Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 8 grudnia 2025 15:28
  • Data zakończenia: 8 grudnia 2025 15:40

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Określ właściwą sekwencję technologiczną działań związanych z obniżeniem poziomu posadowienia murowanych ław fundamentowych?

A. Podbicie fundamentu → odciążenie ław → wykonanie wykopu i zabezpieczenie deskowaniem
B. Odciążenie ław → podbicie fundamentu → wykonanie wykopu i zabezpieczenie deskowaniem
C. Wykonanie wykopu i zabezpieczenie deskowaniem → odciążenie ław → podbicie fundamentu
D. Wykonanie wykopu i zabezpieczenie deskowaniem → podbicie fundamentu → odciążenie ław
Wybór nieprawidłowej odpowiedzi często opiera się na błędnym zrozumieniu kolejności działań przy obniżaniu poziomu posadowienia ław fundamentowych. Przykładowo, rozpoczęcie od podbicia fundamentu może prowadzić do poważnych problemów. Jeśli najpierw podniesiemy fundament bez odpowiedniego wykopu i odciążenia, istnieje ryzyko przemieszczenia lub nawet pęknięcia muru, co może skutkować nieodwracalnymi uszkodzeniami konstrukcji. Wyjaśniając dalsze nieścisłości, odciążenie ław przed wykonaniem wykopu jest również niewłaściwe, gdyż fundamenty muszą być najpierw zabezpieczone, aby odciążyć je w sposób kontrolowany. Z perspektywy inżynieryjnej, każda z tych faz ma swoje znaczenie i powinny następować w ściśle określonej kolejności, aby zapewnić stabilność budowli. Ignorowanie tego porządku może prowadzić do nieefektywnego procesu budowlanego oraz zwiększenia kosztów związanych z ewentualnymi naprawami. Współczesne standardy budowlane i dobre praktyki branżowe kładą duży nacisk na precyzyjne planowanie i realizację działań budowlanych, co nie tylko wpływa na bezpieczeństwo, ale także na efektywność całego projektu.

Pytanie 2

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. dziurawki
B. pełnej
C. szczelinówki
D. kratówki
Nadproża sklepione, czyli te łuki, są mega ważne w budowlance, bo przenoszą ciężar z góry na boki. W tym przypadku cegła pełna jest wręcz niezbędna, bo ma super właściwości. Jest gęsta i naprawdę wytrzymała na ściskanie, idealna do robienia nadproży, które muszą wytrzymać sporo ciężaru. Cegła pełna daje też lepszą izolację akustyczną i cieplną w porównaniu do innych cegieł. Przykładem mogą być stare budynki, gdzie często spotykamy nadproża z cegły pełnej – to zgodne z zasadami ochrony naszego dziedzictwa kulturowego, a przy tym dobre dla budowlanych praktyk. Normy budowlane też mówią, że trzeba używać materiałów o odpowiednich parametrach wytrzymałościowych w takich konstrukcjach nośnych.

Pytanie 3

Na rysunku przedstawiono

Ilustracja do pytania
A. przekrój poprzeczny.
B. przekrój pionowy budynku.
C. widok z góry.
D. widok elewacji budynku.
Widok elewacji budynku to obraz przedstawiający zewnętrzną stronę ściany budynku z określonego punktu widzenia. W kontekście architektury, elewacja jest kluczowym elementem projektowania, gdyż to ona w pierwszej kolejności wpływa na postrzeganie budynku przez użytkowników oraz przechodniów. Odpowiednia prezentacja elewacji jest istotna nie tylko z perspektywy estetyki, ale również funkcjonalności. Przykładowo, elewacje mogą być projektowane z uwzględnieniem efektywności energetycznej, co jest istotne w kontekście zrównoważonego budownictwa. Normy budowlane, takie jak te zawarte w Ustawie Prawo budowlane, podkreślają znaczenie odpowiedniego projektowania elewacji, aby budynki były zarówno atrakcyjne, jak i zgodne z zasadami bezpieczeństwa oraz ochrony środowiska. W praktyce, architekci często przygotowują wizualizacje elewacji, aby dokładnie oddać koncepcję projektową jeszcze przed rozpoczęciem budowy, co pozwala na wczesne zauważenie potencjalnych problemów z designem i funkcjonalnością.

Pytanie 4

W którym rodzaju stropu gęstożebrowego można znaleźć prefabrykowane belki żelbetowe?

A. Teriva
B. Akermana
C. Fert
D. DZ-3
Odpowiedź DZ-3 jest prawidłowa, ponieważ strop gęstożebrowy DZ-3 charakteryzuje się zastosowaniem prefabrykowanych żelbetowych belek, które są integralną częścią tego systemu. Stropy DZ-3 są często wykorzystywane w budownictwie przemysłowym i mieszkaniowym ze względu na ich wysoką nośność oraz łatwość w montażu. Prefabrykowane belki pozwalają na szybsze wykonanie konstrukcji oraz zmniejszają ilość pracy na budowie, co przekłada się na obniżenie kosztów. W praktyce, strop gęstożebrowy DZ-3 znajduje zastosowanie w dużych obiektach, takich jak hale magazynowe czy centra handlowe, gdzie wymagana jest duża przestrzeń bez podpór. Zastosowanie prefabrykowanych elementów zgodnych z normami PN-EN 1992-1-1 (Eurokod 2) zapewnia trwałość oraz bezpieczeństwo konstrukcji, co jest kluczowe w procesie projektowania. Warto dodać, że odpowiednia dokumentacja techniczna oraz certyfikaty jakości są niezbędne do zapewnienia zgodności z obowiązującymi normami budowlanymi.

Pytanie 5

Gdy konstrukcja budynku opiera się na stalowych kształtownikach, to przed nałożeniem tynku na słup stalowy należy go

A. owinąć siatką
B. oszlifować
C. umyć wodą
D. pomalować farbą
Zmycie wodą, pomalowanie farbą lub oszlifowanie słupa stalowego przed otynkowaniem to praktyki, które nie adresują kluczowych wymagań dotyczących trwałości i przyczepności tynku do stali. Zmycie wodą może być przydatne w usuwaniu zanieczyszczeń, jednak nie zapewnia odpowiedniego przygotowania powierzchni. Stal, będąc materiałem gładkim, nie oferuje wystarczającej przyczepności dla tynków, co może prowadzić do ich odpryskiwania w przyszłości. Malowanie farbą, chociaż może stwarzać pozory zabezpieczenia, w rzeczywistości często tworzy zbyt gładką i nieprzyczepną powierzchnię, co jeszcze bardziej pogarsza sytuację. Ponadto, stosowanie farb, które nie są przeznaczone do kontaktu z tynkiem, może doprowadzić do chemicznych reakcji, które osłabią strukturę tynku. Oszlifowanie słupa stalowego, choć może zwiększyć przyczepność, nie jest wystarczające bez zastosowania siatki zbrojeniowej, która dostarcza dodatkowego wsparcia mechanicznego i stabilności. W budownictwie kluczowe jest stosowanie sprawdzonych procedur, zgodnych z aktualnymi normami i dobrą praktyką, co w przypadku przygotowania stalowych słupów do otynkowania jednoznacznie wskazuje na konieczność użycia siatki zbrojeniowej.

Pytanie 6

Który z elementów architektonicznych ściany przedstawiono na rysunku?

Ilustracja do pytania
A. Ryzalit.
B. Wykusz.
C. Filar.
D. Pilaster.
Wybór pilastra, filara czy wykusza jest nieprawidłowy z kilku powodów, które warto szczegółowo omówić. Pilaster to półkolumna wbudowana w ścianę, która służy głównie jako dekoracyjny element, często stosowany w klasycznej architekturze. Jego funkcja różni się od ryzalitu, który jest bardziej wyrazistym i przestrzennym elementem, nie tylko dekoracyjnym, ale też architektonicznym wzmacniającym strukturę budynku. Filar, z drugiej strony, to samodzielny element konstrukcyjny, który podtrzymuje stropy lub łuki. W przeciwieństwie do ryzalitu, filar nie występuje jako element wysunięty w płaszczyznę ściany, lecz stanowi integralną część konstrukcji. Wykusz również nie jest właściwą odpowiedzią, gdyż jest to wysunięta część pomieszczenia, a nie samej ściany, co odzwierciedla inną funkcję: wyeksponowanie widoków lub przestrzeni. Typowym błędem myślowym jest mylenie tych terminów i ich funkcji w kontekście architektonicznym, co prowadzi do nieporozumień w interpretacji. Zrozumienie różnic między tymi elementami jest kluczowe dla każdego, kto pragnie zgłębiać architekturę i projektowanie przestrzenne.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Na rysunku przedstawiono elementy rusztowania

Ilustracja do pytania
A. choinkowego.
B. warszawskiego.
C. rurowo-złączkowego.
D. na kozłach.
Rusztowanie warszawskie to jedno z najczęściej stosowanych rozwiązań w budownictwie, które charakteryzuje się prostą konstrukcją złożoną z pionowych i poziomych rur oraz złączek. Na przedstawionym rysunku dokładnie widać te elementy, co potwierdza, że mamy do czynienia z rusztowaniem warszawskim. Jego konstrukcja pozwala na szybką i efektywną budowę, co jest kluczowe w kontekście realizacji projektów budowlanych. Dzięki modułowości i łatwości montażu, rusztowanie warszawskie jest szczególnie cenione w pracach, które wymuszają częste zmiany w konfiguracji. W praktyce, stosuje się je nie tylko w budownictwie mieszkalnym, ale również w obiektach komercyjnych, gdzie wymagana jest wysoka elastyczność projektu. Dodatkowo, rusztowanie warszawskie spełnia normy bezpieczeństwa, co jest istotne w kontekście ochrony pracowników na budowie. Zastosowanie odpowiednich materiałów oraz technik montażu zgodnych z zaleceniami branżowymi zapewnia stabilność i bezpieczeństwo konstrukcji, co czyni je dobrym wyborem dla wielu inwestycji budowlanych.

Pytanie 9

Na rysunku przedstawiono

Ilustracja do pytania
A. stanowisko produkcji wyrobów betonowych.
B. betoniarkę z koszem zasypowym.
C. mieszarkę korytową do wykonywania zapraw.
D. węzeł betoniarski.
Wybierając odpowiedzi, które nie odnoszą się do węzła betoniarskiego, można wprowadzić się w błąd co do funkcji i zastosowania różnych urządzeń w kontekście produkcji betonu. Odpowiedzi takie jak betoniarka z koszem zasypowym koncentrują się na mniejszych urządzeniach, które są używane w specyficznych zastosowaniach, jednak nie obejmują złożonego procesu, który zachodzi w węźle betoniarskim. Betoniarka sama w sobie ma ograniczoną zdolność do zarządzania różnorodnymi materiałami, jak np. kruszywa czy cement, które w węźle są precyzyjnie dozowane i mieszane. Mieszarka korytowa z kolei jest często używana do produkcji zapraw, ale nie jest odpowiednia do wytwarzania betonu, który wymaga specyficznych proporcji i dodatków, takich jak plastyfikatory. Stanowisko produkcji wyrobów betonowych zazwyczaj odnosi się do całego procesu wytwarzania prefabrykatów, co jest odmiennym procesem od produkcji betonu w węźle. Typowe błędy, które mogą prowadzić do wyboru tych odpowiedzi, obejmują niedostateczne zrozumienie różnicy między różnymi typami urządzeń oraz ich zastosowaniem w praktyce budowlanej. W branży budowlanej kluczowe jest zrozumienie, że węzeł betoniarski to kompleksowy system, który zapewnia jakość, efektywność i dostosowanie produkcji betonu do specyficznych wymagań projektowych.

Pytanie 10

Na podstawie fragmentu instrukcji określ, jakiej długości pręty zbrojeniowe należy umieścić pod otworem okiennym o szerokości 150 cm?

Instrukcja wykonywania ścian zewnętrznych
w systemie Ytong
(fragment)


„ (...) W strefach podokiennych należy umieszczać zbrojenie poziome (firmowe do spoin wspornych lub dwa pręty ze stali żebrowanej o średnicy 8 mm). Należy pamiętać, aby zbrojenie przedłużyć co najmniej 0,5 metra poza krawędzie otworów."(...)
A. 200 cm
B. 250 cm
C. 225 cm
D. 150 cm
Odpowiedź 250 cm jest prawidłowa, ponieważ zgodnie z zasadami projektowania konstrukcji, pręty zbrojeniowe powinny wystawać poza otwór okienny, aby zapewnić odpowiednią nośność oraz stabilność. W tym przypadku, otwór o szerokości 150 cm wymaga, aby pręty zbrojeniowe były dłuższe o 0,5 metra z każdej strony, co daje dodatkowe 100 cm. Suma długości otworu i wystających prętów zbrojeniowych wynosi więc 250 cm. W praktyce, właściwe zbrojenie jest kluczowe dla zapobiegania pękaniu betonu oraz zwiększenia trwałości konstrukcji. Dobre praktyki w budownictwie zalecają stosowanie prętów zbrojeniowych zgodnie z normami Eurokod, które definiują szczegółowe wymagania dotyczące ich długości i umiejscowienia. Ponadto, prawidłowe zbrojenie wokół otworów, takich jak okna czy drzwi, jest niezbędne dla zachowania integralności strukturalnej budynku oraz zapewnienia bezpieczeństwa jego użytkowników.

Pytanie 11

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. na tej stronie przegrody, gdzie przeważa niższa temperatura
B. po każdej stronie przegrody
C. na tej stronie przegrody, gdzie przeważa wyższa temperatura
D. na obydwu stronach przegrody
Umieszczanie izolacji cieplnej przegrody budowlanej po stronie, gdzie panuje wyższa temperatura, jest podejściem, które nie tylko łamie zasady fizyki, ale także prowadzi do poważnych konsekwencji w kontekście efektywności energetycznej budynku. Izolacja ma na celu ograniczenie transferu ciepła, a umieszczanie jej w miejscu, gdzie temperatura jest wyższa, po prostu nie spełnia tego zadania. Tego rodzaju podejście wynika z nieporozumienia dotyczącego dynamiki cieplnej. Mylne jest przekonanie, że izolacja powinna być umieszczona tam, gdzie wydaje się, że ciepło jest „przechwytywane”; w rzeczywistości ciepło zawsze przepływa z obszaru o wyższej temperaturze do obszaru o niższej temperaturze. Umieszczając izolację w niewłaściwym miejscu, ryzykujemy nie tylko straty ciepła, ale także wzrost ryzyka kondensacji pary wodnej wewnątrz przegrody, co może prowadzić do powstawania pleśni oraz uszkodzeń konstrukcyjnych. Ponadto, zgodnie z normami budowlanymi, takim jak PN-EN 13370, istotne jest, aby izolacja była stosowana w sposób, który zapewnia optymalny komfort cieplny i minimalizuje zużycie energii. W rezultacie, umieszczanie izolacji w nieodpowiednich lokalizacjach, takich jak strona z wyższą temperaturą, jest nie tylko technicznie błędne, ale również ekonomicznie niekorzystne w dłuższej perspektywie.

Pytanie 12

Na rysunku przedstawiony jest przekrój poprzeczny stropu

Ilustracja do pytania
A. odcinkowego.
B. Ackermana.
C. płytowego.
D. Kleina.
Strop odcinkowy, którym jest przedstawiony na rysunku, jest konstrukcją stosowaną w budownictwie do rozkładania obciążeń na podpory. Jego charakterystyczną cechą są łukowate elementy nośne, które umożliwiają uzyskanie dużych rozpiętości bez konieczności stosowania licznych podpór pośrednich. Takie rozwiązanie jest szczególnie cenione w halach, obiektach użyteczności publicznej oraz w miejscach, gdzie przestrzeń musi być maksymalnie otwarta. W praktyce, stropy odcinkowe często są wykonane z betonu zbrojonego lub prefabrykowanego, co zapewnia im dużą trwałość oraz zdolność do przenoszenia znacznych obciążeń. Zgodnie z normami PN-EN 1992-1-1, projektowanie stropów odcinkowych należy prowadzić z uwzględnieniem odpowiednich obliczeń statycznych i dynamiki, co przyczynia się do bezpieczeństwa i funkcjonalności konstrukcji. Warto również zwrócić uwagę na ich zastosowanie w nowoczesnym budownictwie, gdzie efektywność i estetyka odgrywają kluczową rolę.

Pytanie 13

Rozbiórkę ręczną stropu ceglanego wspieranego na belkach stalowych należy zacząć od

A. usunięcia tynku z powierzchni stropu, czyli sufitu
B. demontażu wierzchniej warstwy stropu, czyli podłogi
C. usunąć wypełnienie stropu
D. przycięcia belek wzdłuż ścian
Rozpoczęcie ręcznej rozbiórki stropu ceglanego od wycięcia belek przy ścianach jest podejściem niebezpiecznym i niezgodnym z zasadami dobrej praktyki budowlanej. Tego rodzaju działanie może prowadzić do destabilizacji konstrukcji, co stwarza poważne ryzyko zawalenia się stropu. Belek nie powinno się wycinać przed dokładnym zbadaniem i przygotowaniem całej konstrukcji, ponieważ belek stalowych nie można traktować jako elementów, które można usuwać w pierwszej kolejności w procesie demontażu. Ponadto, rozebranie wierzchu stropu przed usunięciem tynku prowadzi do wielu komplikacji, w tym do niekontrolowanego opadania luźnych materiałów i zwiększonego ryzyka dla pracowników. Prace demontażowe powinny być prowadzone w odwrotnej kolejności do ich konstrukcji, co oznacza, że najpierw należy zająć się warstwą tynku, następnie ewentualnymi wypełnieniami, a na końcu elementami nośnymi, takimi jak belki. Ignorowanie tej zasady może skutkować nie tylko uszkodzeniem konstrukcji, ale także zwiększeniem kosztów związanych z naprawą ewentualnych szkód. Oprócz tego, skucie wypełnienia stropu przed usunięciem tynku także może prowadzić do sytuacji, w której nie da się skutecznie ocenić stanu belek, co w perspektywie czasowej może przełożyć się na konieczność wykonania kosztownych napraw. Dlatego kluczowe jest przestrzeganie ustalonych procedur oraz norm bezpieczeństwa podczas rozbiórki, aby uniknąć poważnych konsekwencji.

Pytanie 14

Jakie typy rusztowań powinno się użyć do przeprowadzania drobnych napraw tynków zewnętrznych w budynkach wysokich?

A. Modułowe
B. Stojakowe
C. Wiszące
D. Ramowe
Rusztowanie wiszące to naprawdę świetna opcja, jak trzeba zrobić jakieś drobne naprawy na elewacjach wysokich budynków. Jego konstrukcja i pomysł na powieszenie go na dachu lub innym mocnym elemencie sprawiają, że dotarcie do trudnych miejsc jest prostsze. Nie zajmuje miejsca na dole, co jest mega ważne, zwłaszcza w miastach, gdzie często jest tłok. Przykładem może być renowacja biurowców, gdzie trzeba uważać na detale na wysokości. Przy zwykłym rusztowaniu mógłbyś mieć problem z ruchem w okolicy. Co ważne, rusztowania wiszące spełniają normy bezpieczeństwa, więc zarówno pracownicy, jak i przechodnie mogą czuć się bezpieczni. Oczywiście, operatorzy powinni stosować się do zasad montażu, żeby wszystko odbywało się bezpiecznie. No i nie zapominajmy o balustradach i szelkach, bo to wszystko jest kluczowe podczas pracy z rusztowaniem wiszącym.

Pytanie 15

Do realizacji tynków zewnętrznych na elewacji budynku pięciokondygnacyjnego należy zastosować rusztowanie

A. warszawskiego
B. stojakowego
C. kozłowego
D. stolikowego
Rusztowanie stojakowe jest odpowiednim rozwiązaniem do wykonywania tynków zewnętrznych na elewacji 5-kondygnacyjnego budynku, ponieważ zapewnia stabilne i bezpieczne wsparcie dla pracowników i materiałów budowlanych. Tego rodzaju rusztowanie jest projektowane z myślą o dużych wysokościach, co czyni je idealnym dla obiektów wielokondygnacyjnych. W odróżnieniu od innych typów rusztowań, jak kozłowe, które są przeznaczone do zadań na niższych wysokościach, rusztowanie stojakowe umożliwia łatwe poruszanie się po elewacji, a jego konstrukcja pozwala na szybkie dostosowanie do zmieniających się warunków budowlanych. Przykładowo, podczas tynkowania elewacji, rusztowanie stojakowe może być łatwo rozbudowywane w górę, co daje dostęp do wyższych kondygnacji bez ryzyka utraty stabilności. Zastosowanie rusztowania spełniającego normy bezpieczeństwa, takie jak PN-EN 12810 i PN-EN 12811, jest kluczowe dla zminimalizowania ryzyka wypadków przy pracy oraz zwiększenia efektywności realizacji projektu.

Pytanie 16

W nadprożu Kleina o rozpiętości ponad 150 cm, którego fragment przedstawiono na rysunku, cegły układa się

Ilustracja do pytania
A. na rąb stojący.
B. wozówkowo na płask.
C. na rąb leżący.
D. główkowo na płask.
Wybór opcji innej niż "na rąb stojący" w kontekście układania cegieł w nadprożu Kleina prowadzi do kilku istotnych nieporozumień. Układanie cegieł na rąb leżący lub główkowo na płask stwarza ryzyko osłabienia konstrukcji nadproża, zwłaszcza przy większych rozpiętościach. Cegły ułożone na rąb leżący mają mniejszą powierzchnię kontaktu z pozostałymi cegłami oraz podłożem, co może prowadzić do powstawania niekorzystnych naprężeń i w konsekwencji do pęknięć. Taki błąd w układzie może skutkować nieefektywnym przenoszeniem obciążeń, a także zwiększa ryzyko zjawiska zwanego rysowaniem nadproża, co jest szczególnie niebezpieczne w budynkach, w których nadproża pełnią kluczową rolę w rozkładzie obciążeń. Cegły układane na rąb stojący są bardziej odporne na siły działające w pionie, co jest fundamentalne przy większych otworach. Ponadto, nieprawidłowe układanie cegieł może być sprzeczne z przepisami budowlanymi i normami, takimi jak Eurokod 6, które jasno określają wymagania dotyczące konstrukcji murowanych. Dlatego też, ważne jest, aby projektanci i wykonawcy budowlani stosowali odpowiednie metody układania cegieł, aby zapewnić bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 17

Jaki element budynku przedstawiony jest na zdjęciu?

Ilustracja do pytania
A. Nadproże.
B. Dylatacja.
C. Gzyms.
D. Cokół.
Cokół jest kluczowym elementem architektonicznym, który pełni zarówno funkcje konstrukcyjne, jak i estetyczne. Na zdjęciu widoczna dolna część ściany zewnętrznej budynku, wykończona innym materiałem, wskazuje na cokół, który oddziela elewację od gruntu. Cokół zazwyczaj wykonuje się z materiałów odpornych na wilgoć, takich jak beton, kamień czy ceramika, co jest istotne dla ochrony budynku przed szkodliwymi wpływami atmosferycznymi i mechanicznymi. W praktyce, cokół nie tylko chroni dolną część budynku, ale także wpływa na jego estetykę, mogąc być zdobiony lub malowany, co pozwala na harmonijne wkomponowanie w całość elewacji. Warto dodać, że w niektórych projektach architektonicznych cokół może być elementem podkreślającym stylistykę budynku, a jego integralność i prawidłowe wykonanie są zgodne z dobrymi praktykami budowlanymi, które wymagają, aby odległość cokołu od gruntu była odpowiednia, co pociąga za sobą mniejsze ryzyko gromadzenia się wilgoci i uszkodzeń.

Pytanie 18

Podczas budowy wewnętrznych ścian działowych o wysokości nieprzekraczającej 2,5 m nie wolno stosować rusztowań

A. kozłowego
B. drabinowego
C. stojakowego teleskopowego
D. warszawskiego
Odpowiedzi 'stojakowego teleskopowego', 'warszawskiego' oraz 'kozłowego' są niewłaściwe z kilku kluczowych powodów. Rusztowania stojakowe teleskopowe, choć oferują stabilność i dużą powierzchnię roboczą, są przeznaczone do znacznie wyższych konstrukcji, co czyni je niepraktycznymi i nieefektywnymi przy pracy na wysokości do 2,5 m. Ich skomplikowana konstrukcja wymaga także znacznie więcej miejsca do rozstawienia, co może być problematyczne w wąskich pomieszczeniach. Rusztowanie warszawskie, z kolei, jest bardziej skomplikowane w montażu i demontażu, co w przypadku niskich wysokości mija się z celem, a jego użycie wiąże się z większym ryzykiem niewłaściwego zabezpieczenia. Zastosowanie rusztowania kozłowego jest również nieodpowiednie, ponieważ, mimo że jest ono stabilne, jego konstrukcja nie jest dostosowana do wykonywania precyzyjnych prac murarskich na niższych wysokościach. Często błędnym podejściem jest myślenie, że większa stabilność rusztowania będzie korzystna w każdej sytuacji, gdy w rzeczywistości proste rozwiązania, takie jak drabina, mogą być bardziej odpowiednie. Z kolei zbyt duża ilość sprzętu na małej przestrzeni może prowadzić do zagrożeń związanych z bezpieczeństwem natomiast użycie drabiny, w połączeniu z przestrzeganiem zasad BHP, pozwala na efektywniejszą i bezpieczniejszą pracę.

Pytanie 19

Wypełnienie płyty ceglanej między stalowymi belkami, przedstawionej na rysunku, wykonuje się w stropie

Ilustracja do pytania
A. DZ-3.
B. Kleina typu ciężkiego.
C. Akermana.
D. Kleina typu lekkiego.
Wybór kleiny typu ciężkiego jako wypełnienia płyty ceglanej między stalowymi belkami jest decyzją zgodną z zasadami inżynierii budowlanej, zwłaszcza w kontekście konstrukcji stropowych narażonych na znaczne obciążenia. Kleina typu ciężkiego jest projektowana do przenoszenia dużych obciążeń, co jest istotne w przypadku stropów wspartych na stalowych belkach. Tego rodzaju wypełnienia są nie tylko bardziej odporne na deformacje, ale również zwiększają stabilność całej konstrukcji. W praktyce stosowanie kleiny typu ciężkiego jest powszechne w przypadku budowli przemysłowych oraz innych obiektów wymagających dużej nośności. Standardy budowlane, takie jak Eurokod 2, sugerują, że stosowanie odpowiednich materiałów w zależności od zapotrzebowania na nośność jest kluczowe dla zapewnienia bezpieczeństwa konstrukcji. Dodatkowo, kleiny tego typu są często wykorzystywane w projektach, w których istotnym czynnikiem są warunki środowiskowe, takie jak obciążenia dynamiczne czy udarowe, co czyni je idealnym rozwiązaniem w nowoczesnym budownictwie.

Pytanie 20

Przedstawiony na rysunku pustak ceramiczny służy do wykonania

Ilustracja do pytania
A. przewodów wentylacyjnych.
B. obudowy rur centralnego ogrzewania.
C. obudowy pionów kanalizacyjnych.
D. ścian z pustką powietrzną.
Pustak ceramiczny, który został przedstawiony na rysunku, ma unikalne cechy konstrukcyjne, które czynią go idealnym materiałem do budowy przewodów wentylacyjnych. Otwory w pustaku są kluczowe, ponieważ pozwalają na efektywny przepływ powietrza, co jest niezbędne w systemach wentylacyjnych, a także w obiektach budowlanych, aby zapewnić odpowiednią jakość powietrza wewnętrznego. Zgodnie z normami budowlanymi, stosowanie pustaków ceramicznych w systemach wentylacyjnych pozwala na osiągnięcie wysokiej efektywności energetycznej oraz redukcję kosztów eksploatacji. Dodatkowo, ceramiczne materiały są odporne na działanie wysokich temperatur i korozję, co sprawia, że są one długotrwałym rozwiązaniem. W praktyce, zastosowanie pustaków ceramicznych w wentylacji może przyczynić się do poprawy komfortu mieszkańców poprzez regulację temperatury i wilgotności powietrza.

Pytanie 21

Który z elementów budynku przedstawiono na rysunku?

Ilustracja do pytania
A. Gzyms.
B. Pilaster.
C. Attykę.
D. Cokół.
Attyka, gzyms i cokół to terminy, które często są mylone z pilastrem, co może prowadzić do nieporozumień w kontekście architektury. Attyka to element architektoniczny znajdujący się na górnej części budynku, który może pełnić rolę dekoracyjną oraz chronić przed opadami, ale nie ma związku z charakterystyką pilastra. Gzyms, z kolei, to poziomy element, który wystaje poza ścianę i może być używany do odprowadzania wody deszczowej, a także do zdobienia elewacji. W przeciwieństwie do pilastra, gzyms nie jest zintegrowany z murami budynku. Cokół to dolna część ściany, która wystaje, a jego główną funkcją jest ochrona budynku przed wilgocią i uszkodzeniami, ale nie pełni on roli dekoracyjnej ani podtrzymującej jak pilaster. Te mylne koncepcje mogą wynikać z braku zrozumienia funkcji i zastosowania tych elementów w architekturze. W praktyce ważne jest, aby każdy z tych elementów był stosowany zgodnie z jego przeznaczeniem. Dlatego rozróżnienie tych terminów jest kluczowe dla prawidłowej analizy elementów budowlanych.

Pytanie 22

Które nadproże przedstawiono na rysunku?

Ilustracja do pytania
A. Z prefabrykowanych kształtek typu "U".
B. Z prefabrykowanych belek "Porotherm".
C. Monolityczne żelbetowe.
D. Sklepione murowane z cegieł.
Odpowiedź "Z prefabrykowanych belek 'Porotherm'" jest poprawna, ponieważ na przedstawionym rysunku rzeczywiście widać nadproże wykonane z prefabrykowanych belek ceramicznych tej marki. Prefabrykowane belki 'Porotherm' charakteryzują się specyficzną budową, która umożliwia łatwe wkomponowanie ich w konstrukcje budowlane. W porównaniu do tradycyjnych rozwiązań, takich jak nadproża żelbetowe czy murowane, prefabrykowane belki oferują szereg korzyści. Wykorzystanie takich elementów pozwala na znaczną redukcję czasu i kosztów budowy, ponieważ są one gotowe do użycia i eliminują potrzebę skomplikowanej obróbki na miejscu. Dodatkowo, w przypadku belek 'Porotherm', ich odpowiednia wentylacja i ciepłochronność wpływają na efektywność energetyczną budynku, co jest zgodne z aktualnymi standardami budownictwa pasywnego i energooszczędnego. Stosując te prefabrykaty, projektanci mogą również lepiej zarządzać obciążeniami i wymiarowaniem otworów w murze, co jest kluczowe dla bezpieczeństwa i stabilności całej konstrukcji.

Pytanie 23

Jaki rodzaj nadproża łukowego przedstawiono na rysunku?

Ilustracja do pytania
A. Półkolisty.
B. Ostrołukowy.
C. Odcinkowy.
D. Koszowy.
Odpowiedź "ostrołukowy" jest poprawna, ponieważ na przedstawionym rysunku widoczne jest nadproże, którego górna krawędź tworzy ostry łuk. Nadproża ostrołukowe są charakterystyczne dla architektury gotyckiej, gdzie zastosowanie takiego kształtu pozwalało na efektywne przenoszenie obciążeń z górnych części budowli. Ich forma przyczynia się do zwiększenia stabilności konstrukcji, co jest kluczowe w miejscach, gdzie wysokość i ciężar budowli są znaczne. Ostrołukowe nadproża mogą być również używane w nowoczesnej architekturze, gdzie estetyka i funkcjonalność idą w parze. Warto zwrócić uwagę na wpływ, jaki mają na estetykę wnętrz, nadając im lekkości i przestronności. W praktyce, przy projektowaniu nadproży, inżynierowie muszą uwzględniać nie tylko ich formę, ale także materiały, z których są wykonane, aby zapewnić trwałość i bezpieczeństwo budowli.

Pytanie 24

Na rysunku przedstawiono szczegół oparcia stropu gęstożebrowego na ścianie zewnętrznej z betonu komórkowego. Całkowita wysokość tego stropu wynosi

Ilustracja do pytania
A. 190 mm
B. 220 mm
C. 250 mm
D. 300 mm
Wybór odpowiedzi 190 mm, 300 mm lub 250 mm może wynikać z kilku powszechnych mylnych przekonań. Zbyt niski wymiar, jak w przypadku 190 mm, może pochodzić z niewłaściwego odczytu rysunku lub braku zrozumienia, że wysokość stropu gęstożebrowego jest mierzona w kontekście całkowitym, a nie tylko w odniesieniu do jednego z jego komponentów. Odpowiedź 300 mm może sugerować nadmierne przewidywanie, które nie znajduje odzwierciedlenia w rzeczywistości, ponieważ standardowe stropy gęstożebrowe rzadko przekraczają tę wartość w typowych zastosowaniach budowlanych. Wysokość 250 mm, z kolei, może wynikać z ogólnego błędnego założenia, że stropy muszą być zawsze szersze dla lepszej nośności, co jest niezgodne z zasadami projektowania zgodnymi z normami budowlanymi. Kluczowe jest zrozumienie, że wybór odpowiednich wymiarów stropów powinien być oparty na dokładnych danych i analizach, a nie na subiektywnych osądach. Podczas projektowania konstrukcji powinno się zawsze polegać na precyzyjnych wymiarach i wytycznych branżowych, aby zapewnić bezpieczeństwo oraz funkcjonalność budowlanych rozwiązań.

Pytanie 25

Na którym rysunku przedstawiono podłużny układ konstrukcyjny budynku?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór odpowiedzi B, C lub D wskazuje na pewne błędne zrozumienie podstawowych zasad układów konstrukcyjnych w architekturze. Odpowiedzi te mogą sugerować mylne założenie, że wszelkie układy, które nie są podłużne, mogą być równie efektywne, co układy podłużne, co jest nieprawdziwe. W rzeczywistości, w układzie podłużnym, kluczowym aspektem jest to, iż ściany nośne muszą być odpowiednio rozmieszczone wzdłuż dłuższych boki budynku, co nie zostało przedstawione na rysunkach B, C i D. Na tych rysunkach mogą znajdować się układy, gdzie ściany nośne są zlokalizowane w inny sposób, co prowadzi do wielu problemów konstrukcyjnych, w tym do nieefektywnego przenoszenia obciążeń oraz ograniczonej funkcjonalności przestrzennej. Często w praktyce inżynierskiej spotyka się błędy polegające na niewłaściwej interpretacji układów ścian nośnych, co skutkuje nieodpowiednim zaprojektowaniem obiektów, które nie spełniają norm bezpieczeństwa oraz nie mogą być w przyszłości dostosowywane do zmieniających się potrzeb użytkowników. Dlatego zrozumienie różnic między poszczególnymi układami konstrukcyjnymi jest kluczowe dla sukcesu projektowego oraz dla zapewnienia długotrwałej trwałości i funkcjonalności budynków.

Pytanie 26

Na rysunku przedstawiono fragment stropu

Ilustracja do pytania
A. Akermana.
B. Fert.
C. DZ.
D. Teriva.
Wybór odpowiedzi związanych z innymi typami stropów, jak Akerman, Teriva czy DZ, wskazuje na pewne błędy w zrozumieniu konstrukcji stropowych. Stropy Akermana wyróżniają się użyciem prefabrykowanych belek teowych oraz pustaków betonowych, które są umieszczane w formie bloków. Taki typ stropu, choć popularny w Polsce, nie jest przedstawiony na rysunku. Problemy z identyfikacją stropu Teriva mogą wynikać z jego charakterystyki, która jest oparta na pustakach ceramicznych, ale różni się od Fert pod względem używanych belek i ogólnej konstrukcji. Stropy DZ, choć użyteczne, są stosowane w zupełnie innych kontekstach, często jako stropy monolityczne, co również nie znajduje odzwierciedlenia na przedstawionym rysunku. Typowe błędy myślowe w wyborze błędnych odpowiedzi dotyczą m.in. utożsamienia pustaków ceramicznych z danym typem stropu bez uwzględnienia, jakie belki są używane w danej konstrukcji. Każdy z wymienionych typów stropów ma swoje specyficzne zastosowania i parametry, które decydują o ich użyteczności w różnych projektach budowlanych. Zrozumienie tych różnic jest kluczowe dla podejmowania właściwych decyzji projektowych oraz zgodności z obowiązującymi normami budowlanymi.

Pytanie 27

Jeżeli podczas trasowania ścianki działowej w pomieszczeniu trzeba wyznaczyć kąt prosty pomiędzy ścianą nośną, a ścianą działową, to, posługując się taśmą mierniczą, należy na podłożu odmierzyć odcinki a, b, c o następujących długościach:

Ilustracja do pytania
A. 50, 50, 100 cm
B. 60, 60, 120 cm
C. 60, 80, 120 cm
D. 60, 80,100 cm
Wybór niewłaściwych długości odcinków prowadzi do błędów w pomiarach, które mogą skutkować niewłaściwym ustawieniem ścian działowych. Na przykład, długości 60, 80, 120 cm nie spełniają wymogów twierdzenia Pitagorasa, ponieważ suma kwadratów krótszych boków nie równa się kwadratowi najdłuższego boku. Użycie takich długości może prowadzić do powstania kąta, który nie jest prosty, co w praktyce oznacza, że ściany nie będą się ze sobą prawidłowo łączyć, co może prowadzić do problemów z późniejszymi pracami wykończeniowymi. Podobnie, zestaw 60, 60, 120 cm jest również nieprawidłowy z powodu braku różnorodności długości, która jest niezbędna do stworzenia trójkąta prostokątnego. Odpowiedź 50, 50, 100 cm to kolejny przykład nieodpowiedniego podejścia, ponieważ podobnie jak w przypadku wcześniejszych przykładów, nie tworzy ona właściwego kąta prostego. W kontekście budownictwa, takie błędy mogą prowadzić do znacznych kosztów naprawczych. Warto pamiętać, że każdy aspekt budowy, od pomiarów po wykonawstwo, powinien być przeprowadzany zgodnie z przyjętymi standardami, aby uniknąć kosztownych pomyłek.

Pytanie 28

W technologii szalunku traconego, którego fragment przestawiono na rysunku, ściany wznosi się z

Ilustracja do pytania
A. kształtek styropianowych z rdzeniem żelbetowym.
B. betonu komórkowego na cienkowarstwowej zaprawie klejącej.
C. bloczków silikatowych na zaprawie ciepłochronnej.
D. prefabrykatów żelbetowych w deskowaniach z tektury.
Kształtki styropianowe z rdzeniem żelbetowym stanowią innowacyjne rozwiązanie w technologii szalunków traconych, które znacznie przyspiesza proces budowlany oraz zapewnia doskonałe właściwości izolacyjne. Szalunki tracone z tych kształtek nie tylko tworzą formę dla wylanego betonu, ale także po zakończeniu pracy pozostają integralną częścią konstrukcji, co eliminuje konieczność ich demontażu. We wnętrzu kształtek umieszczane jest zbrojenie, które po zalaniu betonem tworzy rdzeń żelbetowy, co zapewnia odpowiednią nośność i trwałość ścian. Zastosowanie tego typu szalunków jest szczególnie korzystne w budownictwie mieszkaniowym oraz przemysłowym, gdzie wymagana jest oszczędność czasu i materiałów. Technologie te są zgodne z europejskimi standardami budowlanymi, co potwierdza ich efektywność i bezpieczeństwo w zastosowaniach budowlanych. Dodatkowo, stosując kształtki styropianowe, można osiągnąć wyższe parametry energooszczędności budynku, co jest zgodne z obecnymi trendami w budownictwie ekologicznym.

Pytanie 29

Na rysunku przedstawiono elementy stropu

Ilustracja do pytania
A. Kleina.
B. Ceram.
C. Fert.
D. Teriva.
Odpowiedź "Teriva" jest prawidłowa, ponieważ przedstawiony na zdjęciu element stropowy jest charakterystyczny dla systemu stropowego o nazwie Teriva. Teriva to system gęstożebrowy, który składa się z belek stropowych oraz pustaków o specjalnej konstrukcji, które wspólnie tworzą efektywną i stabilną konstrukcję stropu. Elementy tego systemu są zaprojektowane w taki sposób, aby zapewnić wysoką nośność oraz optymalne rozkładanie obciążeń. W praktyce, stropy Teriva są często wykorzystywane w budownictwie mieszkalnym oraz komercyjnym, a ich zastosowanie przyczynia się do skrócenia czasu budowy dzięki prefabrykacji. Standardy budowlane, takie jak Eurokod 2, wskazują na konieczność odpowiedniego projektowania i wymiarowania stropów, co sprawia, że wybór systemu Teriva jest zgodny z nowoczesnymi praktykami inżynieryjnymi. Ponadto, użycie tego systemu może prowadzić do lepszej efektywności energetycznej budynków ze względu na mniejsze zużycie materiałów i lepszą izolacyjność.

Pytanie 30

Element architektoniczny rozciągający się poziomo i wystający przed lico ściany, który zabezpiecza budynek przed spływającą wodą to

A. attyka
B. cokół
C. gzyms
D. nadproże
Nadproże, attyka i cokół to różne elementy architektoniczne, ale nie mają nic wspólnego z gzymsami. Nadproże jest umieszczane nad otworami, jak okna czy drzwi, i jego zadaniem jest przenoszenie ciężaru z góry. Więc to bardziej o wzmacnianiu konstrukcji niż o ochronie przed wodą. Attyka to coś, co mamy na szczycie murów, często zdobiona, która ma zamykać budynek i dodaje mu lekkości. Może wpłynąć na kierunek spływu wody, ale nie jest odpowiedzialna za ochronę muru przed wilgocią. Cokół z kolei oddziela budynek od ziemi i dba o to, żeby dolna część ścian była chroniona przed wodą gruntową. Wybór nieodpowiedniego elementu w kontekście ochrony budynku przed wilgocią może prowadzić do błędów w projektowaniu i kosztownych napraw w przyszłości. Takie zrozumienie różnic między tymi elementami to klucz do udanych projektów budowlanych.

Pytanie 31

Długość belek stalowych dwuteowych, zastosowanych w nadprożu otworu okiennego, wykonanego w ścianie zewnętrznej przy klatce schodowej, w budynku, którego rzut przedstawiono na rysunku, wynosi

Ilustracja do pytania
A. 206 cm
B. 144 cm
C. 146 cm
D. 240 cm
Długość belek stalowych dwuteowych zastosowanych w nadprożu otworu okiennego wynosi 240 cm, co zostało wyraźnie zaznaczone na dołączonym rysunku. Takie belki są kluczowe w konstrukcji, gdyż zapewniają odpowiednie wsparcie dla nadproża, co jest szczególnie ważne w kontekście bezpieczeństwa budynku. Przy projektowaniu nadproży, długość belek musi być dostosowana do rozpiętości otworu oraz obciążeń, które będą na nie działać. W przypadku otworów okiennych, długość belek powinna przewyższać szerokość otworu, aby zapewnić odpowiednią stabilność i przenoszenie obciążeń z wyższych partii budynku. W praktyce, stosuje się standardy, takie jak Eurokod 3, które określają zasady projektowania konstrukcji stalowych. Wiedza na temat długości belek i ich odpowiedniego zastosowania jest niezbędna dla inżynierów budowlanych, aby zapewnić trwałość i bezpieczeństwo struktur. Przykładem zastosowania belek stalowych dwuteowych mogą być również inne elementy konstrukcyjne, takie jak stropy czy dachy, gdzie ich odpowiednia długość i przekrój są kluczowe dla właściwego przenoszenia obciążeń.

Pytanie 32

Odczytaj z rysunku grubość ściany, w której umieszczony jest otwór drzwiowy

Ilustracja do pytania
A. 14,5 cm
B. 25,0 cm
C. 81,0 mm
D. 80,0 mm
Odpowiedź 25,0 cm jest całkiem dobra, bo dokładnie pokazuje, jak gruba jest ta ściana przy otworze drzwiowym, według rysunku. W budownictwie grubość ścian, zarówno zewnętrznych, jak i wewnętrznych, jest mega ważna, bo wpływa na stabilność i energooszczędność budynku. Oczywiście, grubości mogą się różnić w zależności od materiałów, ale 25 cm to naprawdę popularny wymiar w tradycyjnym budownictwie, zwłaszcza przy użyciu bloczków betonowych czy cegieł. Pamiętaj też, żeby nie zapominać o dobrze dobranych izolacjach, bo te też wpływają na ostateczną grubość ścian. W praktyce, określenie tej grubości jest kluczowe, bo ma duży wpływ na obliczenia statyczne, które są niezbędne dla bezpieczeństwa i trwałości budynków.

Pytanie 33

Do wykonywania prac na elewacjach wysokich budynków powinny być stosowane rusztowania

A. kozłowe
B. wiszące
C. ruchome
D. samojezdne
Rusztowania wiszące są specjalistycznymi konstrukcjami, które są szczególnie przydatne w robótkach elewacyjnych na budynkach wysokich. Umożliwiają one pracownikom swobodne poruszanie się wzdłuż elewacji, a ich konstrukcja pozwala na łatwe dostosowanie się do kształtów oraz wymagań budynku. Dzięki swoim właściwościom, rusztowania te minimalizują potrzebę zajmowania przestrzeni na gruncie, co jest istotne w gęsto zabudowanych obszarach miejskich. W praktyce, rusztowania wiszące są często wykorzystywane podczas malowania, czyszczenia elewacji, a także przy przeprowadzaniu prac remontowych, co pozwala na zwiększenie efektywności i bezpieczeństwa pracy. Warto również zwrócić uwagę, że zgodnie z normami PN-EN 12810 oraz PN-EN 12811, rusztowania muszą być odpowiednio zaprojektowane i użytkowane, aby zapewnić ich stabilność i bezpieczeństwo. Dobrze zaplanowane rusztowanie wiszące, z zastosowaniem odpowiednich mechanizmów blokujących, jest kluczowym elementem w zapewnieniu bezpieczeństwa pracowników na wysokości.

Pytanie 34

Który z materiałów budowlanych przedstawia oznaczenie rysunkowe?

Ilustracja do pytania
A. Tynk.
B. Szkło.
C. Żelbet.
D. Tworzywo sztuczne.
Wybór materiałów takich jak tworzywo sztuczne, tynk czy żelbet w kontekście oznaczenia rysunkowego jest błędny, ponieważ każdy z tych materiałów ma specyficzne zastosowania oraz oznaczenia, które różnią się od oznaczenia szkła. Tworzywa sztuczne mają swoje unikalne właściwości, które są używane w różnych branżach, od elektroniki po budownictwo, ale ich oznaczenia rysunkowe nie są związane z omawianym standardem PN-70/B-01030. Tynk, jako materiał wykończeniowy, również nie jest przedstawiany w taki sam sposób na rysunkach technicznych, a jego zastosowanie koncentruje się głównie na estetyce i ochronie ścian. Żelbet, czyli żelbeton, to materiał konstrukcyjny, którego oznaczenia są całkowicie inne i odnoszą się do jego właściwości wytrzymałościowych i zastosowania w budownictwie. Wybór nieprawidłowych materiałów może prowadzić do błędnych wniosków oraz nieporozumień w projektach budowlanych. Właściwe rozumienie i stosowanie standardowych oznaczeń jest kluczowe w kontekście efektywnej komunikacji w zespole projektowym oraz zapewnienia zgodności z normami branżowymi, co w dłuższej perspektywie przekłada się na jakość i bezpieczeństwo realizowanych inwestycji.

Pytanie 35

Na rysunku przedstawiono ścianę

Ilustracja do pytania
A. piwniczną wykonaną na ławie żelbetowej.
B. fundamentową wykonaną na ławie betonowej.
C. piwniczną wykonaną na ławie betonowej.
D. fundamentową wykonaną na ławie żelbetowej.
Ściana przedstawiona na rysunku to ściana fundamentowa, wykonana na ławie żelbetowej. Tego rodzaju ściany są kluczowym elementem konstrukcyjnym budynków, ponieważ przenoszą obciążenia z budynku na grunt. Ława żelbetowa, w przeciwieństwie do ławy betonowej, zawiera zbrojenie w postaci prętów stalowych, co zapewnia jej większą wytrzymałość na ściskanie oraz rozciąganie. Wykorzystanie żelbetu w fundamentach jest zgodne z normą PN-EN 1992, która określa zasady projektowania konstrukcji żelbetowych. Przykładem zastosowania takich fundamentów są budynki wielorodzinne oraz obiekty przemysłowe, gdzie stabilność i nośność fundamentów są kluczowe dla bezpieczeństwa całej konstrukcji. Dobrze zaprojektowana i wykonana ściana fundamentowa wpływa na trwałość budynku oraz minimalizuje ryzyko osiadania i pęknięć, co jest szczególnie istotne w rejonach o zmiennych warunkach geologicznych.

Pytanie 36

Do murowania elementów konstrukcyjnych budynków, które przenoszą znaczące obciążenia, takich jak nadproża, słupy czy filary, powinno się stosować zaprawy

A. gipsowo-wapienne
B. wapienne
C. cementowo-wapienne
D. cementowe
Wybór odpoweidzi zaprawy wapiennej, gipsowo-wapiennej lub cementowo-wapiennej na elementy budowlane przenoszące duże obciążenia jest nieprzemyślany z kilku powodów. Zaprawy wapienne, chociaż mają swoje miejsce w budownictwie, są przeznaczone przede wszystkim do zastosowań w murach niefundamentowych oraz w miejscach, gdzie obciążenia są ograniczone. Ich wytrzymałość na ściskanie jest znacznie niższa niż w przypadku zapraw cementowych, co sprawia, że nie nadają się do elementów konstrukcyjnych wymagających wysokiej nośności. Gipsowo-wapienne zaprawy są dedykowane do wykończeń wnętrz i nie powinny być stosowane w elementach konstrukcyjnych z powodu niskiej odporności na działanie wilgoci oraz niskiej wytrzymałości. W przypadku zapraw cementowo-wapiennych, choć łączą one cechy obu typów zapraw, to jednak ich właściwości mechaniczne wciąż są niewystarczające w kontekście dużych obciążeń, co czyni je niewłaściwym wyborem. Powszechnym błędem jest zakładanie, że różne typy zapraw są wymienne, co nie jest prawdą; wybór materiału powinien być ściśle uzależniony od specyfikacji konstrukcyjnych oraz wymagań projektowych. W praktyce budowlanej kluczowe jest przestrzeganie norm i specyfikacji dotyczących wytrzymałości materiałów, aby zapewnić bezpieczeństwo i trwałość budowli na długie lata.

Pytanie 37

Szerokość filarka międzyokiennego na fragmencie rzutu kondygnacji wynosi

Ilustracja do pytania
A. 110 cm
B. 50 cm
C. 90 cm
D. 130 cm
Szerokość filarka międzyokiennego to bardzo ważny element, który nie tylko wpływa na stabilność całej budowli, ale też na to, jak wygląda przestrzeń wewnętrzna. W tym przypadku, jak pokazał rysunek, dobra szerokość filarka to 50 cm. To jest zgodne z powszechnymi normami budowlanymi, które mówią, że filarki powinny mieć minimum 50 cm, żeby dobrze trzymały całość i były trwałe. Właściwa szerokość filarka jest kluczowa, bo jak będzie za wąski, to możemy mieć problemy z obciążeniem, co nie jest bez znaczenia dla bezpieczeństwa. Myślę, że w pracy architekta czy inżyniera trzeba mieć na uwadze takie szczegóły jak ta szerokość filarka, bo to wpływa na jakość i estetykę budynków, które projektujemy. Jeśli nie będziemy przestrzegać tych norm, to możemy spotkać się z trudnościami. Dlatego warto to mieć na uwadze.

Pytanie 38

Na ilustracji przedstawiono sposób wykonania

Ilustracja do pytania
A. izolacji cieplnej.
B. paroizilacji.
C. izolacji akustycznej.
D. hydroizolacji.
Hydroizolacja to ważna sprawa, bo zabezpiecza różne elementy budowlane przed wodą i wilgocią. Na ilustracji widzisz czarną membranę izolacyjną – to typowy materiał używany do hydroizolacji. W budownictwie takie rozwiązania są kluczowe, zwłaszcza w miejscach, gdzie woda gruntowa czy opady są na porządku dziennym. Jak dobrze zabezpieczysz budynek, to unikniesz wielu problemów, jak zagrzybienie czy korozja stali. W praktyce można używać różnych technik hydroizolacji, na przykład membran bitumicznych, folii PVC czy specjalnych mas uszczelniających. Dobrze jest też regularnie sprawdzać te elementy i dbać o nie, żeby działały jak najdłużej. Jeśli chodzi o normy, to metody hydroizolacji powinny być zgodne z PN-EN 13967 i PN-EN 1504-2, które określają, jakie wymagania musi spełniać materiały i systemy w budownictwie. Dzięki temu nie tylko budynki będą trwalsze, ale też komfort ich użytkowania wzrośnie, bo nie będzie problemów z wilgocią.

Pytanie 39

Na przedstawionym rysunku szerokość otworu okiennego z węgarkami, w świetle węgarków, wynosi

Ilustracja do pytania
A. 130 cm
B. 90 cm
C. 70 cm
D. 80 cm
Szerokość otworu okiennego w świetle węgarków wynosi 80 cm, co wynika z precyzyjnego pomiaru wewnętrznego otworu, a także uwzględnienia grubości muru. W tym przypadku każda strona otworu okiennego ma mur o grubości 5 cm, co łącznie daje 10 cm. Zatem, aby obliczyć rzeczywistą szerokość otworu w świetle, należy od całkowitej szerokości ściany odjąć grubość muru po obu stronach: szerokość otworu = szerokość ściany - 2 * grubość muru. W praktyce, takie pomiary są kluczowe w budownictwie, szczególnie przy projektowaniu i montażu okien oraz drzwi, gdzie precyzyjne dopasowanie ma kluczowe znaczenie dla izolacji termicznej i akustycznej. Zgodnie z normami budowlanymi, należy również zwracać uwagę na odpowiednie luzowanie oraz montaż, aby zapewnić estetykę i funkcjonalność otworów okiennych. Wiedza na temat szerokości otworów jest niezbędna do prawidłowego doboru elementów budowlanych oraz zapewnienia ich poprawnego funkcjonowania.

Pytanie 40

Na rysunku przedstawiono przekrój i widok ściany

Ilustracja do pytania
A. oblicowanej.
B. szczelinowej.
C. dwuwarstwowej.
D. trój warstwowej.
Wybór ściany szczelinowej, oblicowanej czy trójwarstwowej może wynikać z nieporozumienia, jak te ściany właściwie działają. Ściana szczelinowa, mimo że w niektórych projektach się sprawdza, tutaj nie pasuje, bo zazwyczaj składa się z dwóch warstw z przestrzenią między nimi, a to nie jest dokładnie to, co widzimy na tym rysunku. Odpowiedź oblicowana dotyczy bardziej wyglądu ściany niż jej konstrukcji. Te ściany używa się głównie jako okładziny, ale nie mają one związku z tym, co mamy w tej sytuacji. Natomiast ściana trójwarstwowa, która ma trzy warstwy, w tym nośną, izolacyjną i osłonową, także nie pasuje do tego, co mamy na rysunku. Wiedza o tych różnicach między konstrukcjami jest ważna, żeby uniknąć problemów przy budowaniu i wyborze odpowiednich materiałów, bo to wpływa na efektywność energetyczną i trwałość całego budynku.