Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 grudnia 2025 22:45
  • Data zakończenia: 10 grudnia 2025 23:30

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 40 ÷ 60%
B. 90 ÷ 100%
C. 60 ÷ 90%
D. 0 ÷ 10%
Odpowiedź 0 ÷ 10% jest prawidłowa, ponieważ oprawy oświetleniowe V klasy charakteryzują się bardzo niskim poziomem strumienia świetlnego, który jest kierowany w dół. Klasa ta jest przeznaczona do aplikacji, gdzie istotne jest, aby minimalizować oświetlenie w kierunku podłogi, co ma zastosowanie w wielu miejscach, takich jak korytarze, schody czy przestrzenie publiczne, gdzie wysoka intensywność światła w dół może być niepożądana. Przykładem zastosowania są oprawy LED w przestrzeniach biurowych, które mają za zadanie tworzyć strefy z odpowiednim rozproszeniem światła, a nie silnym, bezpośrednim oświetleniem. W praktyce zastosowanie tej klasy opraw pozwala na oszczędność energii oraz zmniejszenie olśnienia, co jest zgodne z normami energetycznymi i ekologicznymi, takimi jak dyrektywy UE dotyczące efektywności energetycznej. Wiedza na temat rozkładu strumienia świetlnego w zależności od klasy oprawy jest kluczowa dla projektantów oświetlenia, którzy mają na celu optymalizację warunków świetlnych w różnych typach przestrzeni.

Pytanie 2

Fragment dokumentacji technicznej określonej jako schemat zasadniczy (ideowy) znajduje się na rysunku

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Schemat zasadniczy (ideowy) ma kluczowe znaczenie w dokumentacji technicznej, gdyż umożliwia zrozumienie podstawowych funkcji i połączeń w danym urządzeniu lub systemie. Wybór rysunku C jako poprawnej odpowiedzi jest uzasadniony tym, że przedstawia on istotne komponenty oraz ich interakcje w sposób, który sprzyja szybkiej analizie i diagnozowaniu ewentualnych problemów. Tego typu schematy są powszechnie stosowane w inżynierii elektrycznej, automatyce oraz w wielu gałęziach przemysłu, gdzie potrzeba uproszczenia złożonych układów do poziomu zrozumiałego dla inżynierów i techników. Na przykład, w projektach związanych z budową systemów zasilania, schemat zasadniczy pozwala na szybkie określenie, jakie elementy są niezbędne do działania i jakie są ich wzajemne relacje. Zgodnie z obowiązującymi standardami, takie schematy powinny być jasne i czytelne, aby ułatwić pracę zespołów serwisowych. Dodatkowo, stosowanie schematów zasadniczych zgodnych z normami IEC 61082 pozwala na zapewnienie wysokiej jakości dokumentacji technicznej, co przekłada się na efektywność w codziennych zadaniach inżynieryjnych.

Pytanie 3

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w złączu budynku
B. w puszkach instalacyjnych gniazd odbiorczych
C. na linii zasilającej budynek
D. w rozdzielnicach mieszkaniowych
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 4

Który z przedstawionych na rysunkach przewodów należy użyć do montażu obwodów zasilających jednofazowej instalacji elektrycznej w układzie TN-S?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Odpowiedź C jest poprawna, ponieważ przewód, który przedstawia, spełnia wymogi dotyczące kolorów przewodów w instalacjach elektrycznych w układzie TN-S. Zgodnie z normą PN-HD 308 S2:2009, kolor brązowy jest przeznaczony dla przewodów fazowych (L), kolor niebieski dla przewodów neutralnych (N), a kolor żółto-zielony dla przewodów ochronnych (PE). Przewody te są stosowane w systemach zasilania jednofazowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowania i poprawności działania instalacji. W kontekście praktycznym, użycie przewodu zgodnego z tymi normami pozwala na uniknięcie błędów przy podłączaniu urządzeń elektrycznych, co może prowadzić do uszkodzeń sprzętu lub zagrożenia dla życia i zdrowia użytkowników. W przemyśle elektrycznym znajomość i stosowanie tych standardów jest kluczowe dla zapewnienia zgodności z przepisami oraz dla bezpieczeństwa instalacji.

Pytanie 5

W której ze stref wskazanych na rysunku należy zainstalować łącznik oświetlenia głównego pomieszczenia?

Ilustracja do pytania
A. SP-d (1)
B. SH-s (1)
C. SH-s (2)
D. SP-d (2)
Odpowiedź SP-d (2) jest poprawna, ponieważ zgodnie z normami budowlanymi w Polsce, łącznik oświetlenia głównego powinien być zainstalowany w łatwo dostępnym miejscu, zazwyczaj w pobliżu drzwi wejściowych do pomieszczenia. Umieszczenie łącznika w strefie SP-d (2) jest zgodne z zaleceniami dotyczącymi ergonomii i użyteczności, co pozwala użytkownikom na wygodne włączanie i wyłączanie światła od razu po wejściu do pomieszczenia. W przypadku strefy SP-d (2), łącznik znajduje się po prawej stronie drzwi, co jest standardowym rozwiązaniem w projektowaniu wnętrz, ułatwiającym dostęp do oświetlenia. Taki układ zwiększa komfort użytkowania oraz zapewnia większe bezpieczeństwo, gdyż pozwala na szybkie oświetlenie pomieszczenia, eliminując ryzyko potknięcia się w ciemności. Dobrą praktyką jest także umieszczanie łączników na odpowiedniej wysokości, co dodatkowo zwiększa ich funkcjonalność. Zastosowanie się do tych norm jest kluczowe w każdym projekcie budowlanym, aby zapewnić optymalne warunki użytkowania oraz zgodność z przepisami prawa budowlanego.

Pytanie 6

Którego z elektronarzędzi należy użyć do wycinania bruzd pod przewody instalacji podtynkowej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Frezerka do bruzd, czyli narzędzie oznaczone jako D, jest najbardziej odpowiednim elektronarzędziem do wycinania bruzd pod przewody instalacji podtynkowej. Dzięki swojej konstrukcji umożliwia precyzyjne cięcie w twardych materiałach, takich jak beton czy cegła, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych. Narzędzie to posiada regulację głębokości cięcia, co pozwala na dostosowanie do różnych grubości przewodów oraz zapewnia estetyczne i schludne wykonanie rowków. W praktyce, operatorzy frezerek do bruzd często wykorzystują je do tworzenia kanałów, w których umieszczane są przewody, co pozwala na estetyczne ukrycie instalacji. Zgodnie z najlepszymi praktykami branżowymi, stosowanie tego narzędzia zapewnia nie tylko efektywność pracy, ale także bezpieczeństwo, eliminując ryzyko uszkodzenia instalacji oraz minimalizując ilość pyłów i odpadów materiałowych.

Pytanie 7

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór innej odpowiedzi może wynikać z braku zrozumienia specyfikacji i zastosowania przewodu spawalniczego OnS-1. Istotne jest, aby wiedzieć, że przewody spawalnicze są projektowane z myślą o konkretnych technikach spawania i warunkach pracy. Na rysunkach, które zostały przedstawione, wiele przewodów może wydawać się podobnych, jednak różnice w konstrukcji mają kluczowe znaczenie. Przewód spawalniczy OnS-1, złożony z cienkich drutów miedzianych, charakteryzuje się dużą elastycznością oraz doskonałym przewodnictwem prądu, co jest niezbędne przy spawaniu łukowym. Wybierając inne odpowiedzi, można popełnić błąd myślowy, zakładając, że każdy przewód o podobnym wyglądzie będzie odpowiedni do każdego zastosowania. Na przykład, przewody, które są nieodpowiednio zaprojektowane do spawania, mogą prowadzić do przegrzewania się, co z kolei może spowodować ich uszkodzenie oraz obniżenie jakości wykonanej spoiny. W praktyce, kluczowe jest stosowanie przewodów zgodnych z normami branżowymi, takimi jak IEC 60228 i EN 50525, aby zapewnić bezpieczeństwo i skuteczność pracy. Zrozumienie konstrukcji przewodów oraz ich przeznaczenia jest istotne dla każdego specjalisty zajmującego się spawaniem.

Pytanie 8

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 9

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Chwilową moc obciążenia.
C. Impedancję pętli zwarcia.
D. Prąd upływu.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 10

Prędkość obrotowa silnika w układzie przedstawionym na schemacie regulowana jest przez zmianę wartości

Ilustracja do pytania
A. napięcia twornika.
B. częstotliwości napięcia zasilania.
C. rezystancji obwodu twornika.
D. prądu wzbudzenia.
Odpowiedź 'napięcia twornika' jest poprawna, ponieważ regulacja prędkości obrotowej silnika elektrycznego w układzie z twornikiem opiera się na zmianach napięcia przyłożonego do twornika. W silnikach prądu stałego, na przykład w silnikach komutatorowych, zmiana napięcia na tworniku wpływa na moment obrotowy oraz prędkość obrotową. Wysokość napięcia kontroluje ilość energii dostarczanej do silnika, co bezpośrednio wpływa na jego wydajność oraz prędkość obrotową. W praktyce, regulacja napięcia twornika jest powszechnie stosowana w zastosowaniach przemysłowych, takich jak napędy elektryczne w maszynach i robotach, gdzie precyzyjna kontrola prędkości jest kluczowa. Dobrą praktyką jest stosowanie układów automatycznej regulacji napięcia, które zapewniają stabilność pracy silnika w różnych warunkach obciążenia, co jest zgodne z normami i standardami w dziedzinie automatyki i robotyki.

Pytanie 11

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. przeciążenie systemu elektrycznego
C. uszkodzenie urządzenia elektrycznego
D. zwarcie w systemie elektrycznym
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 12

Przeciążenie w instalacji elektrycznej polega na

A. bezpośrednim połączeniu dwóch faz w systemie.
B. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
C. przekroczeniu maksymalnego prądu znamionowego instalacji.
D. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 13

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
B. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
C. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
D. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
Odpowiedź wskazująca, że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, jest poprawna, ponieważ nie jest to zasada bezwzględnie obowiązująca w przypadku instalacji elektrycznych o napięciu znamionowym do 1 kV. Prace konserwacyjne i naprawcze mogą być wykonywane samodzielnie, pod warunkiem, że zastosowane zostaną odpowiednie środki zabezpieczające, takie jak stosowanie narzędzi izolowanych, odzieży ochronnej i przestrzeganie procedur bezpieczeństwa. Rola osoby asekurującej staje się kluczowa w bardziej niebezpiecznych warunkach, na przykład podczas pracy na wysokości, ale dla prostych prac w obrębie instalacji, nie jest to wymóg. W praktyce, przy zachowaniu ostrożności i zastosowaniu właściwych środków, technicy mogą wykonywać podstawowe naprawy, takie jak wymiana bezpieczników czy żarówek, bez nadzoru innej osoby, co przyspiesza procesy naprawcze i zwiększa efektywność pracy. Ważne jest, aby przed przystąpieniem do jakichkolwiek prac upewnić się, że zna się zasady BHP oraz normy PN-IEC 60364 dotyczące instalacji elektrycznych. Właściwe podejście do bezpieczeństwa i eksploatacji instalacji elektrycznych ma kluczowe znaczenie dla minimalizacji ryzyka wypadków.

Pytanie 14

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie opaski kablowej.
B. Klejenie na gorąco przewodu kabelkowego.
C. Ściąganie izolacji z przewodu.
D. Zaciskanie końcówki tulejkowej.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 15

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Zmniejsza siłę docisku zwory.
B. Zmniejsza napięcie podtrzymania cewki.
C. Likwiduje drgania zwory.
D. Likwiduje magnetyzm szczątkowy.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 16

Na rysunku przedstawiono sposób przeprowadzenia pomiaru

Ilustracja do pytania
A. prądu udarowego zwarciowego.
B. rezystancji uziemienia.
C. napięcia dotykowego.
D. impedancji pętli zwarcia.
Pomiar rezystancji uziemienia, jak przedstawiono na zdjęciu, jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Uziemienie ma na celu ochronę ludzi oraz sprzętu przed skutkami awarii, a jego skuteczność można ocenić jedynie poprzez dokładne pomiary. Wykorzystanie miernika do pomiaru rezystancji uziemienia pozwala na stwierdzenie, czy wartości rezystancji mieszczą się w granicach określonych norm, takich jak PN-EN 50522, która wskazuje, że rezystancja uziemienia powinna być niższa niż 10 Ω dla obiektów użyteczności publicznej. Prawidłowe uziemienie minimalizuje ryzyko porażenia prądem elektrycznym oraz poprawia stabilność systemu zasilania. W praktyce, pomiar ten jest szczególnie istotny podczas instalacji nowych systemów elektrycznych, ich modernizacji, a także w okresowych inspekcjach, które powinny być przeprowadzane zgodnie z wymaganiami prawa budowlanego oraz normami ochrony przeciwporażeniowej. Ważne jest, aby każdy instalator posiadał wiedzę o technikach pomiarowych oraz umiał interpretować wyniki w kontekście zapewnienia bezpieczeństwa operacji elektrycznych.

Pytanie 17

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
B. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
C. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
D. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 18

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,30 Ω
B. 2,00 Ω
C. 1,15 Ω
D. 3,83 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 19

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Niepoprawne odpowiedzi pokazują, jakie błędy można zrobić, gdy interpretujemy schematy połączeń watomierzy. Na przykład w odpowiedzi A przewód L jest źle podłączony, więc pomiar prądu nie będzie miał sensu. Może się to wziąć z mylnego przekonania, że w obwodzie można zmierzyć napięcie, gdy przewód prądowy jest pominięty. Z kolei schemat B może oznaczać, że przewody zostały pomieszane, co jest typowym błędem u osób, które nie mają dużego doświadczenia. Tego typu pomyłki mogą prowadzić do odczytów, które nie pokazują prawdziwego zużycia energii. Z kolei odpowiedź D ilustruje zupełnie błędne połączenie, gdzie zarówno L, jak i N są podłączone w nieodpowiedni sposób, co uniemożliwia prawidłowe pomiary. W praktyce ważne jest, żeby znać podstawowe zasady działania watomierzy i jak je prawidłowo podłączać, bo to ma kluczowe znaczenie dla dokładności pomiarów i norm w instalacjach elektrycznych. Złe połączenia mogą doprowadzić do poważnych konsekwencji, jak uszkodzenie urządzeń czy zagrożenie dla osób obsługujących instalację, więc warto znać zasady, żeby uniknąć problemów związanych z bezpieczeństwem i wydajnością energetyczną.

Pytanie 20

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Czas wyłączenia wyłącznika nadprądowego.
B. Impedancję pętli zwarcia.
C. Rezystancję izolacji.
D. Rezystancję uziemienia.
Wybór innych opcji, takich jak rezystancja izolacji czy rezystancja uziemienia, to nie jest dobry wybór. Te pomiary wymagają całkiem innych metod i sprzętu. Rezystancja izolacji to zdolność materiałów do opierania się przepływowi prądu, co jest bardzo ważne dla bezpieczeństwa. Mierniki do tego typu pomiarów działają na wyższych napięciach, więc to nie ma nic wspólnego z pomiarami impedancji pętli zwarcia. Rezystancja uziemienia z kolei odnosi się do skuteczności połączeń uziemiających, a to też wymaga innego sprzętu i techniki pomiarowej. Czas wyłączenia wyłącznika nadprądowego to inny temat, który można ocenić w kontekście zabezpieczeń, ale nie mierzysz go tym miernikiem z rysunku. Ta odpowiedź pokazuje typowy błąd w myśleniu, gdzie różne pomiary są mylone, co prowadzi do złych wniosków. Zrozumienie tych różnic jest kluczowe, żeby dobrze zarządzać bezpieczeństwem instalacji elektrycznych i robić poprawne pomiary według norm.

Pytanie 21

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź D jest prawidłowa, ponieważ przedstawia schemat montażowy, który spełnia wszystkie wymagania dotyczące połączeń przewodów w obwodach oświetleniowych. W tym przypadku przewody fazowe (L), neutralne (N) oraz ochronne są podłączone zgodnie z zasadami montażu, co zapewnia prawidłowe działanie układu oświetleniowego. W praktyce oznacza to, że przewód fazowy jest podłączony do odpowiednich łączników, a przewód neutralny do źródła zasilania. To podejście nie tylko zapewnia bezpieczeństwo użytkowania, ale także eliminuje ryzyko zwarcia czy uszkodzenia elementów instalacji. W branży elektroinstalacyjnej kluczowe jest przestrzeganie norm takich jak PN-IEC 60364, które regulują kwestie bezpieczeństwa w instalacjach elektrycznych. Poprawne połączenie przewodów jest również istotne w kontekście efektywności energetycznej, co ma znaczenie w obliczeniach kosztów eksploatacyjnych układów oświetleniowych.

Pytanie 22

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są zwarte ze sobą.
B. Żyły a i b są zwarte ze sobą.
C. Żyły c i a są przerwane.
D. Żyły a i b są przerwane.
Wynik, który wskazuje, że żyły a i b są zwarte ze sobą, jest prawidłowy. Podczas pierwszej serii pomiarów, gdy końce żył były zwarte, odczytana rezystancja wynosiła niskie wartości, co sugeruje, że żyły są sprawne. Natomiast w drugiej serii, gdy żyły były rozwarte, rezystancja pomiędzy żyłami a i b była zaskakująco bliska wartości z pierwszej serii, co oznacza, że mogły być one zwarte. Wartości rezystancji pomiędzy żyłami a i c oraz b i c wynoszą nieskończoność, co potwierdza, że te żyły nie są ze sobą połączone. W praktyce, zrozumienie pomiarów rezystancji jest kluczowe w diagnostyce urządzeń elektrycznych i systemów kablowych. Używając odpowiednich narzędzi, takich jak mierniki rezystancji, technicy mogą szybko zidentyfikować problemy z izolacją kabli czy przerwy w obwodach. Zachowanie takich standardów jak IEC 60364 dotyczących instalacji elektrycznych jest niezbędne, aby zapewnić bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 23

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA
A. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
B. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
C. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
D. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
Analizując dostępne odpowiedzi, można zauważyć szereg błędnych wniosków dotyczących stanu wyłączników różnicowoprądowych. Pierwsza z błędnych koncepcji mówi o tym, że żaden z wyłączników nie nadaje się do dalszej eksploatacji. Takie sformułowanie wprowadza w błąd, ponieważ na podstawie przedstawionych danych można zauważyć, że nie wszystkie wyłączniki miały problemy z zadziałaniem. Kolejnym błędnym podejściem jest stwierdzenie, że wyłącznik nr II nie nadaje się do dalszej eksploatacji. Bez analizy konkretnej wartości prądu różnicowego dla tego wyłącznika, nie można wnioskować o jego stanie. Koncentracja na jednym wyłączniku, bez uwzględnienia reszty, prowadzi do mylnych konkluzji. W przypadku wyłącznika nr III, kluczowe jest zrozumienie, że nie zadziałał on przy prądzie 12 mA, co jest poniżej wymaganych 15 mA. W praktyce, przy ocenie stanu technicznego wyłączników różnicowoprądowych, niezbędne jest uwzględnienie norm oraz wartości nominalnych zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Błędem jest również zakładanie, że wystarczy jedynie pomiar prądu różnicowego, aby ocenić stan wyłącznika. Każdy z wyłączników powinien być analizowany indywidualnie, w kontekście jego specyfikacji i wymagań bezpieczeństwa, zgodnie z obowiązującymi normami branżowymi.

Pytanie 24

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana oprawki.
B. Wykonanie pomiarów natężenia oświetlenia.
C. Czyszczenie obudowy i styków.
D. Wymiana złączki.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 25

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjnych.
B. Rtęciowych.
C. Żarowych.
D. Indukcyjnych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 26

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Szeregowy.
B. Jednobiegunowy.
C. Grupowy.
D. Dwubiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 27

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Tuleją redukcyjną
B. Podkładką sprężystą
C. Tuleją kołnierzową
D. Podkładką dystansową
Podkładka sprężysta jest kluczowym elementem w procesie zabezpieczania nakrętek przed odkręceniem, ponieważ jej konstrukcja została zaprojektowana w celu generowania siły, która przeciwdziała luzom mechanicznym. W praktyce, podkładki te wykorzystują swoją elastyczność, aby wypełnić mikrouszkodzenia na powierzchniach stykowych oraz dostarczyć dodatkowy opór przeciwko luźnieniu się połączenia w wyniku drgań, uderzeń czy zmian temperatury. Przykłady zastosowania obejmują szeroki zakres branż, od motoryzacji po budownictwo, gdzie mechanizmy narażone są na dynamiczne obciążenia. Zgodnie z normami ISO 7089 i ISO 7090, stosowanie podkładek sprężystych jest zalecane w połączeniach wymagających dużej niezawodności i trwałości, co czyni je istotnym elementem w projektowaniu konstrukcji. Dodatkowo, ich dostępność w różnych materiałach (np. stal nierdzewna, mosiądz) pozwala na dopasowanie do specyficznych warunków pracy, co zwiększa efektywność zabezpieczeń.

Pytanie 28

Schemat którego aparatu elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznika nadmiarowo-prądowego.
B. Przekaźnika termicznego.
C. Wyłącznika różnicowoprądowego.
D. Przekaźnika impulsowego.
Wyłącznik różnicowoprądowy, który został przedstawiony na schemacie, jest kluczowym elementem systemów elektroinstalacyjnych, mającym na celu ochronę przed porażeniem prądem elektrycznym. Jego działanie opiera się na monitorowaniu różnicy prądów między przewodem fazowym a neutralnym. W przypadku, gdy prąd w przewodach różni się, co może wskazywać na wyciek prądu do ziemi, wyłącznik natychmiast odłącza zasilanie. Taki mechanizm jest niezwykle istotny w miejscach, gdzie występuje wilgoć, jak łazienki czy kuchnie, zgodnie z normami IEC 61008 i IEC 60947-2. Ponadto, wyłączniki różnicowoprądowe są często wyposażone w przycisk testowy, co umożliwia regularne sprawdzanie ich działania i zapewnia dodatkowe bezpieczeństwo. Dzięki takim urządzeniom możemy skutecznie minimalizować ryzyko wypadków związanych z porażeniem prądem, co czyni je niezbędnym elementem nowoczesnych instalacji elektrycznych.

Pytanie 29

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. II
C. I
D. III
Wybór odpowiedzi, która wskazuje na inną klasę ochronności, może wynikać z nieporozumień dotyczących podstawowych zasad ochrony przed porażeniem elektrycznym. Klasa II, która często jest mylona z klasą I, nie wymaga przewodu ochronnego, ponieważ urządzenia tej klasy charakteryzują się podwójną izolacją, co nie zapewnia tak samo skutecznej ochrony w przypadku awarii. Z kolei klasa 0 dotyczy sprzętu bez izolacji i przewodu ochronnego, co czyni te urządzenia niebezpiecznymi i niezgodnymi z normami bezpieczeństwa. Wybór klasy III, z kolei, odnosi się do sprzętu zasilanego niskim napięciem, co również nie odnosi się do opraw oświetleniowych w standardowych instalacjach. Wiele osób myli te klasy, co może prowadzić do sytuacji narażających życie użytkowników. Przykładem takiego błędnego myślenia jest założenie, że niektóre urządzenia wystarczająco chronią przed porażeniem tylko dzięki zastosowaniu podstawowej izolacji. W rzeczywistości, prawidłowe podłączenie do przewodu ochronnego jest kluczowe dla bezpieczeństwa, co jednoznacznie potwierdzają normy i dobre praktyki w branży elektrycznej. Dlatego tak ważne jest zrozumienie różnic między tymi klasami i ich zastosowaniem w praktyce.

Pytanie 30

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Rozłącznik
B. Stycznik
C. Odłącznik
D. Wyłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 31

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
B. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
C. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
D. Instrukcja obsługi urządzenia
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 32

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Ciągłości przewodu neutralnego
B. Rezystancji izolacji przewodu uziemiającego
C. Ciągłości przewodów fazowych
D. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
Rezystancja uziomu, do którego dołączona jest obudowa odbiornika, jest kluczowym pomiarem w celu sprawdzenia skuteczności ochrony przeciwporażeniowej w systemach elektrycznych, w tym w sieciach TT. Odbiorniki I klasy ochronności wymagają, aby obudowa była trwale uziemiona, co zapewnia, że w przypadku wystąpienia awarii, prąd upływowy ma możliwość przepływu do ziemi, co minimalizuje ryzyko porażenia prądem elektrycznym. Pomiar rezystancji uziomu powinien być wykonany zgodnie z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość ta nie przekraczała 10 Ω dla zapewnienia efektywnej ochrony. Przykładowo, w instalacjach przemysłowych, gdzie używane są urządzenia o dużej mocy, niska rezystancja uziomu jest niezbędna, aby zapewnić szybkie działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Ponadto, w praktyce, warto przeprowadzać regularne pomiary rezystancji uziomu, aby upewnić się, że warunki uziemienia nie uległy zmianie wraz z upływem czasu czy też w wyniku warunków atmosferycznych, co może wpłynąć na bezpieczeństwo użytkowników. Jest to podstawowy krok w procesie zarządzania ryzykiem w instalacjach elektrycznych.

Pytanie 33

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Fazowy między zaciskami F1:2 i F2:1
B. Fazowy między zaciskami F2:2 i 1
C. Neutralny między zaciskami N i F1:N1
D. Neutralny między zaciskami F1:N2 i 2
Wybór odpowiedzi dotyczącej neutralnego przewodu między zaciskami F1:N2 i 2 jest prawidłowy, ponieważ pomiar rezystancji wykazał nieskończoną wartość, co jednoznacznie wskazuje na przerwę w instalacji elektrycznej. W praktyce, zrozumienie zasadności takich pomiarów jest kluczowe dla bezpieczeństwa i prawidłowej pracy urządzeń elektrycznych. Przerwy w przewodach neutralnych są szczególnie niebezpieczne, ponieważ mogą prowadzić do nieprawidłowego funkcjonowania obwodów. Warto pamiętać, że w instalacjach jednofazowych neutralny przewód pełni rolę powrotną i każda jego przerwa może zaburzyć równowagę obwodu, prowadząc do przegrzewania się innych przewodów lub nawet uszkodzenia urządzeń. Zgodnie z normami PN-IEC 60364, zapewnienie ciągłości przewodów neutralnych jest kluczowe dla bezpieczeństwa użytkowników oraz prawidłowego działania instalacji. Warto również regularnie przeprowadzać pomiary rezystancji w instalacjach elektrycznych, aby szybko wykrywać ewentualne uszkodzenia i zapobiegać awariom.

Pytanie 34

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do łączenia przewodów dowolnego typu.
B. Do zaciskania końcówek tulejkowych na przewodach.
C. Do zdejmowania izolacji z przewodów dwużyłowych.
D. Do wykonywania połączeń bez zdejmowania izolacji.
Odpowiedź 'Do łączenia przewodów dowolnego typu' jest jak najbardziej trafna, bo złączka WAGO właśnie do tego służy. Łączy przewody elektryczne – zarówno te jednożyłowe, jak i wielożyłowe. Takie złączki są teraz mega popularne w nowoczesnych instalacjach, bo są łatwe w użyciu i naprawdę niezawodne. Dzięki nim można szybko i bezpiecznie połączyć przewody, bez potrzeby lutowania czy innych skomplikowanych metod, co na pewno przyspiesza całą robotę. Co więcej, złączki WAGO spełniają normy IEC 60998 i IEC 60529, więc można mieć pewność, że są solidne i bezpieczne. Używanie ich w pracy to też sposób na oszczędność czasu i minimalizację błędów, bo nie trzeba ręcznie łączyć przewodów. W praktyce świetnie się sprawdzają w instalacjach oświetleniowych, automatyce budynkowej czy w rozdzielnicach elektrycznych, gdzie ważna jest jakość połączeń. No i ich konstrukcja pozwala na wielokrotne użycie, co czyni je fajnym rozwiązaniem na dłuższą metę.

Pytanie 35

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Użycie transformatora separacyjnego do zasilania
B. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
C. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
D. Montaż ochronników przepięciowych w głównej rozdzielnicy
W kontekście wykonywania instalacji elektrycznej na tynku na zewnątrz budynku mieszkalnego, wiele osób może być skłonnych do myślenia, że zastosowanie transformatora separacyjnego jest kluczowe. Choć transformatory separacyjne mają swoje miejsce w zastosowaniach, ich rola w kontekście ochrony przewodów elektrycznych przed działaniem promieni słonecznych jest nieznaczna. Transformator ten oddziela obwody od źródła zasilania, ale nie zapewnia ochrony przed dolegliwościami związanymi z ekspozycją na promieniowanie UV, co czyni go niewłaściwym wyborem w tej konkretnej sytuacji. Z kolei zastosowanie wyłączników różnicowoprądowych wysokoczułych, choć istotne dla ochrony przed porażeniem prądem, nie ma bezpośredniego wpływu na zabezpieczenie przewodów przed działaniem promieni słonecznych. Wyłączniki te działają na zasadzie wykrywania różnic prądów, co jest ważne, ale nie chroni instalacji przed uszkodzeniami spowodowanymi przez czynniki zewnętrzne. Ochronniki przepięciowe w rozdzielnicy głównej są istotne dla ochrony instalacji przed przepięciami, ale ich zastosowanie nie zastąpi fizycznych osłon przewodów, które są niezbędne w zewnętrznych instalacjach. Wszelkie te koncepcje mogą prowadzić do błędnego wniosku, że wystarczy zastosować te elementy, aby zapewnić bezpieczeństwo instalacji, podczas gdy kluczowym aspektem pozostaje zabezpieczenie przed działaniem promieni słonecznych przez odpowiednie osłony.

Pytanie 36

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 450W
B. 1150W
C. 350W
D. 800W
Poprawna odpowiedź to 450W, co wynika z analizy sytuacji w układzie z dwoma watomierzami. W1 wskazuje moc ujemną przed zamianą zacisków, co sugeruje, że urządzenie odbierające energię pracuje w trybie, w którym moc oddawana przez źródło przewyższa moc pobieraną przez odbiornik. Po zamianie zacisków, watomierz W1 wykazuje moc 350W, co oznacza, że odbiornik pobiera tę moc od źródła. Z kolei watomierz W2 wskazuje moc 800W, co wskazuje na całkowity pobór mocy przez system. W takim przypadku, aby obliczyć całkowitą moc pobieraną przez odbiornik, należy uwzględnić, że moc wskazywana przez W1 była wcześniej negatywna. Zatem całkowita moc wynosi 350W + 800W = 1150W, jednakże z uwagi na negatywny pomiar W1, rzeczywista moc wynosi 450W. To podejście jest zgodne z zasadami analizy obwodów elektrycznych i pokazuje, jak ważne jest rozumienie wskazań urządzeń pomiarowych oraz ich interpretacja w kontekście działania całego układu. Takie analizy są kluczowe w inżynierii elektrycznej, gdzie dokładność pomiarów i ich interpretacja wpływają na optymalizację pracy systemów energetycznych.

Pytanie 37

W którym wierszu tabeli prawidłowo określono funkcje i liczby przewodów jednożyłowych, które należy umieścić w rurach instalacyjnych, aby wykonać poszczególne obwody w układzie sieciowym TN-S, zakończone punktami odbioru o przedstawionych symbolach graficznych?

Ilustracja do pytania
A. W wierszu 3.
B. W wierszu 4.
C. W wierszu 2.
D. W wierszu 1.
Wiersz 4 tabeli prawidłowo określa wymagania dotyczące liczby przewodów w obwodach sieciowych TN-S. Dla obwodu 3, który odpowiada za oświetlenie, potrzebne są trzy przewody: jeden przewód fazowy, jeden neutralny oraz jeden ochronny, co jest zgodne z normami dotyczących instalacji elektrycznych. Z kolei dla obwodu 2, który obsługuje gniazdo siłowe, wymagane jest pięć przewodów: trzy fazowe, jeden neutralny i jeden ochronny. Zastosowanie odpowiedniej liczby przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W przypadku niewłaściwej liczby przewodów, może dojść do przeciążeń, które stanowią poważne zagrożenie pożarowe. Standardy takie jak PN-IEC 60364-1 stanowią wytyczne, które należy przestrzegać w celu zapewnienia bezpieczeństwa i zgodności z obowiązującymi normami. W praktyce, prawidłowe określenie liczby przewodów jest istotne, aby uniknąć nieprawidłowości instalacyjnych, które mogą prowadzić do awarii sprzętu lub uszkodzenia instalacji.

Pytanie 38

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Wolframowy.
B. Rtęciowy.
C. Ledowy.
D. Halogenowy.
Wybór żarówki wolframowej, rtęciowej lub halogenowej jako odpowiedzi sugeruje pewne nieporozumienia dotyczące technologii oświetleniowej. Żarówki wolframowe, choć kiedyś były powszechnie stosowane, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością, wynoszącą średnio około 1000 godzin. Emitują one dużą ilość ciepła, co sprawia, że są mniej praktyczne w zastosowaniach wymagających długotrwałego użytkowania. Z kolei żarówki rtęciowe, wykorzystywane głównie w oświetleniu przemysłowym i ulicznym, mają swoje ograniczenia związane z zawartością rtęci, co czyni je zagrożeniem dla środowiska. Ich zastosowanie w domach jest nie tylko niepraktyczne, ale także niebezpieczne. Halogenowe żarówki, będące rozwinięciem technologii wolframowej, oferują nieco lepszą efektywność, ale nadal nie dorównują żarówkom LED pod względem oszczędności energii oraz żywotności. Typowe błędy myślowe, które mogą prowadzić do wyboru tych opcji, to przekonanie, że tradycyjne źródła światła są wystarczające do zaspokojenia potrzeb oświetleniowych, ignorując przy tym ich negatywny wpływ na rachunki za energię oraz środowisko. W praktyce, na podstawie badań i analiz branżowych, zaleca się stosowanie żarówek LED jako najbardziej efektywnej i ekologicznej opcji oświetleniowej, dostosowanej do współczesnych standardów.

Pytanie 39

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. B25
B. C20
C. D10
D. C16
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 40

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
B. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
C. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej
D. nałożyć warstwę cyny na końcówki przewodów
Wymienione odpowiedzi, które sugerują zastosowanie gniazda o większym prądzie znamionowym lub naniesienie warstwy cyny na końcówki przewodów, są nieprawidłowe i mogą prowadzić do poważnych błędów w instalacji elektrycznej. Użycie gniazda o większym prądzie znamionowym może wydawać się korzystne, jednak nie uwzględnia to możliwości przewodów oraz ich obciążalności prądowej. Każdy element instalacji elektrycznej powinien być dobrany zgodnie z jego przeznaczeniem oraz obciążeniem, do którego jest zaprojektowany. Zastosowanie gniazda o wyższej wartości niż przewody prowadzi do sytuacji, w której przewody mogą ulegać przegrzaniu, co w konsekwencji stwarza ryzyko pożaru. Co więcej, nanoszenie cyny na końcówki przewodów jest praktyką, która nie tylko może wprowadzać dodatkowe opory w połączeniu, ale także stwarza ryzyko korozji oraz osłabienia połączenia w dłuższym okresie użytkowania. W instalacjach elektrycznych kluczową rolę odgrywa jakość połączeń, które powinny być pewne i stabilne, aby uniknąć awarii. Niezależnie od tego, jak zaawansowane są technologie stosowane w instalacji, kluczowe jest przestrzeganie zasad dotyczących podłączania przewodów do właściwych zacisków oraz wykorzystanie odpowiednich materiałów i produktów w zgodzie z normami branżowymi, aby zapewnić bezpieczeństwo i funkcjonalność całej instalacji.