informacji w praktyce jest kluczowe dla zapewnienia długowieczności i bezpieczeństwa użytkowania urządzeń elektrycznych, dlatego zaleca się, aby przed zakupem sprawdzić stopień ochrony IP urządzenia, aby dobrać je odpowiednio do warunków pracy.

Pytanie 18

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy C
B. Klasy A
C. Klasy B
D. Klasy D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na klasy C jako odpowiednie do instalacji ograniczników przepięć w rozdzielnicach mieszkaniowych jest prawidłowa z kilku powodów. Klasa C, według normy IEC 61643-11, jest zaprojektowana do ochrony instalacji elektrycznych przed przepięciami o średniej energii, co czyni je idealnym wyborem dla typowych warunków panujących w budynkach mieszkalnych. Ograniczniki klasy C charakteryzują się czasem reakcji na przepięcia, który jest wystarczająco krótki, by zminimalizować ryzyko uszkodzenia sprzętu AGD czy innych urządzeń elektronicznych, a jednocześnie są w stanie radzić sobie z energią przepięć generowanych przez różne źródła, takie jak wyładowania atmosferyczne czy nagłe zmiany w obciążeniu sieci. Dodatkowo, zaleca się, aby ograniczniki klasy C były instalowane równolegle z ogranicznikami klasy B w celu zapewnienia kompleksowej ochrony. Takie podejście nie tylko zwiększa bezpieczeństwo, ale także zgodność z dobrymi praktykami branżowymi i standardami ochrony przeciwprzepięciowej, co jest kluczowe w kontekście wzrastającej liczby urządzeń elektronicznych w gospodarstwach domowych.

Pytanie 19

Schemat którego aparatu elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnika termicznego.
B. Wyłącznika nadmiarowo-prądowego.
C. Wyłącznika różnicowoprądowego.
D. Przekaźnika impulsowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy, który został przedstawiony na schemacie, jest kluczowym elementem systemów elektroinstalacyjnych, mającym na celu ochronę przed porażeniem prądem elektrycznym. Jego działanie opiera się na monitorowaniu różnicy prądów między przewodem fazowym a neutralnym. W przypadku, gdy prąd w przewodach różni się, co może wskazywać na wyciek prądu do ziemi, wyłącznik natychmiast odłącza zasilanie. Taki mechanizm jest niezwykle istotny w miejscach, gdzie występuje wilgoć, jak łazienki czy kuchnie, zgodnie z normami IEC 61008 i IEC 60947-2. Ponadto, wyłączniki różnicowoprądowe są często wyposażone w przycisk testowy, co umożliwia regularne sprawdzanie ich działania i zapewnia dodatkowe bezpieczeństwo. Dzięki takim urządzeniom możemy skutecznie minimalizować ryzyko wypadków związanych z porażeniem prądem, co czyni je niezbędnym elementem nowoczesnych instalacji elektrycznych.

Pytanie 20

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 6,9 kW
B. 3,9 kW
C. 2,9 kW
D. 9,6 kW

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wynosi 6,9 kW, co odpowiada maksymalnej mocy, jaką można uzyskać z wyłącznika nadprądowego typu S-303 CLS6-C10/3. Wyłączniki nadprądowe klasy C są przeznaczone do ochrony obwodów, w których występują prądy rozruchowe, co jest typowe dla urządzeń takich jak kuchenki elektryczne. Wyłącznik C10 oznacza, że jego maksymalny prąd znamionowy wynosi 10 A, co przy napięciu 230 V (typowym dla obwodów kuchennych w mieszkaniach) pozwala na obliczenie mocy: P = U x I, czyli 230 V x 10 A = 2300 W (2,3 kW). Jednak w przypadku kuchni elektrycznej zasilanej z trójfazowego zasilania 400 V, możemy zastosować również moc obliczoną z trzech faz: P = √3 x U x I = √3 x 400 V x 10 A = 6928 W, co daje nam 6,9 kW. Stosowanie wyłączników nadprądowych zgodnych z normami PN-EN 60898 jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W praktyce, zainstalowanie kuchenki elektrycznej o mocy 6,9 kW umożliwia wygodne gotowanie oraz korzystanie z różnych funkcji, takich jak pieczenie i gotowanie na parze, bez ryzyka przeciążenia obwodu zasilającego.

Pytanie 21

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. przeciążenie systemu elektrycznego
B. zwarcie w systemie elektrycznym
C. uszkodzenie urządzenia elektrycznego
D. zagrożenie porażeniem prądem elektrycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 22

W obwodzie odbiorczym zastosowano wyłącznik typu CLS6 o prądzie znamionowym 13 A i charakterystyce B. Jaki najmniejszy prąd znamionowy powinna mieć wkładka bezpiecznikowa typu gL/gG w zabezpieczeniu poprzedzającym wyłącznik, jeżeli prąd zwarcia jest nie większy niż 1 kA?

Ilustracja do pytania
A. 20 A
B. 16 A
C. 35 A
D. 25 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 35 A jako najmniejszego prądu znamionowego wkładki bezpiecznikowej typu gL/gG jest właściwy, ponieważ zgodnie z tabelą selektywności dla wyłączników CLS6, konieczne jest zapewnienie, aby wkładka bezpiecznikowa miała odpowiednią wartość prądu, aby zachować selektywność działania. Wyłącznik o prądzie znamionowym 13 A i charakterystyce B zadziała przy prądzie zwarcia, ale aby uniknąć wyłączenia całego obwodu, wkładka musi mieć wyższy prąd znamionowy. Wartość 35 A pozwala na to, by w przypadku zwarcia zadziałał najpierw wyłącznik, a nie wkładka bezpiecznikowa, co jest kluczowe w systemach, gdzie ważne jest utrzymanie ciągłości zasilania dla pozostałych obwodów. Przykładowo, w instalacjach przemysłowych, gdzie wiele maszyn pracuje równocześnie, taki dobór zabezpieczeń może zapobiec poważnym przestojom w produkcji. Dobrze dobrane zabezpieczenia są zgodne z normami PN-EN 60947-2, które regulują wymagania dotyczące wyłączników i zabezpieczeń.

Pytanie 23

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. rezystancji izolacji.
B. parametrów wyłączników RCD.
C. impedancji pętli zwarcia.
D. ciągłości połączeń.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to rezystancja izolacji, ponieważ miernik przedstawiony na rysunku nie posiada zakresu do jej pomiaru. Rezystancja izolacji jest kluczowym parametrem, który pozwala ocenić jakość izolacji przewodów i urządzeń elektrycznych. W praktyce, pomiar ten jest realizowany za pomocą specjalistycznych mierników, które generują napięcia o wysokiej wartości, co umożliwia dokładne zbadanie stanu izolacji. Wartości rezystancji izolacji powinny być zgodne z normami, takimi jak PN-EN 60204-1, które określają minimalne wymagania dla sprzętu elektrycznego stosowanego w maszynach. Regularne pomiary rezystancji izolacji są istotne dla zapewnienia bezpieczeństwa użytkowników oraz zapobiegania potencjalnym zagrożeniom, takim jak porażenie prądem czy zwarcia. Dlatego kluczowe jest posiadanie odpowiedniego wyposażenia, które pozwoli na przeprowadzenie tych pomiarów.

Pytanie 24

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. < 0,25 MΩ
B. < 0,5 MΩ
C. ≥ 0,5 MΩ
D. ≥ 0,25 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z wartością ≥ 0,5 MΩ jest całkiem w porządku. Zgodnie z normami, jak PN-EN 61557-1, dla przewodów w sieciach do 500 V, ta minimalna wartość rezystancji izolacji wynosi właśnie 0,5 MΩ. To ważne, bo pomaga utrzymać bezpieczeństwo i zmniejsza ryzyko porażenia prądem czy zwarć w instalacjach elektrycznych. W praktyce, zanim technicy zaczną pracować przy instalacjach, zawsze wykonują pomiary rezystancji, żeby sprawdzić, czy wszystko jest w porządku. Jakby okazało się, że wartość jest niższa niż 0,5 MΩ, to trzeba działać, na przykład wymienić uszkodzone przewody lub poprawić izolację. Regularne sprawdzanie rezystancji izolacji to też dobry sposób na konserwację, co jest całkiem zgodne z najlepszymi praktykami w branży.

Pytanie 25

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy przepięciowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy podnapięciowy
D. Dwubiegunowy różnicowoprądowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 26

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. żyrandol.
B. przewód ochronny.
C. łącznik.
D. przewody zasilające.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 27

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Przeciążenie obwodu
B. Skok napięcia
C. Upływ prądu
D. Zwarcie międzyfazowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 28

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
B. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
C. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. pomiar rezystancji uziemienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 29

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
B. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
C. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
D. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.

Pytanie 30

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Weryfikacja działania przycisku testowego
B. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
C. Sprawdzenie kolejności faz sieci zasilającej
D. Weryfikacja poprawności podłączenia do sieci

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "Sprawdzenie kolejności faz sieci zasilającej" jest prawidłowy, ponieważ ta czynność nie jest częścią badań trójfazowych wyłączników różnicowoprądowych. Trójfazowe wyłączniki różnicowoprądowe są urządzeniami zabezpieczającymi, które mają na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym zwarciami. W ramach standardowych badań tych wyłączników koncentrujemy się na ich działaniu w odpowiedzi na upływności prądów do ziemi oraz testowaniu ich funkcji detekcji. Przykładowo, badania obejmują sprawdzenie zadziałania przycisku testującego, co pozwala zweryfikować, czy wyłącznik działa poprawnie w warunkach awaryjnych. Ponadto, pomiar czasu i różnicowego prądu zadziałania wyłącznika jest kluczowy dla oceny jego efektywności. Zgodnie z normą PN-EN 61008-1, zachowanie wyłączników różnicowoprądowych w odpowiedzi na różne poziomy prądów upływowych jest istotne w kontekście ich działania, dlatego czynności te są niezbędne w procesie testowym. Kolejność faz w sieci zasilającej nie wpływa na działanie wyłącznika różnicowoprądowego, dlatego nie jest brana pod uwagę w tych badaniach.

Pytanie 31

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba niesprawne.
B. 1 - sprawny, 2 - niesprawny.
C. Oba sprawne.
D. 1 - niesprawny, 2 - sprawny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 32

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
B. Prąd znamionowy 10 A oraz charakterystykę B
C. Prąd znamionowy 16 A oraz charakterystykę B
D. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy z parametrami, jak prąd znamionowy 25 A i prąd różnicowy 30 mA, to naprawdę ważny element w zabezpieczaniu elektryki w mieszkaniach. Prąd znamionowy 25 A mówi nam, ile maksymalnie może on przenieść, co jest kluczowe, bo musimy myśleć o zasilaniu domowych sprzętów. Z kolei prąd różnicowy 30 mA to wartość, która bardzo dobrze chroni przed porażeniem, bo jak zauważy różnicę w prądzie, to odetnie zasilanie. Te wartości są zgodne z normami PN-EN 61008-1 i PN-EN 60947-2, które mówią, jak powinny być projektowane wyłączniki. Używając takich parametrów, zapewniamy bezpieczeństwo i ochronę przed ewentualnymi awariami. Fajnie jest także regularnie sprawdzać wyłączniki różnicowoprądowe, żeby mieć pewność, że działają, a można to łatwo zrobić przyciskiem testowym, który jest na każdym z tych urządzeń.

Pytanie 33

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. krokowych
B. rażeniowych
C. dotykowych
D. skutecznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 34

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Przeciążenie jednej z faz.
B. Zawilgocenie izolacji jednej z faz.
C. Jednofazowe zwarcie doziemne.
D. Zwarcie międzyfazowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 35

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji elektrycznej.
B. linii kablowej zasilającej budynek.
C. linii napowietrznej niskiego napięcia.
D. instalacji odgromowej budynku.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 36

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Rezystancję uziemienia.
C. Czas wyłączenia wyłącznika nadprądowego.
D. Impedancję pętli zwarcia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Impedancja pętli zwarcia" jest jak najbardziej na miejscu. Miernik z zdjęcia jest zaprojektowany właśnie do takich pomiarów w instalacjach elektrycznych. Ten miernik wielofunkcyjny, oznaczony jako "ZL-PE", wskazuje na to, że można nim zmierzyć impedancję pętli zwarcia, co jest mega ważne dla bezpieczeństwa systemów elektrycznych. Wartość impedancji wpływa na to, jak szybko i skutecznie działają zabezpieczenia, na przykład wyłączniki nadprądowe. Jak dojdzie do zwarcia, niska impedancja sprawia, że zabezpieczenie zadziała szybko, co zmniejsza ryzyko uszkodzenia instalacji. Zgodnie z normami PN-IEC 60364, regularne pomiary impedancji pętli zwarcia to standard w utrzymaniu i audytach instalacji elektrycznych, co naprawdę chroni ludzi i mienie. Osobiście uważam, że znajomość przeszłych pomiarów i umiejętność ich interpretacji to klucz do optymalizacji zabezpieczeń.

Pytanie 37

Który układ połączeń sond pomiarowych miernika rezystancji IMU względem badanego uziomu Rx jest zgodny z zasadami pomiaru rezystancji uziemienia?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B jest prawidłowa, ponieważ została poprawnie skonfigurowana sonda potencjałowa (Sp) oraz sonda prądowa (Sn) w odpowiednich miejscach, co jest kluczowe dla uzyskania wiarygodnych wyników pomiaru rezystancji uziemienia. Zgodnie z ogólnymi zasadami pomiaru, sonda prądowa powinna być umieszczona w odległości od badanego uziomu, aby zminimalizować wpływ rezystancji gruntu na wynik. Sonda potencjałowa, umieszczona blisko badanego uziomu, pozwala na dokładne mierzenie spadku napięcia, który jest związany z przepływem prądu przez uziom. W praktyce, takie ustawienie sond jest zgodne z normami IEC 62561-1 i IEC 60364, które definiują metody pomiaru uziemienia oraz zasady dotyczące dokładności i bezpieczeństwa. Zastosowanie tych zasad w rzeczywistych pomiarach zapewnia nie tylko dokładność, ale również bezpieczeństwo systemów elektrycznych, dając podstawy do ich dalszej eksploatacji w zakresie ochrony przed przepięciami oraz poprawnego funkcjonowania instalacji elektrycznych.

Pytanie 38

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 1,5 kV
B. 2,5 kV
C. 6,0 kV
D. 4,0 kV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,5 kV to absolutnie trafny wybór, bo odpowiada normie PN-IEC 664-1, która mówi o tym, jakie wymagania powinny spełniać urządzenia elektryczne w instalacjach niskonapięciowych. Kategoria I, na którą to pytanie wskazuje, dotyczy obwodów narażonych na różne niekorzystne warunki, więc ta wartość 1,5 kV naprawdę działa jako solidna ochrona przed przepięciami, na przykład z powodu uderzeń piorunów. To kluczowe z punktu widzenia bezpieczeństwa i trwałości naszych instalacji. W praktyce, używając urządzeń o tej wytrzymałości w budynkach, zmniejszamy ryzyko uszkodzeń sprzętu, a to sprawia, że wszystko działa stabilniej. Nie bez powodu zgodność z normami jest istotna; wpływa na efektywność i żywotność naszych urządzeń oraz pozwala uniknąć niepotrzebnych kosztów napraw czy wymiany sprzętu.

Pytanie 39

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. czas zadziałania wyzwalacza zwarciowego
B. wartość prądu wyłączającego
C. zwarciową zdolność łączeniową
D. próg zadziałania wyzwalacza przeciążeniowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość prądu wyłączającego jest kluczowa w kontekście samoczynnego wyłączenia zasilania, ponieważ określa poziom prądu, przy którym nadprądowy wyłącznik instalacyjny zareaguje i odłączy obwód. W sieciach TN-S, które charakteryzują się oddzieleniem systemu uziemienia od neutralnego, ważne jest, aby wartość ta była odpowiednio dobrana do warunków ochrony przeciwporażeniowej. Standardy takie jak PN-EN 60947-2 wskazują, że wyłącznik musi działać w określonym czasie, aby zapewnić bezpieczeństwo użytkowników. Przykładowo, dla prądu wyłączającego o wartości 30 mA w obwodach ochronnych, wyłącznik powinien zadziałać w czasie nieprzekraczającym 0,2 sekundy. Oprócz tego, dobór wartości prądu wyłączającego ma również praktyczne zastosowanie w projektowaniu instalacji, gdyż zbyt wysoka wartość może prowadzić do ryzyka porażenia prądem, a zbyt niska do niepotrzebnych wyłączeń. Z tego względu, analiza warunków pracy wyłącznika oraz jego parametrów jest niezbędna dla zapewnienia ochrony użytkowników i minimalizacji ryzyka awarii.

Pytanie 40

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TT
B. IT
C. TN-S
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TT jest poprawna, ponieważ układ TT charakteryzuje się bezpośrednim uziemieniem punktu neutralnego źródła zasilania, co jest kluczowe w kontekście ochrony przeciwporażeniowej. W tym systemie, przewód neutralny (N) oraz przewody fazowe (L1, L2, L3) są oddzielnie prowadzone, co pozwala na niezależne uziemienie ochronne (RA) od uziemienia roboczego źródła (RB). Taka konstrukcja minimalizuje ryzyko prądów upływowych i zwiększa bezpieczeństwo użytkowników, szczególnie w instalacjach o dużym narażeniu na wilgoć. W przypadku zwarcia, pętla zwarciowa, która obejmuje przewód fazowy, odbiornik, uziemienie ochronne oraz uziemienie źródła, działa szybko, wyłączając zasilanie, co jest zgodne z wymaganiami normy PN-IEC 60364, która podkreśla potrzebę stosowania skutecznych środków ochrony. Przykładowo, w budynkach użyteczności publicznej, zastosowanie układu TT jest zalecane w strefach zwiększonego ryzyka, co zwiększa komfort i bezpieczeństwo użytkowników.