Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 2 lutego 2026 13:38
  • Data zakończenia: 2 lutego 2026 13:58

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. fale radiowe o częstotliwości 2,4 GHz
B. fale radiowe o częstotliwości 5 GHz
C. kabel koncentryczny o średnicy ¼ cala
D. kabel UTP kategorii 5e
Kabel koncentryczny o średnicy ¼ cala, choć używany w niektórych aplikacjach sieciowych, nie spełnia wymagań dotyczących maksymalnej szybkości transmisji 1 Gb/s w odległości 100 m. Kabel koncentryczny jest bardziej odpowiedni dla transmisji sygnałów telewizyjnych czy w niektórych systemach komunikacji, ale jego architektura nie pozwala na osiągnięcie takich prędkości w lokalnych sieciach komputerowych. Fale radiowe o częstotliwości 5 GHz oraz 2,4 GHz to technologie stosowane w sieciach bezprzewodowych, jednak nie zapewniają one stabilności i niezawodności połączeń na poziomie przewodowym, szczególnie na odległościach do 100 m. Częstotliwości te mogą być podatne na zakłócenia i zmniejszenie wydajności z uwagi na przeszkody fizyczne oraz zakłócenia od innych urządzeń. Dodatkowo, sieci bezprzewodowe często mają ograniczoną przepustowość, a ich wydajność może znacznie różnić się w zależności od warunków środowiskowych. W związku z tym, dla zapewnienia stabilności i wysokiej prędkości transmisji, szczególnie w złożonych środowiskach biurowych, korzystanie z kabla UTP kategorii 5e stanowi najlepszy wybór. Sympatyzowanie z technologią bezprzewodową w miejscu, gdzie nie jest to konieczne, prowadzi do nieefektywności i potencjalnych problemów z wydajnością sieci.

Pytanie 2

Komputery K1 i K2 nie mogą się komunikować. Adresacja urządzeń jest podana w tabeli. Co należy zmienić, aby przywrócić komunikację w sieci?

UrządzenieAdresMaskaBrama
K110.0.0.2255.255.255.12810.0.0.1
K210.0.0.102255.255.255.19210.0.0.1
R1 (F1)10.0.0.1255.255.255.128
R1 (F2)10.0.0.101255.255.255.192
Ilustracja do pytania
A. Maskę w adresie dla K1.
B. Maskę w adresie dla K2.
C. Adres bramy dla K1.
D. Adres bramy dla K2.
Wybór niewłaściwego adresu bramy dla K2 może wydawać się logiczny, lecz jest to zrozumienie, które nie uwzględnia zasadności adresowania w sieciach. Na przykład, zmiana adresu bramy dla K1 nie rozwiąże problemu, ponieważ K1 jest właściwie skonfigurowany w swojej podsieci i ma poprawny adres bramy. W rzeczywistości, cała komunikacja w sieci IP opiera się na koncepcji podsieci i adresów bramowych, które muszą współdziałać, aby umożliwić przesyłanie pakietów danych. Dla K2, który należy do innej podsieci z powodu przypisania mu maski 255.255.255.192, kluczowe jest, aby jego adres bramy znajdował się w tej samej podsieci. Zmiana maski dla K1 lub K2 na inne wartości nie naprawi sytuacji, ponieważ nie zmieni to faktu, że adresy IP są zdefiniowane w różnych podsieciach. Typowym błędem w analizie adresów IP jest zakładanie, że zmiana parametrów na jednym urządzeniu automatycznie wpłynie na inne. W praktyce, aby zapewnić poprawną komunikację, należy zadbać o to, aby wszystkie urządzenia, które mają się komunikować, znajdowały się w tej samej podsieci lub miały właściwie skonfigurowane adresy bram, co jest fundamentalną zasadą w inżynierii sieciowej. Bez tego, komunikacja między urządzeniami będzie niemożliwa, co jest krytycznym aspektem projektowania i zarządzania sieciami komputerowymi.

Pytanie 3

Jakie polecenie pozwoli na wyświetlenie ustawień interfejsu sieciowego w systemie Linux?

A. traceroute
B. iproute show
C. ipconfig
D. ipaddr show
Odpowiedzi takie jak 'ipconfig', 'traceroute' i 'iproute show' to powszechne źródła nieporozumień, które mogą prowadzić do błędnych wniosków w kontekście administracji siecią w systemie Linux. 'ipconfig' jest poleceniem, które działa w systemach Windows i służy do wyświetlania konfiguracji sieciowej, co może wprowadzać w błąd użytkowników, którzy są przyzwyczajeni do pracy w tym środowisku. W systemie Linux zamiast tego używa się polecenia 'ip addr' lub 'ip addr show', które jest bardziej wszechstronne i dostarcza szczegółowych informacji o konfiguracji interfejsów. 'Traceroute' to narzędzie do diagnozowania tras pakietów w sieci, które pokazuje, przez jakie węzły przechodzą dane, ale nie dostarcza informacji o konfiguracji lokalnych interfejsów sieciowych, co czyni je nieodpowiednim w tym kontekście. 'Iproute show' to nieco bliższe polecenie, ale również niepoprawne w tym przypadku, ponieważ 'iproute' dotyczy bardziej ogólnych informacji o routingu i nie wyświetla dokładnych informacji o samych interfejsach. Typowym błędem myślowym jest mylenie funkcji różnych poleceń, co może prowadzić do nieefektywnego rozwiązywania problemów sieciowych. Dlatego kluczowe jest zrozumienie, jakie narzędzia są dostępne i jak je prawidłowo wykorzystać w kontekście administracji siecią w systemie Linux.

Pytanie 4

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Repeater (regenerator sygnału)
B. Router
C. Switch
D. Punkt dostępowy (Access Point)
Wiele osób myli funkcje podstawowych urządzeń sieciowych, co prowadzi do błędnych założeń dotyczących segmentacji. <strong>Switch</strong> działa głównie w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Jego głównym zadaniem jest przełączanie ramek w obrębie jednej sieci lokalnej (VLAN), a nie segmentacja na poziomie IP. Co prawda, istnieją switche warstwy trzeciej, które potrafią segmentować ruch na poziomie sieciowym, ale standardowo przyjmuje się, że switch nie jest urządzeniem do segmentacji warstwy trzeciej. <strong>Repeater</strong> to urządzenie jeszcze prostsze – działa w warstwie pierwszej i służy tylko do wzmacniania sygnału, bez jakiejkolwiek analizy czy rozdzielania ruchu. Nie wprowadza żadnej segmentacji ani logiki sieciowej. <strong>Punkt dostępowy</strong> (Access Point) odpowiada za umożliwienie urządzeniom bezprzewodowym dołączenie do sieci lokalnej, również operuje na niższych warstwach (głównie warstwa druga i warstwa fizyczna). Nie segmentuje ruchu IP, przekazuje jedynie sygnał dalej do sieci przewodowej. Typowym błędem jest mylenie funkcji tych urządzeń, zwłaszcza gdy w praktyce wiele z nich bywa zintegrowanych w jednym sprzęcie domowym (np. router Wi-Fi z wbudowanym switchem i access pointem). Jednak w kontekście profesjonalnych sieci, każde z tych urządzeń ma jasno określoną rolę i tylko router (lub zaawansowany switch L3) umożliwia segmentację na poziomie warstwy trzeciej. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe przy projektowaniu wydajnej i bezpiecznej infrastruktury sieciowej, bo pomyłki na tym etapie mogą prowadzić do poważnych problemów z bezpieczeństwem, wydajnością czy zarządzaniem ruchem.

Pytanie 5

Z jakiego powodu adres 192.168.100.127 nie może zostać przypisany jako adres komputera w sieci 192.168.100.0/25?

A. Nie jest to adres prywatny dla tej sieci
B. To adres pętli zwrotnej danego komputera
C. Nie wchodzi w skład zakresu adresów tej sieci
D. To adres rozgłoszeniowy w tej sieci
Istnieje kilka powszechnych nieporozumień dotyczących klasyfikacji adresów IP, które mogą prowadzić do błędnych wniosków na temat przydzielania adresów w sieciach. Adres IP 192.168.100.127 nie jest adresem prywatnym sieci, jednak to nie jest właściwy powód, aby stwierdzić, że nie może być przydzielony w danej sieci. W rzeczywistości, adresy z zakresu 192.168.0.0 do 192.168.255.255 są uznawane za prywatne, zgodnie z definicją zawartą w standardzie RFC 1918 i mogą być używane w sieciach lokalnych. Z drugiej strony, bycie adresem pętli zwrotnej również nie ma zastosowania w tym przypadku, ponieważ adres 127.0.0.1 jest standardowym adresem pętli zwrotnej, a nie 192.168.100.127. Adres 192.168.100.127 jest po prostu adresem rozgłoszeniowym i jego znaczenie musi być zrozumiane w kontekście podziału na podsieci. Wiele osób błędnie interpretuje adres w kontekście jego prywatności lub roli w komunikacji, co prowadzi do mylnych konkluzji. Kluczowe jest, aby zrozumieć architekturę sieci oraz zasady przydzielania adresów, aby unikać takich nieporozumień. Właściwe przypisanie adresów IP oraz ich klasyfikacja w kontekście rozgłoszenia, sieci i hostów to fundamenty, które każdy specjalista IT powinien opanować, aby efektywnie zarządzać sieciami komputerowymi.

Pytanie 6

Jakie znaczenie ma zapis /26 w adresie IPv4 192.168.0.0/26?

A. Liczba bitów o wartości 0 w adresie
B. Liczba bitów o wartości 0 w masce
C. Liczba bitów o wartości 1 w adresie
D. Liczba bitów o wartości 1 w masce
Ta odpowiedź jest jak najbardziej trafna, bo zapis /26 oznacza, że w masce podsieci adresu IPv4 192.168.0.0 mamy 26 bitów o wartości 1. W skrócie, maska podsieci jest bardzo ważna, bo pozwala nam określić, która część adresu to sieć, a która to urządzenia. Kiedy mamy maskę /26, to pierwsze 26 bitów to właśnie bity maski, a zostałe 6 bitów (32 minus 26) możemy użyć do adresowania hostów. To w praktyce znaczy, że w takiej podsieci możemy mieć maks 64 adresy IP, z czego 62 będą dostępne dla urządzeń, bo musimy usunąć adres sieci i adres rozgłoszeniowy. Taka maska przydałaby się w małej sieci biurowej, gdzie nie ma więcej niż 62 urządzenia, więc zarządzanie adresami IP jest łatwiejsze. Dobrze jest pamiętać, że odpowiednie wykorzystanie maski podsieci może znacznie poprawić ruch w sieci oraz efektywność wykorzystania zasobów.

Pytanie 7

Simple Mail Transfer Protocol to protokół odpowiedzialny za

A. synchronizację czasu pomiędzy komputerami
B. obsługę odległego terminala w architekturze klient-serwer
C. przekazywanie poczty elektronicznej w Internecie
D. zarządzanie grupami multicastowymi w sieciach opartych na protokole IP
Błędne odpowiedzi sugerują nieporozumienia dotyczące podstawowych funkcji i zastosowań różnych protokołów w sieciach komputerowych. Zarządzanie grupami multicastowymi w sieciach IP jest realizowane przez protokoły takie jak Internet Group Management Protocol (IGMP) oraz Protocol Independent Multicast (PIM). Te protokoły są używane do zarządzania transmisją danych do wielu odbiorców jednocześnie, co jest istotne w aplikacjach takich jak strumieniowanie wideo czy konferencje online. Synchronizacja czasu pomiędzy komputerami odbywa się za pomocą protokołu Network Time Protocol (NTP), który zapewnia dokładne i skoordynowane zegary w sieciach komputerowych. Protokół ten jest kluczowy w systemach, gdzie precyzyjny czas ma znaczenie, na przykład w transakcjach finansowych czy rejestracji zdarzeń. Obsługa odległego terminala w architekturze klient-serwer polega na wykorzystaniu protokołów takich jak SSH (Secure Shell) lub RDP (Remote Desktop Protocol), które umożliwiają zdalny dostęp do zasobów komputerowych z zachowaniem bezpieczeństwa danych. Zrozumienie różnicy między tymi protokołami a SMTP jest kluczowe, aby unikać mylnych interpretacji ich funkcji i zastosowania w sieciach. Niepoprawne odpowiedzi wynikały z niepełnego zrozumienia, jakie protokoły są odpowiedzialne za konkretne funkcje w komunikacji sieciowej. Wiedza na temat protokołów jest niezbędna, aby skutecznie zarządzać infrastrukturą IT oraz rozwiązywać problemy związane z komunikacją w sieciach.

Pytanie 8

Jakie zakresy adresów IPv4 można zastosować jako adresy prywatne w lokalnej sieci?

A. 200.186.0.0 ÷ 200.186.255.255
B. 172.16.0.0 ÷ 172.31.255.255
C. 127.0.0.0 ÷ 127.255.255.255
D. 168.172.0.0 ÷ 168.172.255.255
Odpowiedzi, które nie dotyczą zakresu 172.16.0.0 do 172.31.255.255, nie są adresami prywatnymi. Na przykład, zakres 127.0.0.0 do 127.255.255.255 jest zarezerwowany dla adresów loopback, co oznacza, że jest wykorzystywany do komunikacji wewnętrznej samego urządzenia. Adresy te nie nadają się do sieci lokalnej, bo działają tylko w ramach jednego komputera. Kolejny zły przykład to zakres 200.186.0.0 do 200.186.255.255, który to już są publiczne adresy IP. One mogą być routowane w Internecie i są zarządzane przez odpowiednie organizacje. Używanie takich adresów w lokalnej sieci nie tylko łamie zasady, ale też może spowodować konflikty i problemy z zarządzaniem. No i ten ostatni zakres 168.172.0.0 do 168.172.255.255 też nie jest uznawany za prywatny, bo nie wchodzi w te zdefiniowane przez RFC 1918. Wybieranie złych odpowiedzi często wynika z braku wiedzy o klasyfikacji adresów IP i mylenia ich zastosowania w sieciach.

Pytanie 9

Użytkownicy z grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku na systemie operacyjnym Windows Server. Przydzielone mają tylko uprawnienia "Zarządzanie dokumentami". Co należy wykonać, aby rozwiązać ten problem?

A. Należy dla grupy Pracownicy przypisać uprawnienia "Drukuj"
B. Należy dla grupy Administratorzy anulować uprawnienia "Zarządzanie drukarkami"
C. Należy dla grupy Administratorzy usunąć uprawnienia "Drukuj"
D. Należy dla grupy Pracownicy anulować uprawnienia "Zarządzanie dokumentami"
Aby umożliwić użytkownikom z grupy Pracownicy drukowanie dokumentów, niezbędne jest nadanie im odpowiednich uprawnień. Uprawnienie 'Drukuj' jest kluczowe, ponieważ pozwala na wysyłanie dokumentów do drukarki. W przypadku, gdy użytkownik ma przydzielone wyłącznie uprawnienia 'Zarządzanie dokumentami', może jedynie zarządzać już wydrukowanymi dokumentami, ale nie ma możliwości ich drukowania. Standardową praktyką w zarządzaniu dostępem do zasobów jest stosowanie zasady minimalnych uprawnień, co oznacza, że użytkownik powinien mieć tylko te uprawnienia, które są niezbędne do wykonywania jego zadań. W sytuacji, gdy użytkownicy nie mogą drukować, kluczowe jest zrozumienie, że ich ograniczenia w zakresie uprawnień są główną przyczyną problemu. Nadanie uprawnienia 'Drukuj' użytkownikom z grupy Pracownicy pozwoli im na wykonywanie niezbędnych operacji, co jest zgodne z najlepszymi praktykami zarządzania systemami operacyjnymi i serwerami wydruku.

Pytanie 10

Adres IPv6 pętli zwrotnej to adres

A. ::
B. FC80::
C. ::1
D. FE80::
Wybór innych adresów pokazuje, że coś tu nie zrozumiałeś, jeśli chodzi o IPv6. Adres zerowy, czyli ::, dostaje się w momencie, gdy nie ma konkretnego adresu, więc użycie go jako pętli zwrotnej to duża pomyłka. Przez to nie wiadomo, do jakiego interfejsu to prowadzi. W konfiguracji sieci może być z tym sporo kłopotów. Z kolei adresy FC80:: i FE80:: to lokalne adresy, które są używane w lokalnej sieci, ale nie są przeznaczone do pętli zwrotnej. Wiele osób się w tym myli, co potem rodzi błędne ustawienia i problemy z diagnostyką. Adres pętli zwrotnej jest zupełnie inny, bo chodzi o komunikację wewnętrzną w urządzeniu. Musisz mieć na uwadze, że znajomość różnic między tymi adresami jest kluczowa, kiedy projektujesz coś związanego z siecią. Niewłaściwy adres może naprawdę namieszać w komunikacji i dostępności usług. Więc warto być czujnym na te detale!

Pytanie 11

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. CNAME
B. MX
C. A
D. AAAA
Wybór rekordu MX, CNAME czy A zamiast AAAA do odwzorowania nazw domen na adresy IPv6 to spora pomyłka. Rekord MX to przecież serwery pocztowe dla danej domeny, więc w ogóle się nie nadaje do adresów IP. Z kolei rekordy CNAME służą do aliasowania nazw, co też nie ma sensu w tym kontekście. Rekord A również nie jest pomocny, bo on działa tylko z IPv4. Zrozumienie tych różnic jest kluczowe, bo brak odpowiedniego rekordu AAAA w DNS sprawi, że użytkownicy z IPv6 nie będą mogli się połączyć z serwisem. To częsty błąd – myślenie, że wszystkie rekordy DNS mają takie same zastosowania. W rzeczywistości każdy typ rekordu ma swój cel, a korzystanie z nich na właściwy sposób to podstawa w administrowaniu siecią.

Pytanie 12

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11b
B. IEEE 802.11n
C. IEEE 802.11g
D. IEEE 802.11a
Standard IEEE 802.11n, wprowadzony w 2009 roku, pozwala na osiąganie znacznie wyższych prędkości transmisji danych, przekraczających 54 Mbps. Główne cechy tego standardu to zastosowanie technologii MIMO (Multiple Input Multiple Output), która umożliwia równoległe przesyłanie danych przez wiele anten. Dzięki temu, IEEE 802.11n może osiągać przepustowości sięgające 600 Mbps w idealnych warunkach. W praktyce standard ten jest szeroko stosowany w domowych sieciach Wi-Fi, biurach oraz miejscach publicznych, gdzie zróżnicowane urządzenia wymagają stabilnego i szybkiego dostępu do Internetu. Dodatkowo, 802.11n obsługuje szerokość kanału do 40 MHz, co również zwiększa wydajność sieci. Implementacja tego standardu w urządzeniach, takich jak routery, karty sieciowe oraz punkty dostępowe, zgodnie z najlepszymi praktykami branżowymi, zapewnia nie tylko wyższą prędkość, ale również lepszą stabilność połączenia, co jest kluczowe w dobie rosnącej liczby urządzeń mobilnych korzystających z sieci bezprzewodowych.

Pytanie 13

Standard Transport Layer Security (TLS) stanowi rozwinięcie protokołu

A. Session Initiation Protocol (SIP)
B. Security Shell (SSH)
C. Secure Socket Layer (SSL)
D. Network Terminal Protocol (telnet)
Protokół Security Shell (SSH) jest narzędziem używanym do zdalnego zarządzania systemami komputerowymi, zapewniającym bezpieczną komunikację poprzez szyfrowanie danych. Nie jest on jednak związany z protokołem TLS, który jest przeznaczony przede wszystkim do zabezpieczania komunikacji w sieci, szczególnie w kontekście aplikacji internetowych. Protokół SSH skupia się na zdalnym dostępie i weryfikacji użytkowników, co różni go od zastosowania TLS. Inna odpowiedź, Session Initiation Protocol (SIP), dotyczy zarządzania sesjami komunikacyjnymi, takimi jak połączenia VoIP. SIP nie jest związany z zabezpieczaniem danych ani z transmisją ich w sposób zaszyfrowany, co czyni go nieodpowiednim w kontekście pytania o TLS. Network Terminal Protocol (telnet), z kolei, to stary protokół, który nie oferuje żadnych mechanizmów szyfrowania, przez co jest uznawany za niebezpieczny w nowoczesnych zastosowaniach. Wybór błędnych odpowiedzi często wynika z mylenia różnych protokołów komunikacyjnych oraz ich zastosowań. Kluczowym błędem jest brak zrozumienia, że TLS, jako protokół bezpieczeństwa, koncentruje się na ochronie danych podczas ich transmisji, a nie na zarządzaniu sesjami czy zdalnym dostępie. Wiedza o właściwym zastosowaniu tych protokołów oraz ich funkcjach jest zasadnicza w kontekście bezpieczeństwa w sieci.

Pytanie 14

Jak brzmi pełny adres do logowania na serwer FTP o nazwie http://ftp.nazwa.pl?

A. ftp:\ftp.nazwa.pl/
B. http://ftp.nazwa.pl/
C. ftp://ftp.nazwa.pl/
D. http:\ftp.nazwa.pl/
W analizie niepoprawnych odpowiedzi na pytanie dotyczące adresu logowania do serwera FTP, można zauważyć kilka kluczowych błędów. W pierwszej z błędnych opcji zastosowano nieprawidłowy format adresu, używając podwójnego ukośnika w wersji ftp:\ftp.nazwa.pl. Ukośnik w adresie URL powinien być skierowany w prawo (/) w przypadku protokołu FTP, a nie w lewo. To nieporozumienie może wynikać z mylenia składni adresów URL z innymi konwencjami w systemach operacyjnych, gdzie czasami stosuje się odwrotne ukośniki jako separator. Kolejna niepoprawna odpowiedź używa protokołu HTTP zamiast FTP. HTTP jest protokołem przystosowanym do przesyłania stron internetowych, a nie plików, co może prowadzić do błędnego zrozumienia, jak działają różne protokoły sieciowe. Zastosowanie HTTP w kontekście FTP niczego nie zmienia w samej funkcjonalności serwera i prowadzi do nieporozumień w zakresie zarządzania plikami. Na zakończenie, inny błąd w identyfikacji adresu występuje w postaci użycia niepoprawnego separatora w formie http:\ftp.nazwa.pl. Tego rodzaju nieścisłości mogą być wynikiem nieznajomości podstawowych zasad budowy adresów URL oraz ich zastosowania w kontekście różnych protokołów. W praktyce, zrozumienie różnic między tymi protokołami oraz zasad ich konstruowania jest kluczowe dla efektywnego korzystania z sieci oraz rozwiązywania problemów związanych z połączeniami. Zachęcamy do zgłębiania tematu protokołów sieciowych oraz ich konfiguracji, co może znacząco poprawić umiejętności w zakresie zarządzania serwerami i przesyłania danych.

Pytanie 15

Jaki jest adres rozgłoszeniowy dla sieci 172.30.0.0/16?

A. 172.30.0.255
B. 172.0.255.255
C. 172.255.255.255
D. 172.30.255.255
Błędne odpowiedzi wynikają z nieporozumienia dotyczącego zasad obliczania adresu rozgłoszeniowego w kontekście CIDR. Adresy 172.255.255.255 oraz 172.0.255.255 wskazują na zupełnie inne sieci, co przypisuje je do klasy B i klasy A, a nie do klasy C, jak ma to miejsce w przypadku 172.30.0.0/16. W sieciach IP, adresy rozgłoszeniowe są obliczane jako ostatni adres w danym zakresie, a nie jako adresy typowe dla innych klas sieci. Z tego powodu, sugerowanie, że 172.255.255.255 lub 172.0.255.255 mogą być odpowiedzią, nie uwzględnia podstawowych zasad podziału adresów IP. Co więcej, adres 172.30.0.255 nie jest poprawny, ponieważ jest to adres rozgłoszeniowy dla sieci 172.30.0.0/24, a nie dla 172.30.0.0/16. W praktyce, zrozumienie tego, jak klasyfikowane są adresy IP i jak oblicza się adresy rozgłoszeniowe, jest kluczowe w kontekście zarządzania sieciami, ponieważ pozwala na właściwe planowanie i konfigurację infrastruktury sieciowej, co zapobiega marnotrawieniu zasobów oraz zapewnia efektywność operacyjną.

Pytanie 16

Jakie narzędzie należy zastosować do zakończenia kabli UTP w module keystone z wkładkami typu 110?

A. Zaciskarki do wtyków RJ45
B. Wkrętaka krzyżakowego
C. Wkrętaka płaskiego
D. Narzędzia uderzeniowego
Zastosowanie nieodpowiednich narzędzi do zarabiania końcówek kabla UTP w module keystone ze stykami typu 110 może prowadzić do wielu problemów, w tym do słabej jakości połączeń i awarii systemów. Wkrętak krzyżakowy, mimo że jest przydatny w wielu zastosowaniach, nie jest w stanie zapewnić odpowiedniego połączenia pomiędzy przewodami a stykami. Jego głównym przeznaczeniem jest dokręcanie lub odkręcanie śrub, co jest zupełnie inną funkcją niż mechaniczne wciśnięcie żył w styk. Zaciskarka do wtyków RJ45, na którą wielu może pomyśleć, jest narzędziem przeznaczonym do innego rodzaju połączeń, zazwyczaj stosowanych z wtykami RJ45, a nie do modułów keystone. Wkrętak płaski również nie jest odpowiedni, ponieważ nie ma mechanizmu uderzeniowego, który jest kluczowy w tym kontekście. Użycie niewłaściwego narzędzia może prowadzić do problemów z transmisją danych, takich jak zakłócenia sygnału czy niestabilność połączeń, co może negatywnie wpłynąć na całą infrastrukturę sieciową. W związku z tym, dla uzyskania wysokiej jakości i niezawodnych połączeń, kluczowe jest stosowanie narzędzia uderzeniowego zgodnie z ustalonymi standardami branżowymi.

Pytanie 17

Jaką rolę odgrywa ISA Server w systemie operacyjnym Windows?

A. Służy do rozwiązywania nazw domenowych
B. Pełni funkcję firewalla
C. Działa jako serwer stron internetowych
D. Stanowi system wymiany plików
ISA Server, czyli Internet Security and Acceleration Server, pełni kluczową rolę jako firewall w systemach operacyjnych Windows, zapewniając zaawansowaną ochronę sieci oraz kontrolę dostępu do zasobów. Jako firewall, ISA Server nie tylko blokuje nieautoryzowany ruch sieciowy, ale także monitoruje i filtruje dane, które przepływają między różnymi segmentami sieci. Dzięki funkcjom takim jak NAT (Network Address Translation), ISA Server ukrywa wewnętrzne adresy IP przed zewnętrznymi użytkownikami, co zwiększa bezpieczeństwo. W praktyce, administratorzy mogą definiować zasady dostępu, co pozwala na precyzyjne kontrolowanie, które aplikacje i usługi mogą komunikować się z siecią zewnętrzną. Przykładem zastosowania ISA Server może być organizacja, która chce ograniczyć dostęp do określonych stron internetowych, pozwalając jednocześnie na korzystanie z zasobów intranetowych. ISA Server oferuje również zaawansowane funkcje, takie jak monitoring ruchu oraz raportowanie, co umożliwia administratorom śledzenie potencjalnych zagrożeń oraz analizowanie wzorców użytkowania sieci. Te praktyki są zgodne z najlepszymi standardami bezpieczeństwa w branży IT, w tym z metodologią zarządzania ryzykiem według ISO/IEC 27001.

Pytanie 18

Które z poleceń w systemie Windows umożliwia sprawdzenie zapisanych w pamięci podręcznej komputera tłumaczeń nazw DNS na odpowiadające im adresy IP?

A. ipconfig /release
B. ipconfig /flushdns
C. ipconfig /renew
D. ipconfig /displaydns
Wybór 'ipconfig /release' to nie jest najlepszy pomysł, bo to polecenie zwalnia adres IP, a nie ma nic wspólnego z pamięcią podręczną DNS. To może wprowadzać w błąd, bo można pomyśleć, że na pewno coś zmienia w kontekście monitorowania tej pamięci. Z kolei polecenie 'ipconfig /flushdns' też nie jest dobre, bo ono służy do czyszczenia pamięci, a nie do jej wyświetlania. Ważne jest, żeby znać różnice między tymi poleceniami, bo czyszczenie to jedno, a sprawdzanie zawartości to zupełnie co innego. A 'ipconfig /renew' to też nie jest odpowiednia odpowiedź, bo odnawia ono dzierżawę adresu IP z serwera DHCP. Wiele osób się gubi w tych poleceniach, bo wszystkie zaczynają się od 'ipconfig', ale każde z nich ma inne zastosowanie. Dlatego warto wiedzieć, jakie polecenie kiedy użyć, żeby rozwiązywanie problemów z siecią było skuteczniejsze.

Pytanie 19

W jakiej usłudze serwera możliwe jest ustawienie parametru TTL?

A. HTTP
B. DHCP
C. FTP
D. DNS
Wybór odpowiedzi związanej z DHCP, FTP lub HTTP wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowań tych protokołów. DHCP (Dynamic Host Configuration Protocol) jest używany do automatycznego przydzielania adresów IP urządzeniom w sieci lokalnej. Chociaż DHCP odgrywa kluczową rolę w konfiguracji sieci, nie ma on związku z TTL, który dotyczy głównie przechowywania informacji o adresach w systemie DNS. FTP (File Transfer Protocol) jest protokołem służącym do przesyłania plików między komputerami w sieci, a jego mechanizm działania nie obejmuje żadnego zarządzania czasem przechowywania danych, co sprawia, że nie jest on właściwym kontekstem do analizy TTL. Z kolei HTTP (Hypertext Transfer Protocol) to protokół odpowiedzialny za przesyłanie danych w Internecie, szczególnie dla stron WWW i zasobów sieciowych, ale również nie dotyczy bezpośrednio TTL. Wybierając jedną z tych opcji, można łatwo wpaść w błąd, myśląc, że parametry związane z czasem przechowywania danych są dostępne w każdym z protokołów. Każdy z wymienionych protokołów ma swoje konkretne funkcje i zastosowania, które nie obejmują zarządzania pamięcią podręczną w kontekście DNS. Zrozumienie, które protokoły są odpowiedzialne za jakie aspekty komunikacji sieciowej, jest kluczowe dla poprawnego zarządzania infrastrukturą IT oraz dla unikania typowych błędów w konfiguracji usług sieciowych.

Pytanie 20

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 100Base–FX
B. 1000Base–TX
C. 10Base2
D. 100Base–T
Standard 100Base-FX jest odpowiedni w środowiskach, gdzie występują zakłócenia elektromagnetyczne, zwłaszcza w sytuacjach wymagających przesyłania sygnału na odległość do 200 m. Ten standard wykorzystuje światłowody, co znacząco zwiększa odporność na zakłócenia elektromagnetyczne w porównaniu do standardów opartych na miedzi, takich jak 100Base-T. W praktyce oznacza to, że w miejscach, gdzie instalacje elektryczne mogą generować zakłócenia, 100Base-FX jest idealnym rozwiązaniem. Przykładem zastosowania tego standardu mogą być instalacje w biurach znajdujących się w pobliżu dużych maszyn przemysłowych lub w środowiskach, gdzie wykorzystywane są silne urządzenia elektryczne. 100Base-FX obsługuje prędkość przesyłu danych do 100 Mb/s na dystansie do 2 km w kablu światłowodowym, co czyni go bardzo elastycznym rozwiązaniem dla różnych aplikacji sieciowych. Ponadto, stosowanie światłowodów przyczynia się do zminimalizowania strat sygnału, co jest kluczowe w przypadku dużych sieci korporacyjnych.

Pytanie 21

Jakie polecenie w systemie operacyjnym Linux pozwala na przypisanie istniejącego konta użytkownika nowak do grupy technikum?

A. usergroup -g technikum nowak
B. usermod -g technikum nowak
C. groups -g technikum nowak
D. useradd -g technikum nowak
Wszystkie inne odpowiedzi zawierają błędne podejścia do kwestii modyfikacji grup użytkowników w systemie Linux. Na przykład, polecenie 'groups -g technikum nowak' nie jest poprawne, ponieważ komenda 'groups' służy jedynie do wyświetlania grup, do których należy użytkownik, a nie do ich modyfikacji. Takie nieporozumienie może wynikać z mylnego przeświadczenia, że istnieje możliwość dodawania użytkowników do grup przy użyciu polecenia, które jest zaprojektowane do przeglądania informacji. Z kolei komenda 'useradd -g technikum nowak' jest nieodpowiednia, ponieważ 'useradd' służy do tworzenia nowych kont użytkowników, a nie do modyfikacji istniejących. Przypisanie grupy powinno być częścią procesu tworzenia nowego użytkownika, co różni się od aktualizacji istniejącego konta. Zastosowanie 'usergroup -g technikum nowak' również jest błędne, gdyż nie istnieje taka komenda w standardowym zestawie narzędzi Linux. Użytkownicy mogą nie być świadomi, że błędne polecenia mogą prowadzić do niezamierzonych efektów, takich jak niepoprawne zarządzanie uprawnieniami, co w dłuższej perspektywie może wpłynąć na bezpieczeństwo systemu. Dlatego ważne jest, aby zrozumieć, jakie polecenia są odpowiednie do konkretnego zadania, oraz aby korzystać z dokumentacji systemowej, aby uniknąć typowych pułapek w zarządzaniu użytkownikami.

Pytanie 22

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Przełącznik zarządzalny
B. Ruter z WiFi
C. Konwerter mediów
D. Punkt dostępu
Przełącznik zarządzalny (ang. managed switch) to urządzenie, które umożliwia tworzenie segmentów sieciowych, co pozwala na wydzielenie grup komputerów pracujących w tej samej sieci lokalnej (LAN), które mogą komunikować się ze sobą bezpośrednio. W przeciwieństwie do przełączników niezarządzalnych, przełączniki zarządzalne oferują szereg zaawansowanych funkcji, takich jak VLAN (Virtual Local Area Network), które umożliwiają izolację grupy w obrębie tej samej fizycznej infrastruktury. Dzięki tym funkcjom, administratorzy sieci mogą zarządzać ruchem danych oraz zwiększyć bezpieczeństwo poprzez ograniczenie komunikacji do wybranych urządzeń. Przykładem zastosowania może być środowisko biurowe, gdzie różne departamenty są odseparowane w swoich VLAN-ach, co zmniejsza ryzyko nieautoryzowanego dostępu do danych. Standardami, które często są stosowane w kontekście przełączników zarządzalnych, są IEEE 802.1Q dla VLAN oraz SNMP (Simple Network Management Protocol) do zarządzania siecią. Te praktyki są kluczowe w nowoczesnych infrastrukturach IT, gdzie zarządzanie ruchem i bezpieczeństwo danych są priorytetami.

Pytanie 23

Aplikacja, która pozwala na przechwytywanie pakietów oraz analizowanie aktywności w sieci, to

A. firewall
B. oprogramowanie antywirusowe
C. skaner Wifi
D. skaner sieci
Skaner sieci to narzędzie, które umożliwia przechwytywanie pakietów i monitorowanie ruchu w sieci, co czyni je niezwykle przydatnym w zarządzaniu bezpieczeństwem i diagnostyką sieci. Działa na zasadzie analizy transmisji danych, co pozwala na identyfikację potencjalnych zagrożeń, wykrywanie nieautoryzowanych urządzeń w sieci oraz monitorowanie wydajności. Przykładem zastosowania skanera sieci jest analiza ruchu w celu identyfikacji ataków DDoS, co pozwala na szybką reakcję i wdrożenie środków zaradczych. Dobre praktyki w branży rekomendują regularne korzystanie z takich narzędzi w celu zapewnienia integralności i bezpieczeństwa infrastruktury sieciowej. Skanery sieci są również kluczowe w procesie audytu bezpieczeństwa, gdzie umożliwiają ocenę podatności systemów oraz działanie zgodnie z normami takimi jak ISO 27001, które wskazują na potrzebę skutecznego monitorowania i zarządzania ryzykiem. Znalezienie odpowiedniego skanera sieciowego, który spełnia wymogi organizacyjne i techniczne, jest istotne dla efektywnej ochrony przed zagrożeniami.

Pytanie 24

Do zakończenia kabla skręcanego wtykiem 8P8C wykorzystuje się

A. zaciskarkę do wtyków RJ-45
B. narzędzie uderzeniowe
C. spawarkę światłowodową
D. zaciskarkę do złączy typu F
Zarówno spawarka światłowodowa, jak i narzędzie uderzeniowe nie są odpowiednimi narzędziami do zakończeń skrętek wtykiem 8P8C. Spawarka światłowodowa jest specjalistycznym urządzeniem przeznaczonym do łączenia włókien światłowodowych poprzez ich spawanie. Używanie tego narzędzia do zakończenia skrętek Ethernet jest nieodpowiednie, ponieważ nie posiada ono mechanizmu ani technologii do obsługi metalowych pinów w wtykach RJ-45. W kontekście sieci Ethernet, spawanie światłowodowe jest stosowane wyłącznie w odniesieniu do światłowodów, które mają zupełnie inne wymagania dotyczące zakończeń i interfejsów. Używanie narzędzia uderzeniowego, które jest przeznaczone do szybkiego kończenia kabli za pomocą bloków rozdzielczych, również nie jest stosowne dla wtyków RJ-45, które wymagają precyzyjnego i bezpiecznego zaciskania. Takie podejście często prowadzi do błędnych połączeń, co w efekcie może skutkować problemami z transmisją danych, zwiększoną ilością zakłóceń i obniżoną jakością sygnału. Typowym błędem myślowym jest przekonanie, że narzędzia przeznaczone do pracy z różnymi rodzajami kabli mogą być stosowane zamiennie, co jest niezgodne z zasadami inżynierii telekomunikacyjnej oraz dobrymi praktykami w instalacjach sieciowych.

Pytanie 25

Jaki argument komendy ipconfig w systemie Windows przywraca konfigurację adresów IP?

A. /displaydns
B. /flushdns
C. /renew
D. /release
/renew jest parametrem polecenia ipconfig, który służy do odnawiania konfiguracji adresu IP na komputerze z systemem Windows. Gdy połączenie z siecią jest aktywne, a komputer uzyskał adres IP z serwera DHCP, można użyć tego polecenia, aby poprosić serwer o nowy adres IP. Jest to szczególnie przydatne w sytuacjach, gdy adres IP został utracony, na przykład wskutek zmiany sieci, lub gdy chcemy uzyskać nową konfigurację w celu rozwiązania problemu z połączeniem. Przykładowo, w przypadku problemów z dostępem do internetu, użycie polecenia ipconfig /renew może pomóc w szybkim przywróceniu łączności, gdyż wymusza ponowne przydzielenie adresu IP. Standardy sieciowe, takie jak DHCP (Dynamic Host Configuration Protocol), zakładają, że urządzenia mogą dynamicznie uzyskiwać i odświeżać swoje adresy IP, co jest kluczowe w zarządzaniu siecią. Warto też wspomnieć, że po użyciu polecenia /renew, warto sprawdzić aktualny adres IP poleceniem ipconfig, aby upewnić się, że zmiany zostały wprowadzone.

Pytanie 26

Parametr, który definiuje stosunek liczby wystąpionych błędnych bitów do ogólnej liczby odebranych bitów, to

A. Bit Error Rate
B. Propagation Delay Skew
C. Return Loss
D. Near End Crosstalk
Bit Error Rate (BER) to kluczowy parametr w telekomunikacji, który określa stosunek liczby błędnych bitów do całkowitej liczby otrzymanych bitów. Mierzy on jakość transmisji danych oraz niezawodność systemów komunikacyjnych. Niska wartość BER jest pożądana, ponieważ wskazuje na wysoką jakość sygnału i efektywność przesyłania informacji. W zastosowaniach praktycznych, takich jak sieci komputerowe czy systemy satelitarne, monitorowanie BER pozwala na szybką identyfikację problemów związanych z zakłóceniami sygnału, co jest kluczowe dla utrzymania wysokiej jakości usług. Standardy, takie jak ITU-T G.826, definiują sposoby pomiaru BER oraz akceptowalne poziomy w różnych aplikacjach. Zrozumienie i kontrola BER pozwala inżynierom na projektowanie bardziej niezawodnych systemów oraz na świadome podejmowanie decyzji dotyczących wyboru technologii transmisji, co w praktyce przekłada się na lepsze doświadczenia użytkowników końcowych.

Pytanie 27

Technologia oparta na architekturze klient-serwer, która umożliwia połączenie odległych komputerów w sieci poprzez szyfrowany tunel, nazywa się

A. VLAN
B. VPN
C. WLAN
D. WAN
Technologia VPN (Virtual Private Network) umożliwia bezpieczne połączenie zdalnych komputerów w sieci przez szyfrowany tunel. Dzięki temu użytkownicy mogą przesyłać dane w sposób chroniony przed podsłuchiwaniem i dostępem nieautoryzowanych osób. VPN jest powszechnie stosowany w firmach, które umożliwiają pracownikom zdalny dostęp do zasobów sieciowych, zapewniając jednocześnie ochronę danych. Przykładem może być pracownik, który korzystając z publicznej sieci Wi-Fi w kawiarni, łączy się z siecią firmową przez VPN, co uniemożliwia hakerom przechwycenie jego danych. Standardy bezpieczeństwa, takie jak IPsec (Internet Protocol Security) oraz SSL/TLS (Secure Sockets Layer/Transport Layer Security), są często wykorzystywane w implementacjach VPN, co czyni tę technologię zgodną z najlepszymi praktykami branżowymi.

Pytanie 28

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 11 Mb/s
B. 108 Mb/s
C. 54 Mb/s
D. 150 Mb/s
Odpowiedzi takie jak 150 Mb/s, 11 Mb/s czy 108 Mb/s to niestety nieporozumienia. Przykładowo, 150 Mb/s nie pasuje do żadnego dobrze znanego standardu 802.11; to prędkość z 802.11n lub 802.11ac, ale nie 802.11g. Natomiast 11 Mb/s odnosi się do 802.11b, który był stosowany głównie przed 802.11g. 108 Mb/s to też chyba mylne wrażenie, bo to wartość z dodatkowego trybu w 802.11g, ale nie jest to maksymalna prędkość. Takie błędne myślenie często bierze się z mylenia różnych standardów i ich specyfikacji, co prowadzi do przypisania złej prędkości. Warto więc lepiej poznać różnice między standardami oraz ich zastosowaniem, aby nie wpaść w takie pułapki.

Pytanie 29

Punkty abonenckie są rozmieszczone w równych odstępach, do nawiązania połączenia z najbliższym punktem wymagane jest 4 m kabla, a z najdalszym - 22 m. Koszt zakupu 1 m kabla wynosi 1 zł. Jaką kwotę trzeba przeznaczyć na zakup kabla UTP do połączenia 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym?

A. 130 zł
B. 80 zł
C. 260 zł
D. 440 zł
Odpowiedzi takie jak 130 zł czy 440 zł wynikają raczej z niezrozumienia, jak to wszystko policzyć. Gdy mówisz, że 130 zł to pomijasz, że odległości do gniazd są różne. Myślenie, że wszystkie gniazda są w tej samej odległości, to błąd. Na przykład, średnia długość kabla to nie wszystko, bo każda odległość może być zupełnie inna i to może całkowicie zmienić koszty. Z kolei odpowiedź 440 zł, to chyba wynika z myślenia, że każde gniazdo musi mieć maksymalną długość kabla, co też jest mało prawdopodobne. W rzeczywistości, część gniazd jest bliżej i potrzebuje mniej kabla, więc koszty są niższe. W projektach instalacyjnych często jest tak, że ludzie przesadzają z zabezpieczeniem, przez co kupują więcej materiałów niż potrzebują. Zamiast tego, warto dokładnie pomierzyć i przeanalizować, co jest gdzie, żeby zmniejszyć wydatki. Opracowanie schematu instalacji to naprawdę dobra praktyka, bo ułatwia później wszystko zaplanować.

Pytanie 30

Ramka z danymi jest wysyłana z komputera K1 do komputera K2. Które adresy źródłowe IP oraz MAC będą w ramce wysyłanej z rutera R1 do R2?

IPMAC
K1192.168.1.10/241AAAAA
K2172.16.1.10/242BBBBB
R1 - interfejs F0192.168.1.1/24BBBBBB
R1 - interfejs F110.0.0.1/30CCCCCC
R2- interfejs F010.0.0.2/30DDDDDD
R2- interfejs F1172.16.1.1/24EEEEEE
Ilustracja do pytania
A. IP – 192.168.1.10; MAC – CCCCCC
B. IP – 192.168.1.10; MAC – 1AAAAA
C. IP – 10.0.0.1; MAC – CCCCCC
D. IP – 10.0.0.1; MAC – 1AAAAA
Wybór odpowiedzi IP – 10.0.0.1; MAC – CCCCCC jest niepoprawny, bo wprowadza trochę zamieszania dotyczącego tego, jak działają protokoły sieciowe. Po pierwsze, adres IP źródłowy nie powinien się zmieniać podczas przesyłania ramki przez ruter; zawsze powinien pokazywać oryginalnego nadawcę, czyli w tym przypadku komputer K1 z adresem 192.168.1.10. Wybierając 10.0.0.1 jako adres źródłowy IP, twierdzisz, że ramka pochodzi z innej sieci, co nie ma sensu w kontekście zarządzania siecią, gdyż adresy muszą być zgodne z subnetem. Co więcej, jeśli chodzi o MAC – CCCCCC, to zakładamy, że jest to adres MAC interfejsu, z którego ruter R1 wysyła ramkę; ale to nie zmienia faktu, że adres IP źródłowy powinien być prawidłowy. W podobnych sytuacjach 192.168.1.10 jako źródłowy IP jest dobrym wyborem, ale błędnie przypisane są adresy MAC, co prowadzi do mylnych wniosków o trasowaniu. Takie typowe błędy, jak mylenie adresów IP i MAC, mogą bardzo utrudnić zrozumienie jak działa sieć i mogą powodować problemy z jej zarządzaniem oraz przesyłaniem ruchu, co w praktyce wpływa na wydajność i bezpieczeństwo sieci.

Pytanie 31

Pierwsze trzy bity adresu IP w postaci binarnej mają wartość 010. Jaki to adres?

A. klasy C
B. klasy D
C. klasy A
D. klasy B
Adresy IP można klasyfikować w zależności od wartości ich najstarszych bitów. W przypadku adresu z wartością najstarszych trzech bitów równą 010 mówimy o adresie klasy A. Adresy klasy A mają zakres od 0.0.0.0 do 127.255.255.255 i są przeznaczone dla dużych sieci. W praktyce oznacza to, że adresy klasy A mogą obsługiwać ogromne liczby hostów, co jest szczególnie przydatne dla dużych organizacji i usługodawców internetowych. Standardy IETF definiują tę klasyfikację w dokumencie RFC 791, który opisuje całą strukturę adresowania IP. Dla lepszego zrozumienia, adresy klasy A używają maski podsieci 255.0.0.0, co oznacza, że pierwsza część adresu jest używana do identyfikacji sieci, a pozostałe części do identyfikacji hostów. Dzięki zrozumieniu tej klasyfikacji można lepiej projektować sieci i zasoby adresowe, co jest kluczowe w infrastrukturze informatycznej.

Pytanie 32

Jak nazywa się usługa, która pozwala na przekształcanie nazw komputerów w adresy IP?

A. NIS (Network Information Service)
B. DNS (Domain Name System)
C. WINS (Windows Internet Name Service)
D. DHCP (Dynamic Host Configuration Protocol)
Prawidłowa odpowiedź to DNS (Domain Name System), który jest kluczowym elementem infrastruktury internetowej, umożliwiającym tłumaczenie nazw domenowych na adresy IP. Bez DNS, korzystanie z Internetu byłoby znacznie trudniejsze, ponieważ użytkownicy musieliby zapamiętywać numeryczne adresy IP dla każdego zasobu online. DNS działa na zasadzie hierarchicznej struktury, w której poszczególne serwery DNS współpracują, aby dostarczyć odpowiednie informacje o adresach IP. Na przykład, kiedy wpisujesz adres www.example.com w przeglądarce, zapytanie DNS jest wysyłane do serwera DNS, który następnie zwraca odpowiadający mu adres IP, co pozwala na szybkie połączenie z odpowiednim serwisem. W praktyce, wiele organizacji korzysta z serwerów DNS, aby zapewnić łatwiejszy dostęp do swoich zasobów, a także do zarządzania rekordami DNS, co wpływa na wydajność i bezpieczeństwo sieci. Standaryzacja protokołu DNS, z jego rozbudowanymi funkcjami jak rekurencyjne zapytania czy strefy, jest kluczowym elementem nowoczesnej architektury sieciowej.

Pytanie 33

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN 50174
B. PN-EN50173
C. PN-EN 55022
D. PN-EN 50310
Norma PN-EN 50174 opisuje zasady projektowania i instalacji okablowania strukturalnego, które są kluczowe dla zapewnienia efektywności i niezawodności systemów telekomunikacyjnych. Ta norma obejmuje zarówno aspekty techniczne, jak i praktyczne wytyczne dotyczące instalacji kabli, ich rozmieszczenia oraz ochrony przed zakłóceniami. W kontekście budynków biurowych, zastosowanie PN-EN 50174 pozwala na zminimalizowanie strat sygnału oraz zwiększenie żywotności instalacji poprzez zastosowanie odpowiednich metod układania kabli. Na przykład, w przypadku instalacji w dużych biurowcach, stosowanie zgodnych z normą metod zarządzania kablami i ich trasowaniem pozwala na łatwiejsze późniejsze modyfikacje oraz serwisowanie. Dodatkowo, norma ta zwraca uwagę na aspekty bezpieczeństwa, co jest kluczowe w kontekście przepisów budowlanych oraz ochrony środowiska. Warto również wspomnieć, że PN-EN 50174 jest często stosowana w połączeniu z innymi normami, takimi jak PN-EN 50173, która dotyczy systemów okablowania strukturalnego w budynkach, co zapewnia kompleksowe podejście do tematu.

Pytanie 34

Jakie urządzenie pozwala na podłączenie drukarki bez karty sieciowej do sieci lokalnej komputerów?

A. Serwer wydruku
B. Punkt dostępu
C. Koncentrator
D. Regenerator
Podłączenie drukarki nieposiadającej karty sieciowej do lokalnej sieci komputerowej za pomocą koncentratora jest nieefektywne i nieodpowiednie. Koncentrator, znany również jako hub, to podstawowe urządzenie sieciowe, które jedynie rozdziela sygnały pomiędzy podłączone urządzenia, ale nie zapewnia im inteligentnego zarządzania ani kontroli dostępu. Nie ma możliwości, aby koncentrator umożliwił komunikację drukarki z siecią, jeśli nie ma w niej wbudowanej karty sieciowej. Z kolei regenerator, który służy do wzmacniania sygnałów w długich liniach komunikacyjnych, nie ma żadnego wpływu na połączenie drukarki do sieci, gdyż jego zadaniem jest jedynie poprawa jakości przesyłanego sygnału. Punkt dostępu jest urządzeniem, które łączy urządzenia bezprzewodowe z siecią, ale również nie zapewnia wsparcia dla drukarek, które nie mają wbudowanej funkcji sieciowej. W praktyce, błędne przekonanie o możliwości wykorzystania tych urządzeń do podłączenia drukarki nieposiadającej karty sieciowej może prowadzić do frustracji użytkowników oraz marnotrawienia zasobów. W kontekście standardów branżowych, kluczowym zagadnieniem jest wybór odpowiednich rozwiązań, które rzeczywiście odpowiadają na potrzeby użytkowników i umożliwiają prawidłowe funkcjonowanie urządzeń w sieci.

Pytanie 35

Którą maskę należy zastosować, aby komputery o adresach IPv4, przedstawionych w tabeli, były przydzielone do właściwych sieci?

Adresy IPv4 komputerówOznaczenie sieci
192.168.10.30Sieć 1
192.168.10.60Sieć 1
192.168.10.130Sieć 2
192.168.10.200Sieć 3
A. 255.255.255.240
B. 255.255.255.128
C. 255.255.255.192
D. 255.255.255.224
Maska 255.255.255.192, znana również jako /26, jest prawidłowym wyborem w kontekście przydzielania adresów IPv4 do odpowiednich sieci. Ta maska pozwala na utworzenie 64 adresów IP w jednej podsieci, co jest rezultatem użycia 6 bitów na adresy hostów (2^6 = 64). Z tego wynika, że 2 adresy są zarezerwowane: jeden na identyfikację sieci, a drugi na rozgłoszenie (broadcast). Dzięki temu, w sieci 192.168.10.0 do 192.168.10.63 mamy 62 dostępne adresy dla hostów, co idealnie pasuje do wymaganej struktury sieci. Oddziela to sieć 1 i sieć 2, umożliwiając ich właściwe funkcjonowanie i komunikację. W praktyce, stosowanie maski /26 umożliwia efektywne zarządzanie adresacją IP, unikając konfliktów i zatorów w komunikacji między urządzeniami. W przypadku większych sieci z większą liczbą hostów, maski takie jak 255.255.255.128 (/25) mogą być bardziej odpowiednie, ale w tym przypadku 255.255.255.192 jest optymalnym rozwiązaniem.

Pytanie 36

W Active Directory, zbiór składający się z jednej lub wielu domen, które dzielą wspólny schemat oraz globalny katalog, określa się mianem

A. gwiazdą
B. liściem
C. lasem
D. siatką
Odpowiedzi takie jak 'siatką', 'liściem' czy 'gwiazdą' pomijają kluczowe koncepcje dotyczące struktury Active Directory i mogą prowadzić do mylnych wniosków na temat tego, jak zorganizowane są zasoby w sieciach korporacyjnych. Termin 'siatką' nie odnosi się do żadnej standardowej struktury w AD. Możliwe jest, że użytkownik przyjął mylące skojarzenia ze strukturami sieciowymi, które obejmują topologie połączeń, ale w kontekście AD nie ma to zastosowania. 'Liść' również nie ma zastosowania w architekturze AD; w rzeczywistości jest to termin, który może być stosowany w kontekście innych dziedzin, na przykład w grafach czy drzewach hierarchicznych, ale nie w kontekście domen AD. Z kolei 'gwiazda' może odnosić się do topologii sieci, ale nie jest używana w kontekście struktury AD. W Active Directory kluczowe jest zrozumienie, że lasy i domeny są fundamentem dla centralizacji zarządzania tożsamościami i dostępem. Zrozumienie, czym jest las, a czym są inne terminy, jest istotne dla efektywnego zarządzania infrastrukturą IT oraz dla zapewnienia bezpieczeństwa w organizacji. Dlatego ważne jest, aby znać poprawne definiowanie i zastosowanie terminów związanych z AD, aby uniknąć nieporozumień i błędów w zarządzaniu systemami informacyjnymi.

Pytanie 37

Jakie polecenie w systemie Windows należy wykorzystać do obserwacji listy aktywnych połączeń karty sieciowej w komputerze?

A. Ipconfig
B. Ping
C. Netstat
D. Telnet
Polecenie Netstat (od network statistics) jest nieocenionym narzędziem w systemie Windows, które umożliwia użytkownikom monitorowanie aktywnych połączeń sieciowych oraz portów. Dzięki niemu można uzyskać informacje o tym, jakie aplikacje są aktualnie połączone z siecią, co jest kluczowe dla diagnostyki i zabezpieczeń. Na przykład, uruchamiając polecenie 'netstat -an', można zobaczyć listę wszystkich połączeń oraz portów, zarówno w stanie nasłuchu, jak i aktywnych. W praktyce, administratorzy często używają tego narzędzia do identyfikacji potencjalnych zagrożeń, takich jak nieautoryzowane połączenia wychodzące, co jest istotne w kontekście ochrony danych. Dobrą praktyką jest regularne monitorowanie połączeń w celu szybkiego wykrywania anomalii i podejrzanych działań w sieci, co pozwala na efektywne zarządzanie bezpieczeństwem infrastruktury IT.

Pytanie 38

W sieci strukturalnej zalecane jest umieszczenie jednego punktu abonenckiego na powierzchni o wielkości

A. 10 m2
B. 30 m2
C. 20 m2
D. 5 m2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 39

Które z urządzeń służy do testowania okablowania UTP?

Ilustracja do pytania
A. 3.
B. 4.
C. 1.
D. 2.
Urządzenie oznaczone numerem 2 to tester okablowania UTP, który jest kluczowym narzędziem w branży IT oraz telekomunikacyjnej. Tester ten sprawdza integralność połączeń w kablu UTP, umożliwiając identyfikację problemów technicznych, takich jak przerwy w przewodach, zwarcia czy niewłaściwe połączenia. Zastosowanie testera okablowania jest niezwykle ważne w kontekście budowy i konserwacji sieci komputerowych, gdzie odpowiednia jakość połączeń wpływa na stabilność i wydajność całego systemu. Dobre praktyki wskazują, że przed uruchomieniem sieci należy przeprowadzić dokładne testy, aby upewnić się, że wszystkie połączenia są poprawne. Testery UTP mogą również wykrywać długość kabla oraz jego typ, co jest niezbędne przy projektowaniu i wdrażaniu nowych instalacji. W kontekście standardów branżowych, zgodność z normami takimi jak TIA/EIA-568 jest kluczowa dla osiągnięcia wysokiej jakości usług transmisji danych.

Pytanie 40

Ile bitów o wartości 1 występuje w standardowej masce adresu IPv4 klasy B?

A. 8 bitów
B. 32 bity
C. 16 bitów
D. 24 bity
Odpowiedzi, które wskazują na inne wartości bitów w masce adresu IPv4 klasy B, bazują na mylnych założeniach dotyczących struktury adresacji w sieciach. Przykładowo, stwierdzenie, że maska klasy B zawiera 8 bitów, może wynikać z nieporozumienia dotyczącego ogólnej struktury adresów IPv4. Adres IPv4 składa się z 32 bitów, jednak te bity dzielą się na część identyfikującą sieć oraz część przeznaczoną dla hostów. W przypadku klasy B, mamy do czynienia z podziałem na 16 bitów dla adresu sieci i 16 bitów dla adresów hostów. Wybór 32 bitów jako odpowiedzi może wynikać z błędnej interpretacji, gdzie cały adres IP jest brany pod uwagę, nie zaś maska. Podobnie, błędna odpowiedź wskazująca na 24 bity może sugerować, że osoba odpowiadająca myli maskę z prefiksem CIDR stosowanym w klasie C. Warto pamiętać, że klasy adresowe oraz ich maski są podstawowym elementem projektowania sieci i znajomość ich właściwego przypisania jest kluczowa w kontekście zarządzania infrastrukturą oraz przydzielania adresów IP w sieciach komputerowych. Dlatego istotne jest, aby zrozumieć nie tylko liczby, ale również ich znaczenie i zastosowanie w praktyce.