Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:50
  • Data zakończenia: 8 grudnia 2025 11:00

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Maksymalne natężenie przepływu dla pompy hydraulicznej, której dane katalogowe zamieszczono w ramce wynosi

Dane techniczne pompy hydraulicznej
Objętość geometryczna:60 cm3
Maksymalne natężenie przepływu Q:120 dm3/min
Natężenie przepływu przy 1000 obr./min:80 dm3/min
Maksymalna prędkość obrotowa:5000 obr./min
Maksymalne ciśnienie ciągłe:600 bar
Zakres temperatury pracy:-5 ÷ 60°C
Lepkość oleju hydraulicznego:10 ÷ 400 cSt
A. 200 dm3/min
B. 120 dm3/min
C. 40 dm3/min
D. 80 dm3/min
Wybór odpowiedzi innej niż 120 dm3/min wskazuje na nieporozumienie dotyczące parametrów pomp hydraulicznych. W przypadku pompy, której maksymalne natężenie przepływu wynosi 120 dm3/min, odpowiedzi takie jak 80 dm3/min, 200 dm3/min czy 40 dm3/min są błędne. Warto zauważyć, że pompy hydrauliczne są projektowane z określonymi parametrami, które powinny odpowiadać wymaganiom aplikacji, w jakiej są stosowane. Często błędne wybory wynikają z nieprawidłowego zrozumienia specyfikacji technicznych, co może prowadzić do niewłaściwego doboru urządzeń. Na przykład, wybierając pompę o niższym natężeniu, jak 40 dm3/min, istnieje ryzyko, że nie zapewni ona wystarczającej wydajności w systemie, co prowadzi do jego awarii lub niewłaściwego działania. Z kolei wybór pompy o zbyt wysokim natężeniu, jak 200 dm3/min, może skutkować nadmiernym zużyciem energii oraz ryzykiem uszkodzenia innych elementów hydraulicznych w systemie. Zrozumienie maksymalnego natężenia przepływu jest kluczowe, aby uniknąć takich problemów i zapewnić efektywność operacyjną całego systemu hydraulicznego. Dlatego ważne jest dokładne zapoznanie się z danymi katalogowymi przed podjęciem decyzji o wyborze pompy.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Na rysunku przedstawiono przekładnię o zębach

Ilustracja do pytania
A. śrubowych.
B. łukowych.
C. daszkowych.
D. prostych.
Odpowiedź "łukowych" jest prawidłowa, ponieważ zęby łukowe charakteryzują się zakrzywionym kształtem, co zapewnia ich lepszą współpracę i przenoszenie obciążeń. Przekładnie zębate z zębami łukowymi są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających cichej i precyzyjnej pracy, takich jak w przekładniach samochodowych, gdzie redukcja hałasu i drgań jest kluczowa dla komfortu użytkowania. W porównaniu do zębów prostych, zęby łukowe oferują znacznie lepsze właściwości eksploatacyjne, w tym zwiększoną trwałość oraz mniejsze zużycie. W praktyce, takie przekładnie są stosowane w wielu mechanizmach, od maszyn przemysłowych po urządzenia codziennego użytku, spełniając normy branżowe i dobre praktyki inżynieryjne, które zalecają stosowanie zębów łukowych w sytuacjach, gdzie liczy się wydajność i niezawodność.

Pytanie 4

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Epoksyt
B. Żeliwo białe
C. Teflon
D. Polistyren
Teflon, znany również jako politetrafluoroetylen (PTFE), jest materiałem, który ze względu na swoje unikalne właściwości, jest powszechnie stosowany w produkcji łożysk ślizgowych. Jego niska współczynnik tarcia, wysoka odporność na chemikalia oraz doskonałe właściwości dielektryczne czynią go idealnym wyborem w aplikacjach, gdzie minimalizacja tarcia jest kluczowa. Teflon jest często wykorzystywany w łożyskach w przemyśle motoryzacyjnym oraz w różnych maszynach przemysłowych, gdzie wymagana jest wysoka wydajność i długotrwała niezawodność. W produkcji łożysk ślizgowych Teflon może być stosowany samodzielnie lub w połączeniu z innymi materiałami, co pozwala na osiągnięcie jeszcze lepszych parametrów. Jako materiał o wysokiej wytrzymałości na ściskanie, Teflon może pracować w trudnych warunkach, co jest istotne w kontekście standardów jakości, takich jak ISO 9001, które podkreślają znaczenie trwałości i niezawodności komponentów przemysłowych. Dodatkowo, ze względu na swoje właściwości samosmarujące, łożyska wykonane z Teflonu wymagają mniejszej konserwacji, co przekłada się na obniżenie kosztów operacyjnych.

Pytanie 5

Który element silnika oznaczono cyfrą 1?

Ilustracja do pytania
A. Wirnik.
B. Zacisk.
C. Stojan.
D. Komutator.
Element oznaczony cyfrą 1 na zdjęciu to komutator, który jest kluczowym komponentem w silnikach prądu stałego. Jego główną funkcją jest zmiana kierunku przepływu prądu w uzwojeniu wirnika, co pozwala na stałe obracanie się wirnika w jednym kierunku. Komutator składa się z segmentów wykonanych z miedzi, które są oddzielone od siebie materiałem izolacyjnym. Taki układ zapewnia, że podczas obrotu wirnika prąd zmienia kierunek w odpowiednich momentach, co jest niezbędne do utrzymania ciągłego ruchu. Dobrze zaprojektowany komutator zwiększa efektywność silnika oraz jego żywotność, co jest kluczowe w zastosowaniach przemysłowych. W standardach branżowych, takich jak IEC 60034, podkreśla się znaczenie jakości materiałów używanych do produkcji komutatorów, aby zminimalizować straty energii i zapewnić długotrwałą pracę urządzenia. W praktyce, komutatory są również poddawane regularnym przeglądom i konserwacji, aby utrzymać ich sprawność operacyjną, co stanowi dobre praktyki w zarządzaniu sprzętem elektrycznym.

Pytanie 6

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. rozdzielacz czterodrogowy.
B. zawór z popychaczem.
C. zawór zwrotno-dławiący.
D. przełącznik obiegu.
Zawór z popychaczem to kluczowy element w systemach pneumatycznych, który pozwala na manualne sterowanie przepływem powietrza. Posiada charakterystyczny popychacz znajdujący się na górze, który umożliwia włączenie lub wyłączenie przepływu powietrza poprzez nacisk. Tego rodzaju zawory są często używane w aplikacjach, gdzie wymagana jest szybka i intuicyjna kontrola, na przykład w automatyzacji procesów przemysłowych. Standardy dotyczące elementów pneumatycznych, takie jak ISO 1219, określają zasady projektowania i klasyfikacji tych urządzeń, co zapewnia ich niezawodność i bezpieczeństwo. W praktyce zawory z popychaczem są wykorzystywane w systemach napędowych, w maszynach pakujących, a także w urządzeniach stosowanych w przemyśle motoryzacyjnym. Zrozumienie funkcji i zastosowania tego typu zaworów jest niezbędne dla prawidłowego projektowania i eksploatacji systemów pneumatycznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Cyfrą 3 na ilustracji oznaczono

Ilustracja do pytania
A. łożysko.
B. korpus.
C. uszczelkę.
D. tłok.
Korpus, oznaczony cyfrą 3 na ilustracji, to kluczowy element wielu urządzeń mechanicznych, pełniący funkcję szkieletu lub obudowy. Stanowi on podstawową strukturę, na której montowane są inne komponenty, takie jak tłoki, łożyska, czy uszczelki. W kontekście inżynierii mechanicznej, korpus jest projektowany tak, aby wytrzymywał różne obciążenia oraz napięcia, co czyni go niezbędnym w zachowaniu integralności całego systemu. Na przykład, w silniku spalinowym korpus jest odpowiedzialny za utrzymanie właściwej geometrii wszystkich wewnętrznych części, co wpływa na efektywność pracy silnika. Korpus jest również kluczowy w kontekście standardów jakości, takich jak ISO 9001, które podkreślają znaczenie solidnej konstrukcji w procesie produkcji. Dobre praktyki inżynieryjne sugerują, że każdy korpus powinien być odpowiednio testowany na wytrzymałość i odporność na czynniki zewnętrzne, co zapewnia długotrwałe i niezawodne działanie urządzenia.

Pytanie 9

W celu uzupełnienia smaru w łożysku przedstawionym na rysunku należy użyć

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Aby skutecznie uzupełnić smar w łożysku, kluczowe jest wykorzystanie odpowiednich narzędzi, takich jak smarownica, co potwierdza poprawność odpowiedzi D. Smarownice, w porównaniu do innych narzędzi, oferują precyzyjne i kontrolowane dozowanie smaru, co jest istotne dla efektywności i trwałości łożysk. Właściwe smarowanie łożysk jest nie tylko kwestią wydajności, ale także wpływa na bezpieczeństwo całego mechanizmu, w którym się znajdują. W praktyce, stosowanie smarownic jest zgodne z najlepszymi praktykami w zakresie konserwacji maszyn, ponieważ pozwala na minimalizowanie ryzyka przepełnienia lub niedoboru smaru, co może prowadzić do uszkodzenia łożysk. Regularne stosowanie smarownic w ramach planowanych przeglądów technicznych nie tylko zapewnia długotrwałą wydajność, ale również zmniejsza koszty związane z naprawami, co jest zgodne z zasadami zarządzania majątkiem i efektywności operacyjnej w branży. Z tego powodu, znajomość i umiejętność stosowania smarownicy jest kluczowa dla każdej osoby zajmującej się konserwacją maszyn.

Pytanie 10

Ile wynosi rezystancja zastępcza układu rezystorów, przedstawionych na schemacie, jeżeli R1 = R2 = R3 = 10 ?, R4 = 5 ??

Ilustracja do pytania
A. 15 ?
B. 35 ?
C. 10 ?
D. 20 ?
Wybierając błędną odpowiedź, można zauważyć rozbieżność w podejściu do obliczeń i zrozumienia połączeń rezystorów. Często zdarza się, że przy wyborze rezystancji zastępczej, studenci nie uwzględniają odpowiednio wszystkich elementów w układzie. Na przykład, wybierając 35 ?, można pomyśleć, że wszystkie rezystory są połączone szeregowo, co jest błędne. W rzeczywistości, przy połączeniach szeregowych suma rezystancji wynikłaby z bezpośredniego dodawania wartości, co w tym wypadku dałoby 35 ? (10 + 10 + 10 + 5). Jednak takie podejście jest mylące, ponieważ w rzeczywistości R1, R2 i R3 są połączone równolegle, a dopiero potem łączone z R4. Przy błędnym obliczeniu, jak w przypadku odpowiedzi 15 ?, można pomylić wartości między rezystorami szeregowo a równolegle, prowadząc do niewłaściwych wyników. Z tego powodu warto pamiętać o technikach obliczeniowych, takich jak wspomniane równania dla rezystancji równoległej i szeregowej. W praktyce inżynieryjnej istotne jest także modelowanie układów oraz stosowanie symulacji komputerowych, aby zweryfikować poprawność obliczeń przed realizacją projektów. Ignorowanie tych zasad prowadzi do błędów w projektach elektronicznych oraz ich późniejszej awaryjności.

Pytanie 11

Do pomiaru której wielkości charakteryzującej drgania ustawiono miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Prędkości.
B. Częstotliwości.
C. Przesunięcia.
D. Przyspieszenia.
Miernik drgań AS63B, który został przedstawiony na zdjęciu, jest specjalistycznym narzędziem służącym do pomiaru przyspieszenia drgań. Mierniki tego typu są powszechnie stosowane w inżynierii do monitorowania stanu maszyn i urządzeń, gdzie drgania mogą prowadzić do uszkodzeń lub nieprawidłowego działania. Przyspieszenie drgań, mierzone w jednostkach m/s², jest kluczowe dla oceny dynamiki obiektów, ponieważ pozwala na identyfikację problemów zanim przerodzą się one w poważniejsze awarie. W praktyce, regularne pomiary przyspieszenia drgań pomagają w planowaniu działań serwisowych, a także w optymalizacji wydajności procesów produkcyjnych. W przemyśle, zwłaszcza w obszarze utrzymania ruchu, monitorowanie drgań jest częścią strategii prewencyjnego utrzymania, co pozwala na zwiększenie niezawodności sprzętu i zmniejszenie przestojów.

Pytanie 12

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. szlifierki narzędziowej
B. frezarki uniwersalnej
C. przecinarki plazmowej
D. prasy krawędziowej
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 13

Układ, którego schemat przedstawiono na rysunku, wymaga zasilania

Ilustracja do pytania
A. olejem hydraulicznym i energią elektryczną.
B. sprężonym powietrzem i energią elektryczną.
C. wyłącznie sprężonym powietrzem.
D. sprężonym powietrzem i olejem hydraulicznym.
Odpowiedź, która wskazuje na zasilanie układu sprężonym powietrzem i energią elektryczną, jest prawidłowa z kilku powodów. Układy pneumatyczne, takie jak te przedstawione na schemacie, wykorzystują sprężone powietrze do działania siłowników. Siłowniki pneumatyczne, jak 1A1 i 2A1, przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w wielu procesach automatyk, takich jak przenoszenie, podnoszenie czy formowanie. Dodatkowo, układy elektroniczne, reprezentowane przez czujniki położenia S1 i S2 oraz elektrozawory 1V2 i 2V2, wymagają energii elektrycznej do monitorowania oraz kontrolowania pozycji siłowników. Stosowanie obu rodzajów zasilania jest zgodne z najlepszymi praktykami w branży automatyki, gdzie integrowane systemy pneumatyczne i elektryczne zwiększają efektywność i precyzję operacyjną. W wielu zastosowaniach przemysłowych, takich jak linie produkcyjne, połączenie tych dwóch typów zasilania pozwala na tworzenie bardziej złożonych i elastycznych systemów, co jest niezbędne w dynamicznie zmieniającym się środowisku produkcyjnym.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Do którego gniazda należy podłączyć czarny przewód pomiarowy, a do którego czerwony, aby wykonać pomiar przy wybranym zakresie?

Ilustracja do pytania
A. 3 - czarny i 2 - czerwony.
B. 1 - czarny i 2 - czerwony.
C. 1 - czarny i 3 - czerwony.
D. 3 - czarny i 1 - czerwony.
Ta odpowiedź jest poprawna, ponieważ gniazdo numer 3, oznaczone jako COM (common), jest standardowym gniazdem dla czarnego przewodu pomiarowego. To gniazdo jest używane we wszystkich pomiarach jako punkt odniesienia dla napięć i prądów. Z kolei gniazdo numer 2, oznaczone symbolem VΩmA, jest dedykowane dla czerwonego przewodu pomiarowego, co sprawia, że idealnie nadaje się do pomiarów napięcia, oporności oraz prądu. Korzystając z tych gniazd, można wykonywać prawidłowe pomiary, zapewniając jednocześnie bezpieczeństwo i dokładność. W praktyce, znajomość tych oznaczeń jest kluczowa, zwłaszcza w kontekście pomiarów elektrycznych, gdzie nieprawidłowe podłączenie przewodów może prowadzić do uszkodzenia sprzętu. Dobrą praktyką jest zawsze upewnienie się, że przewody są podłączone do odpowiednich gniazd przed rozpoczęciem pomiarów. Takie podejście zgodne jest z normami bezpieczeństwa oraz standardami pracy w laboratoriach i na stanowiskach badawczych.

Pytanie 16

Na którym rysunku przedstawiono triak?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Triak, będący elementem półprzewodnikowym, odgrywa kluczową rolę w aplikacjach związanych z kontrolą mocy w obwodach prądu przemiennego. W odpowiedzi B widoczny jest triak, który można łatwo zidentyfikować dzięki jego unikalnym oznaczeniom oraz kształtowi. Triaki są powszechnie stosowane w regulatorach oświetlenia, silnikach elektrycznych oraz w systemach grzewczych, gdzie konieczne jest precyzyjne sterowanie mocą. W praktyce triak działa jako przełącznik, który może włączać i wyłączać przepływ prądu w cyklu AC, co pozwala na skuteczną kontrolę energii bez strat mocy. Dodatkowo, triaki są projektowane zgodnie z normami IEC, co zapewnia ich wysoką jakość i niezawodność. Znajomość triaków oraz ich zastosowań jest niezbędna dla inżynierów i techników, którzy pracują w dziedzinie elektroniki i automatyki.

Pytanie 17

Na której ilustracji przedstawiono zawór odcinający?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 2.
D. Na ilustracji 1.
Ilustracja 1 przedstawia zawór odcinający, który jest niezbędnym elementem w wielu systemach inżynieryjnych. Zawory odcinające służą do całkowitego zatrzymywania lub umożliwiania przepływu medium, takiego jak woda, gaz czy olej. Dzięki swojej konstrukcji, pozwalają na szybkie i efektywne zamknięcie przepływu, co jest kluczowe w sytuacjach awaryjnych, gdzie może być konieczne natychmiastowe odcięcie zasilania lub przepływu. W praktyce stosuje się je w instalacjach wodociągowych, przemysłowych systemach hydraulicznych oraz w instalacjach gazowych. Ważne jest, aby wybrać odpowiedni rodzaj zaworu odcinającego, dostosowany do specyfiki medium oraz warunków pracy. Zawory te powinny spełniać normy branżowe, takie jak PN-EN 13774, które określają wymagania dla zaworów używanych w systemach instalacyjnych. W kontekście bezpieczeństwa, zawory odcinające są często elementem systemów zabezpieczających, co podkreśla ich istotną rolę w inżynierii i technice.

Pytanie 18

Jak należy skojarzyć w napędzie urządzenia mechatronicznego uzwojenie stojana silnika o przedstawionej tabliczce zaciskowej, obciążonego znamionowo i jak podłączyć do sieci 400 V 3/N/PE ~ 50 Hz, aby jego wał obracał się w lewo?

Ilustracja do pytania
A. W trójkąt i podłączyć U – L1, V – L3, W – L2
B. W gwiazdę i podłączyć U – L1, V – L2, W – L3
C. W gwiazdę i podłączyć U – L1, V – L3, W – L2
D. W trójkąt i podłączyć U – L1, V – L2, W – L3
Podłączenie silnika w gwiazdę (Y) nie jest odpowiednie, gdyż zmienia to charakterystykę pracy silnika i może nie zapewnić jego prawidłowego działania przy zamierzonym kierunku obrotów. W sytuacji, gdy podłączamy silnik w tę konfigurację, uzwojenia są połączone w taki sposób, że zmniejsza się napięcie na każdym z uzwojeń, co prowadzi do mniejszego momentu obrotowego. To z kolei skutkuje utrudnieniem osiągnięcia wymaganego kierunku rotacji. Typowym błędem jest nieprzemyślane podejście do koncepcji połączeń elektrycznych, gdzie operatorzy zakładają, że mogą dowolnie zmieniać konfigurację bez uwzględnienia więzi między napięciem a momentem obrotowym. W przypadku podłączenia, które sugeruje, aby L1, L2 i L3 były podłączone w różnych kombinacjach, często nie uwzględnia się, że zmiana jednolitego kierunku przepływu prądu jest kluczowa dla ustalenia kierunku obrotów, co w kontekście silników elektrycznych o budowie asynchronicznej jest fundamentalne. Przykłady nieprawidłowych połączeń mogą prowadzić do przegrzewania się silnika, co w konsekwencji może prowadzić do uszkodzeń i wyłączeń awaryjnych, co jest kosztowne dla przemysłu. Z tego powodu znajomość poprawnych metod podłączenia oraz ich wpływu na działanie silnika jest niezbędna w pracy na stanowiskach związanych z automatyką i elektrotechniką.

Pytanie 19

Którego z wymienionych narzędzi należy użyć do odkręcenia śruby przedstawionej na ilustracji?

Ilustracja do pytania
A. Wkrętaka z końcówką torx.
B. Klucza płaskiego.
C. Wkrętaka z końcówką krzyżową.
D. Klucza imbusowego.
Wkrętak z końcówką torx jest narzędziem idealnie przystosowanym do pracy z śrubami torx, które mają sześcioramienną główkę. Jego konstrukcja pozwala na doskonałe dopasowanie do kształtu śruby, co z kolei minimalizuje ryzyko poślizgu i uszkodzenia zarówno narzędzia, jak i samej śruby. Wkrętak torx zapewnia również lepszy moment obrotowy w porównaniu do standardowych wkrętaków, co pozwala na skuteczniejsze odkręcanie lub przykręcanie śrub. W zastosowaniach przemysłowych i technicznych, śruby torx są często preferowane ze względu na ich wytrzymałość i zdolność do przenoszenia większych obciążeń. Dobór odpowiedniego narzędzia jest kluczowy dla efektywności prac montażowych czy serwisowych, a stosowanie wkrętaka torx w przypadku śrub tego typu jest zgodne z branżowymi standardami, co wpływa na jakość i bezpieczeństwo wykonywanych prac.

Pytanie 20

Ile minimalnie 8 bitowych portów we/wy powinien posiadać mikrokontroler PIC wyposażony w szeregowy
8-bitowy przetwornik analogowo-cyfrowy oznaczony ADC0831, aby można było zrealizować układ mechatroniczny przedstawiony na rysunku?

Ilustracja do pytania
A. 4 porty.
B. 5 portów.
C. 3 porty.
D. 2 porty.
Wybór większej liczby portów we/wy, niż dwa, świadczy o pewnym nieporozumieniu dotyczącym zasad komunikacji z przetwornikiem ADC0831 oraz sterowaniem silnikiem krokowym. Przy uwzględnieniu, że ADC0831 przesyła dane szeregowo, wystarczy jeden port do odbioru 8-bitowego sygnału cyfrowego. Wiele osób może błędnie przyjąć, że każdy sygnał sterujący wymaga oddzielnego portu, co nie jest prawdą. Zastosowanie jednego portu wyjściowego do przesyłania kombinacji sygnałów sterujących jest powszechną praktyką, która znacznie upraszcza projektowanie systemów mechatronicznych. Możliwe jest również zaimplementowanie dodatkowych sygnałów kontrolnych w ramach jednego portu poprzez odpowiednie kodowanie, co pozwala na dalszą oszczędność zasobów. Często w inżynierii zbyt duża liczba portów prowadzi do złożoności systemu, co może negatywnie wpływać na jego niezawodność i koszt produkcji. Ponadto, w kontekście projektów automatyki i robotyki, efektywne zarządzanie portami we/wy jest kluczowe, aby uniknąć sytuacji, w której system staje się nieefektywny i trudny do debugowania. Z tego względu, założenie większej liczby portów, jak np. 3, 4 czy 5, jest nieuzasadnione i niezgodne z dobrymi praktykami w projektowaniu układów mechatronicznych.

Pytanie 21

Jaki rodzaj zaworu powinien zostać zainstalowany w systemie, aby umożliwić przepływ medium wyłącznie w jednym kierunku?

A. Zwrotny
B. Bezpieczeństwa
C. Rozdzielający
D. Odcinający
Zawór zwrotny, znany również jako zawór jednokierunkowy, jest kluczowym elementem w wielu systemach hydraulicznych oraz pneumatycznych, którego głównym zadaniem jest umożliwienie przepływu medium w jednym kierunku, jednocześnie zapobiegając cofaniu się go. Działa na zasadzie automatycznej regulacji, co oznacza, że nie wymaga zewnętrznego źródła energii do działania. Zawory te są powszechnie stosowane w aplikacjach takich jak pompy, gdzie zapobiegają cofaniu się cieczy do pompy, co mogłoby prowadzić do uszkodzenia urządzenia. W praktyce, instalacje, które wymagają ciągłego przepływu medium w określonym kierunku, korzystają z zaworów zwrotnych, aby zapewnić ich efektywność i bezpieczeństwo. Ponadto, stosowanie zaworów zwrotnych jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ minimalizuje ryzyko awarii systemu oraz zapewnia jego stabilność operacyjną. W związku z tym, zawory zwrotne są niezbędnymi komponentami w systemach, gdzie kontrola kierunku przepływu medium jest krytyczna.

Pytanie 22

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
B. wylutowania uszkodzonej diody oraz wlutowania nowej diody
C. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
D. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. komutatora.
B. szczotek.
C. uzwojenia.
D. łożysk.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 25

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o częstotliwości 50 Hz na prąd stały
B. stały na prąd zmienny o regulowanej częstotliwości
C. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
D. trój fazowy na prąd jednofazowy
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jeśli w układzie na rysunku wyłącznik znajdzie się w pozycji I, to w rezystorze wydziela się moc o wartości około

Ilustracja do pytania
A. 5,8 W
B. 0,72 W
C. 0 W
D. 3,5 W
Odpowiedzi takie jak 0 W, 3,5 W czy 5,8 W mogą wynikać z typowych błędów w myśleniu o mocy w obwodach elektrycznych. Na przykład, 0 W sugeruje, że przy zamkniętym wyłączniku nie płynie żaden prąd, co jest nieprawda. Kiedy wyłącznik jest w pozycji I, to prąd faktycznie płynie przez rezystor i jego wartość można obliczyć z prawa Ohma. Odpowiedź 3,5 W pewnie powstała z błędnych założeń dotyczących napięcia lub rezystancji, co może prowadzić do mylnych wyników. A 5,8 W to może być efekt błędnego stosowania wzorów na moc, zazwyczaj przez nieprawidłowy pomiar prądu lub napięcia. Kluczowe przy obliczeniach elektrycznych jest zrozumienie relacji między napięciem, prądem a rezystancją. W praktyce, żeby uniknąć takich błędów, trzeba mieć dobre dane i rozumieć, jak one wpływają na wynik. Niezrozumienie tych podstawowych rzeczy może prowadzić do poważnych problemów przy projektowaniu obwodów i ich późniejszej eksploatacji, co może skutkować uszkodzeniami sprzętu i zagrożeniem bezpieczeństwa przy pracy z instalacjami.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. łożyskach ślizgowych
B. zaworach kulowych
C. hamulcach tarczowych
D. łożyskach kulkowych
Zasada smarowania hydrostatycznego w łożyskach ślizgowych polega na rozdzieleniu współpracujących powierzchni za pomocą cienkiej warstwy oleju, która tworzy klin smarny. Ten proces jest kluczowy dla minimalizacji tarcia oraz zużycia elementów. W łożyskach ślizgowych, podczas pracy, dochodzi do wytworzenia ciśnienia w oleju, co umożliwia uniesienie elementu ruchomego i zredukowanie kontaktu metal-metal. Przykłady zastosowania obejmują maszyny przemysłowe, takie jak tokarki czy frezarki, gdzie precyzyjne ruchy są kluczowe. Dobre praktyki w projektowaniu takich łożysk uwzględniają odpowiednie dobranie materiałów, które nie tylko zmniejszają tarcie, ale także zwiększają trwałość. Stosowanie smarowania hydrostatycznego pozwala na wydłużenie okresów między konserwacjami oraz zwiększenie efektywności energetycznej urządzeń, co jest zgodne z normami ISO 281 dotyczącymi trwałości łożysk.

Pytanie 30

Którego z wymienionych przyrządów pomiarowych należy użyć do wykonania pomiaru szerokości otworu nieprzelotowego, blisko dna otworu w sposób przedstawiony na rysunku?

Ilustracja do pytania
A. Przymiaru liniowego.
B. Wysokościomierza.
C. Średnicówki czujnikowej.
D. Głębokości omierza.
Średnicówka czujnikowa jest narzędziem najwyższej precyzji, które umożliwia dokładne pomiary średnicy wewnętrznej otworów, co jest kluczowe w zadaniach inżynieryjnych i produkcyjnych. Użycie tego przyrządu w kontekście pomiaru szerokości otworu nieprzelotowego blisko dna otworu jest uzasadnione, ponieważ średnicówka czujnikowa jest zaprojektowana do wykonywania pomiarów na określonej głębokości. Na przykład, w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie części ma kluczowe znaczenie, zastosowanie średnicówki czujnikowej pozwala inżynierom na dokładne określenie wymagań dotyczących tolerancji. Zgodnie z normami ISO 2768, które dotyczą tolerancji wymiarowej, precyzyjne pomiary są niezbędne, aby zapewnić jakość produktów. Średnicówki czujnikowe są wykorzystywane również w laboratoriach badawczych do oceny wyników prób materiałowych, co podkreśla ich wszechstronność i zastosowanie w różnych dziedzinach inżynierii.

Pytanie 31

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. nadprądowy zwłoczny
B. nadnapięciowy zwłoczny
C. podnapięciowy zwłoczny
D. różnicowoprądowy
Odpowiedź "podnapięciowy zwłoczny" jest poprawna, ponieważ ten rodzaj przekaźnika został zaprojektowany specjalnie w celu ochrony urządzeń przed niebezpiecznymi warunkami pracy, które mogą wystąpić po krótkotrwałym zaniku napięcia. Przekaźnik podnapięciowy działa na zasadzie monitorowania poziomu napięcia zasilania. Jeśli napięcie spadnie poniżej ustalonego progu, przekaźnik automatycznie odłącza zasilanie do silnika, co zapobiega jego przypadkowemu uruchomieniu w momencie, gdy napięcie wróci. Takie rozwiązanie jest niezwykle istotne w zastosowaniach przemysłowych, gdzie niekontrolowane uruchomienie silnika po zaniku zasilania może prowadzić do poważnych uszkodzeń sprzętu lub zagrożeń bezpieczeństwa. Przykładem zastosowania przekaźnika podnapięciowego mogą być systemy automatyki w zakładach produkcyjnych, gdzie nadzór nad stanem zasilania jest kluczowy dla ciągłości procesów produkcyjnych.

Pytanie 32

Które oczko, przygotowane do założenia na śrubę w tabliczce zaciskowej silnika, jest prawidłowo uformowane i wygięte we właściwym kierunku?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź B jest prawidłowa, ponieważ oczko to zostało odpowiednio uformowane i wygięte we właściwym kierunku, co jest kluczowe dla zapewnienia trwałego i bezpiecznego połączenia w tabliczce zaciskowej silnika. W kontekście praktycznym, oczka w instalacjach elektrycznych muszą być zamknięte, co chroni przed przypadkowym wysunięciem się z połączenia, a ich kształt powinien być dostosowany do specyfikacji producenta urządzenia, co jest zgodne z normami bezpieczeństwa. Właściwe uformowanie oczka wpływa również na efektywność przewodzenia prądu, co jest niezbędne w kontekście dużych obciążeń. Przykładowo, podczas montażu silnika, użycie niewłaściwie uformowanego oczka może prowadzić do przegrzewania się połączenia, co z kolei może skutkować uszkodzeniem komponentów elektrycznych. W związku z tym, zgodność z normami, takimi jak IEC 60947-1, jest kluczowa dla zapewnienia wysokiej jakości i bezpieczeństwa instalacji elektrycznych.

Pytanie 33

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. jednym kluczem nasadowym
B. dwoma kluczami nasadowymi
C. jednym kluczem płaskim
D. dwoma kluczami płaskimi
Użycie dwóch kluczy płaskich do zabezpieczenia połączeń gwintowych poprzez zastosowanie przeciwnakrętki jest standardową praktyką w branży. Dwa klucze płaskie pozwalają na jednoczesne blokowanie nakrętki oraz przeciwnakrętki, co minimalizuje ryzyko ich samoczynnego odkręcenia. W praktyce, jeden klucz jest używany do obracania nakrętki, podczas gdy drugi klucz stabilizuje przeciwnakrętkę. Tego typu połączenia są powszechnie stosowane w mechanice, budownictwie oraz inżynierii, gdzie obciążenia i wibracje mogą prowadzić do poluzowania elementów. Zastosowanie dwóch kluczy płaskich jest zgodne z zasadami dobrej praktyki inżynieryjnej, które podkreślają znaczenie prawidłowego montażu i konserwacji połączeń gwintowych. Ważne jest również, aby używać kluczy o odpowiednim rozmiarze, co zapewnia właściwe dopasowanie oraz minimalizuje ryzyko uszkodzenia zarówno gwintów, jak i narzędzi. Takie podejście jest kluczowe dla zapewnienia trwałości i niezawodności połączeń mechanicznych.

Pytanie 34

Które źródło służy do bezpośredniego zasilania urządzenia wskazanego na rysunku strzałką?

Ilustracja do pytania
A. Zasilacz pneumatyczny.
B. Zasilacz hydrauliczny.
C. Prądnica elektryczna.
D. Silnik spalinowy.
Zasilacz hydrauliczny jest odpowiednim źródłem zasilania dla urządzenia, które widoczne jest na zdjęciu, ponieważ prasa hydrauliczna wymaga specyficznego medium roboczego, jakim jest płyn hydrauliczny. Zasilacz hydrauliczny dostarcza nie tylko odpowiednie ciśnienie, ale także umożliwia precyzyjne sterowanie ruchem i siłą nacisku, co jest kluczowe w aplikacjach przemysłowych. Standardy branżowe, takie jak ISO 4413, określają wymagania dotyczące systemów hydraulicznych, zapewniając ich bezpieczeństwo, skuteczność oraz minimalizację ryzyka awarii. Przykładem praktycznym jest wykorzystywanie pras hydraulicznych w obróbce metali, gdzie siła generowana przez zasilacz hydrauliczny umożliwia formowanie i gięcie materiałów. Zastosowanie zasilania hydraulicznego w tych urządzeniach podkreśla jego znaczenie dla efektywności i precyzji w procesach produkcyjnych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. V
B. V/(obr./min)
C. obr./min
D. Hz
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Teleskopowa
B. Tłokowa z jednostronnym tłoczyskiem
C. Nurnikowa
D. Tłokowa z dwustronnym tłoczyskiem
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 39

Filtr o charakterystyce pasmowo-zaporowej

A. tłumi sygnały o niskich częstotliwościach.
B. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
C. przepuszcza sygnały o niskich częstotliwościach.
D. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
Filtr pasmowo-zaporowy to urządzenie elektroniczne, które ma na celu tłumienie sygnałów o częstotliwościach znajdujących się w określonym pasmie, co czyni go niezwykle przydatnym w różnych zastosowaniach inżynieryjnych. Działa on na zasadzie eliminacji zakłóceń, które mogą wpływać na jakość sygnału w systemach komunikacyjnych, audio oraz telewizyjnych. Przykładami zastosowania filtrów pasmowo-zaporowych są systemy audio, gdzie eliminuje się szumy z zakresu częstotliwości, które nie są potrzebne dla jakości dźwięku, oraz w telekomunikacji, gdzie pozwala to na poprawę jakości odbioru sygnałów bez zakłóceń. W kontekście standardów branżowych, filtry pasmowo-zaporowe są zgodne z normami ITU (Międzynarodowa Unia Telekomunikacyjna) i IEEE, co zapewnia ich efektywność oraz kompatybilność w różnych systemach. Warto także pamiętać, że konstrukcja tych filtrów może być zrealizowana zarówno w technologii analogowej, jak i cyfrowej, co zwiększa ich wszechstronność w nowoczesnych aplikacjach.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.