Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 listopada 2025 01:25
  • Data zakończenia: 3 listopada 2025 01:28

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Wymiana uszkodzonych gniazd wtyczkowych
B. Instalacja nowych punktów świetlnych
C. Przesunięcie miejsc montażu opraw oświetleniowych
D. Zamiana zużytych urządzeń na nowe
Zmiana miejsc zamontowania opraw oświetleniowych, montaż nowych wypustów oświetleniowych oraz wymiana odbiorników energii elektrycznej na nowe to czynności, które nie należą do prac konserwacyjnych, lecz do prac instalacyjnych i modernizacyjnych. Prace konserwacyjne koncentrują się na utrzymaniu istniejącej instalacji w dobrym stanie, co obejmuje m.in. naprawy, wymianę uszkodzonych elementów czy przeglądy techniczne. Zmiana lokalizacji opraw oświetleniowych czy montaż nowych wypustów wiąże się z modyfikacją struktury instalacji, co wymaga zupełnie innego podejścia i często jest związane z koniecznością uzyskania odpowiednich zezwoleń oraz wykonania projektu technicznego. Podobnie, wymiana odbiorników energii elektrycznej na nowe wiąże się z ich odpowiednim doborem oraz z zapewnieniem, że instalacja elektryczna jest przystosowana do nowych wymagań. Często mylnie przyjmuje się, że każda czynność związana z elektrycznością należy do prac konserwacyjnych, jednakże zgodnie z najlepszymi praktykami branżowymi należy dbać o wyraźne rozgraniczenie tych dwóch rodzajów aktywności, aby zapewnić bezpieczeństwo oraz prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 3

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. przeprowadzenie pomiarów impedancji pętli zwarcia
B. wykonanie pomiaru rezystancji uziemienia
C. zweryfikowanie ciągłości połączeń w instalacji
D. określenie czasu oraz prądu zadziałania wyłącznika RCD
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 4

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 2.
B. Wyłącznik 1.
C. Wyłącznik 3.
D. Wyłącznik 4.
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 5

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 500V
C. 750V
D. 250V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 6

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
B. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
C. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
D. oznaczyć miejsce pracy
Oznaczenie miejsca pracy, rozłożenie dywanika elektroizolacyjnego w miejscu pracy oraz zgłoszenie dostawcy energii zamiaru naprawy, choć mogą wydawać się sensownymi krokami, nie są wystarczające dla zapewnienia bezpieczeństwa podczas pracy z instalacjami elektrycznymi. Oznaczenie miejsca pracy może zwiększyć świadomość innych pracowników o prowadzonych działaniach, ale nie zabezpiecza aktywnie przed ryzykiem związanym z przypadkowym włączeniem zasilania. Rozłożenie dywanika elektroizolacyjnego jest również ważne, jednak nie zastępuje to konieczności zabezpieczenia obwodu - dywanik może jedynie zmniejszyć ryzyko porażenia prądem, lecz nie eliminuje go całkowicie. Zgłoszenie dostawcy energii o zamiarze naprawy jest dobre w kontekście długookresowym, ale nie zapewnia natychmiastowego bezpieczeństwa w chwili pracy. Kluczowym błędem myślowym tutaj jest przekonanie, że te działania wystarczają do zapewnienia ochrony. Bezpieczeństwo pracy z energią elektryczną wymaga fundamentalnego podejścia, które zakłada, że przede wszystkim musimy upewnić się, że energia nie zostanie przypadkowo przywrócona przed zakończeniem prac. Statystyki pokazują, że wiele wypadków elektrycznych wynika z niedostatecznego zabezpieczenia obwodów, co czyni tę zasadę absolutnie kluczową w praktyce zawodowej. Zgodnie z ogólnymi normami bezpieczeństwa, każde podejście musi być oparte na zasadzie, że bezpieczeństwo jest najważniejsze i powinno być priorytetem w każdej sytuacji związanej z pracą z energią elektryczną.

Pytanie 7

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Skok napięcia
B. Przeciążenie obwodu
C. Zwarcie międzyfazowe
D. Upływ prądu
Przepięcie, przeciążenie i zwarcie międzyfazowe to takie awaryjne sytuacje, które się zdarzają w instalacjach elektrycznych, ale RCD wcale się na to nie aktywuje. Przepięcie, to nic innego jak nagły wzrost napięcia, który może złamać urządzenia, ale nie zmienia różnicy prądów, a to jest kluczowe dla działania RCD. RCD nie służy do ochrony przed przepięciami, w takich sytuacjach są ograniczniki przepięć. Przeciążenie natomiast, to co się dzieje, gdy podłączamy zbyt dużo sprzętu do obwodu, co zwiększa prąd powyżej normy, ale RCD nie reaguje, bo nie wykrywa różnicy prądów w takim przypadku. Wtedy na szczęście mamy wyłączniki nadprądowe, które odcinają zasilanie przy za dużym prądzie. A jeśli chodzi o zwarcie międzyfazowe, to jest to, gdy przewody fazowe się stykają i prąd leci jak szalony, ale znów, RCD na to nie działa, bo nie ma żadnej różnicy prądów do wykrycia. Więc ważne jest, by zrozumieć, jak te wszystkie zabezpieczenia w elektryce współpracują, żeby zapewnić bezpieczeństwo, co jest zgodne z najlepszymi praktykami w tej branży.

Pytanie 8

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Nie wszystkie wymienione zestawy narzędzi są odpowiednie do montażu aparatury elektrycznej i wykonywania połączeń w rozdzielnicy. Wśród dostępnych opcji brakuje kluczowych narzędzi, które zapewniają prawidłowe i bezpieczne połączenia elektryczne. Na przykład, szczypce płaskie oraz młotek, chociaż mogą się wydawać użyteczne, nie są kluczowe w kontekście precyzyjnego montażu instalacji elektrycznej. Użycie młotka do montażu może prowadzić do uszkodzenia delikatnych komponentów, co jest niepożądane w przypadku rozdzielnic, gdzie precyzja jest kluczowa. Ponadto, przymiar taśmowy, mimo że użyteczny przy pomiarach, nie jest narzędziem niezbędnym do samego montażu i połączeń elektrycznych. Wiele osób może myśleć, że nóż monterski wystarczy do usunięcia izolacji, co jest błędne; niewłaściwe użycie noża może prowadzić do uszkodzenia przewodów. Również wkrętarka, choć użyteczna w niektórych sytuacjach, nie jest podstawowym narzędziem do pracy z przewodami, a korzystanie z niej może nie gwarantować właściwego dokręcenia połączeń. Kluczową kwestią jest zrozumienie, że do pracy w rozdzielnicy potrzebne są specjalistyczne narzędzia, które zapewniają nie tylko efektywność, ale także bezpieczeństwo, co jest niezbędne do prawidłowego działania całej instalacji elektrycznej.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla urządzeń gospodarstwa domowego
B. oddzielnego dla zmywarki
C. zasilającego gniazdka w łazience oraz kuchni
D. zasilającego gniazdka jedynie w kuchni
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Szczypiec typu Segera.
C. Wkrętaka imbusowego.
D. Wkrętaka płaskiego.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Sprawdzenie kondycji wycinków komutatora
B. Weryfikacja braku zwarć międzyzwojowych
C. Pomiar rezystancji izolacji
D. Wyważanie
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.

Pytanie 20

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt duże wzbudzenie silnika
B. Zbyt duży nacisk szczotek na komutator
C. Zbyt małe wzbudzenie silnika
D. Zbyt mała powierzchnia styku szczotek z komutatorem
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy B
B. Klasy A
C. Klasy C
D. Klasy D
Wybór odpowiedzi z klas A, B, C niestety nie odpowiada rzeczywistym potrzebom ochrony przed przepięciami, jeśli mówimy o ogranicznikach klasy D. Klasa A jest do ochrony sprzętu przed przepięciami z atmosfery, ale to działa przy średnio niskich energiach, więc przy silnych przepięciach to może być za mało. Klasa B, która jest stworzona do ochrony przed przepięciami z zewnątrz, też nie bardzo sobie poradzi w aplikacjach, które mogą dostać nagłe, wysokie przepięcia. Klasa C, mimo że daje jakąś formę ochrony, nie nadaje się do intensywnej ochrony przed przepięciami, jak w przypadku systemów komputerowych czy telekomunikacyjnych. Ważne jest, żeby znać różnice między tymi klasami i ich zastosowania, bo źle dobrane rozwiązanie może skutkować poważnymi uszkodzeniami sprzętu i kosztownymi naprawami. Często ludzie błędnie myślą, że te klasy są równoważne, co prowadzi do zaniżania ryzyka, a to jest naprawdę powszechna pułapka przy projektowaniu systemów ochrony przeciwprzepięciowej.

Pytanie 23

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Nożem monterskim
B. Wkrętakiem
C. Neonowym wskaźnikiem napięcia
D. Kluczem płaskim
Wykorzystywanie klucza płaskiego do demontażu i montażu połączeń w puszce instalacyjnej nie jest właściwe, ponieważ klucz ten jest zaprojektowany głównie do pracy z nakrętkami i śrubami o określonym kształcie, a nie do śrub, które często znajdują się w instalacjach elektrycznych. Klucz płaski może nie być w stanie dostarczyć odpowiedniego momentu obrotowego czy precyzyjnego dopasowania, co może prowadzić do obluzowania połączeń lub ich uszkodzenia. Z kolei nóż monterski, choć może być użyteczny w cięciu przewodów czy izolacji, nie jest przeznaczony do pracy z połączeniami śrubowymi, przez co jego stosowanie w tym kontekście jest niewłaściwe i może prowadzić do poważnych błędów. Neonowy wskaźnik napięcia służy do sprawdzania obecności napięcia w instalacji, a nie do modyfikacji połączeń. Użycie tego narzędzia w kontekście montażu czy demontażu może prowadzić do mylnego przekonania, że urządzenie jest bezpieczne do użycia, co jest niebezpieczne. Dobrą praktyką jest korzystanie z odpowiednich narzędzi, na co wskazują normy branżowe oraz wytyczne dotyczące bezpieczeństwa w instalacjach elektrycznych. Umiejętność wyboru odpowiednich narzędzi jest kluczowa dla zapewnienia jakości i bezpieczeństwa pracy w branży elektrycznej.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193B25
B. S193C25
C. S191C25
D. S191B25
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
C. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
D. Silnik będzie zasilany prądem w przeciwnym kierunku
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 2 lata
B. 5 lat
C. 10 lat
D. 1 rok
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 31

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. bezpiecznik instalacyjny
B. ochronnik przeciwprzepięciowy
C. wyłącznik instalacyjny płaski
D. wyłącznik różnicowoprądowy
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 32

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gG
B. aM
C. gR
D. aL
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 33

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Oprawki źródła światła.
B. Wtyczki kabla zasilającego.
C. Gniazda wtykowego.
D. Puszki łączeniowej.
Wybierając puszkę łączeniową, oprawkę źródła światła lub wtyczkę kabla zasilającego, można się trochę pogubić w tym, do czego one właściwie służą. Puszki łączeniowe są w porządku, bo łączą przewody i chronią je przed uszkodzeniami, ale nie mają nic wspólnego z ochroną przed prądem, co dotyczy gniazd wtykowych. Z kolei oprawki źródła światła tylko mocują żarówki, a nie chronią dzieci czy innych nieautoryzowanych osób. Wtyczki kabli zasilających, mimo że ważne do podłączenia urządzeń, nie mają żadnych mechanizmów zabezpieczających, które chroniłyby przed kontaktem z prądem. Dlatego, jeśli wskazujesz na te rzeczy jako odpowiedzi, to znaczy, że coś ci umknęło — gniazda wtykowe są kluczowe, gdy chodzi o bezpieczeństwo elektryczne w miejscach, gdzie bywają dzieci. Dobrze jest zapoznać się z normami dotyczącymi gniazd, które mówią dokładnie, jakie są wymagania związane z ich bezpieczeństwem i zastosowaniem w różnych miejscach.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. izolowanie miejsca pracy
B. urządzenia II klasy ochronności
C. izolowanie części czynnych
D. połączenia wyrównawcze
Zastosowanie połączeń wyrównawczych, izolowanie miejsca pracy czy używanie urządzeń II klasy ochronności nie jest najlepszym rozwiązaniem, jeśli chodzi o ochronę przed dotykiem bezpośrednim w domowych instalacjach elektrycznych. Połączenia wyrównawcze są fajne, bo zmniejszają różnice potencjałów, ale nie chronią przed kontaktem z częściami czynnymi. Izolowanie stanowiska to raczej coś dla pracy przy urządzeniach elektrycznych w fabrykach niż w domach. A urządzenia II klasy ochronności, chociaż są ważne, to działają w zupełnie innych warunkach. W domach trzeba przede wszystkim dobrze izolować wszystkie elementy, które mogą być na wyciągnięcie ręki. Dlatego tak istotne jest, żeby projektować instalacje według najlepszych praktyk i norm, jak PN-IEC 61140, które podkreślają, jak ważne jest, by skutecznie chronić się przed kontaktem z elektrycznością.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, poziomnica, przymiar taśmowy
B. Kątownik, młotek, punktak
C. Kątownik, ołówek traserski, sznurek traserski
D. Ołówek traserski, przymiar kreskowy, rysik
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.