Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 8 lutego 2026 06:12
  • Data zakończenia: 8 lutego 2026 06:22

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. krzemionkowych
B. kwasoodpornych
C. szamotowych
D. ciepłochronnych
Keramzyt to innowacyjne lekkie kruszywo budowlane, które ze względu na swoje właściwości doskonale sprawdza się w produkcji zapraw ciepłochronnych. Jego niska gęstość oraz porowata struktura pozwalają na skuteczną izolację termiczną, co jest kluczowe w tworzeniu energooszczędnych budynków. Przykładem zastosowania keramzytu może być jego użycie w warstwie izolacyjnej w budynkach jednorodzinnych, gdzie przyczynia się do minimalizacji strat ciepła. W standardach budowlanych, takich jak PN-EN 13055, podkreśla się znaczenie stosowania materiałów, które nie tylko spełniają normy wytrzymałościowe, ale również przyczyniają się do efektywności energetycznej budynków. Keramzyt, dzięki swoim właściwościom, jest także materiałem ekologicznym, co wpisuje się w trendy zrównoważonego budownictwa, dążącego do ograniczenia wpływu na środowisko. Stosując keramzyt w zaprawach ciepłochronnych, inwestorzy mogą znacząco obniżyć koszty ogrzewania, co jest szczególnie istotne w kontekście rosnących cen energii.

Pytanie 2

Bloczki silikatowe to wyroby poddawane autoklawizacji?

A. wapienno-piaskowe
B. cementowo-piaskowe
C. z betonu komórkowego
D. z zaczynu gipsowego
Choć odpowiedzi cementowo-piaskowe, z zaczynu gipsowego oraz z betonu komórkowego mogą budzić pewne skojarzenia z bloczkami silikatowymi, są to jednak zupełnie różne materiały, które nie mogą być traktowane jako ich substytuty. Cementowo-piaskowe wyroby są produkowane z cementu i piasku, co skutkuje różnymi właściwościami mechanicznymi i izolacyjnymi. Podczas gdy bloczki silikatowe charakteryzują się wysoką wytrzymałością na ściskanie i dobrą izolacyjnością, materiały cementowo-piaskowe z reguły nie osiągają tak dobrych wyników w tych parametrach, co może prowadzić do nieefektywności w budownictwie. Zaczyn gipsowy jest stosowany głównie do wykonywania tynków i nie nadaje się do produkcji bloczków, ponieważ nie zapewnia wymaganej trwałości i stabilności strukturalnej. Gips jest materiałem bardziej kruchym, co czyni go nieodpowiednim do zastosowań wymagających dużej wytrzymałości. Z kolei beton komórkowy, chociaż ma dobre właściwości izolacyjne, różni się od bloczków silikatowych zarówno pod względem składu, jak i procesu produkcji. Beton komórkowy wytwarzany jest na bazie cementu, wody, piasku oraz dodatków chemicznych, które wspomagają tworzenie porów, co prowadzi do odmiennych właściwości fizycznych. W efekcie te różnice mogą prowadzić do nieporozumień w zakresie zastosowania i wydajności materiałów budowlanych, dlatego ważne jest, aby dokładnie rozumieć, jakie właściwości i charakterystyki posiada każdy z tych materiałów.

Pytanie 3

Zgodnie z Zasadami obmiaru robót tynkarskich podczas obmiaru tynku wewnętrznego ściany z jednym otworem okiennym o tynkowanych ościeżach należy odjąć powierzchnię tego otworu, jeżeli wynosi ona ponad

Zasady obmiaru robót tynkarskich
(fragment)
(...) Z powierzchni tynków nie odlicza się powierzchni nieotynkowanych lub ciągnionych mających więcej niż 1 m2 i powierzchni otworów do 3 m2, jeżeli ościeża ich są tynkowane. (...)
A. 2,0 m2
B. 0,5 m2
C. 3,0 m2
D. 1,0 m2
Odpowiedź "3,0 m2" jest prawidłowa, ponieważ zgodnie z Zasadami obmiaru robót tynkarskich, powierzchnię otworów, których powierzchnia nie przekracza 3 m2, należy odjąć od powierzchni tynków, o ile tynkowane są również ościeża. W przypadku otworów o powierzchni powyżej 1 m2, ale nieprzekraczającej 3 m2, nie ma konieczności odliczania ich powierzchni, co jest zgodne z przyjętymi normami. Praktycznie oznacza to, że w przypadku typowych budynków mieszkalnych, gdzie często spotykamy się z oknami o standardowych wymiarach, odpowiednie uwzględnienie takich otworów podczas obmiaru tynku pozwala na dokładniejsze ustalenie ilości materiałów potrzebnych do wykonania robót tynkarskich. Przykładowo, jeżeli mamy do czynienia z pomieszczeniem z dużymi oknami, warto wiedzieć, że ich powierzchnia nie wpłynie na całkowity koszt robót, co jest istotne w kontekście zarządzania budżetem projektu budowlanego. Zastosowanie tych zasad nie tylko wpływa na poprawność obliczeń, ale również na efektywność procesu budowlanego, co jest kluczowe w branży budowlanej.

Pytanie 4

Określenie lokalizacji nowych ścianek działowych w renowowanym obiekcie następuje na podstawie

A. warunków technicznych wykonania i odbioru robót
B. specyfikacji technicznej wykonania i odbioru robót
C. założeń do kosztorysu
D. projektu budowlanego
Projekt budowlany jest kluczowym dokumentem w procesie przebudowy budynku, ponieważ określa on szczegółowe rozwiązania architektoniczne oraz konstrukcyjne, w tym lokalizację nowych ścianek działowych. Zawiera on rysunki techniczne, które ilustrują układ pomieszczeń, a także specyfikacje materiałowe i technologiczne. Przykładowo, w przypadku przekształcenia przestrzeni biurowej, projekt budowlany pomoże zdecydować, gdzie najlepiej umieścić ścianki działowe, aby zachować optymalną funkcjonalność oraz estetykę. Ponadto, każda realizacja powinna być zgodna z obowiązującymi normami budowlanymi i technicznymi, które są zawarte w planie. Stosowanie się do zatwierdzonego projektu budowlanego minimalizuje ryzyko konfliktów z przepisami prawa budowlanego, co może prowadzić do kosztownych opóźnień w realizacji projektu oraz konieczności wprowadzenia zmian w już zrealizowanych elementach budowlanych.

Pytanie 5

W budynkach z cegły ceramicznej z użyciem zaprawy cementowo-wapiennej, dylatacje należy umieszczać co ile?

A. 40 m
B. 50 m
C. 60 m
D. 25 m
Przerwy dylatacyjne w budynkach murowanych z cegły ceramicznej na zaprawie cementowo-wapiennej powinny być rozmieszczane co 60 m, zgodnie z obowiązującymi normami budowlanymi. Dylatacje mają na celu kompensację ruchów termicznych, wilgotnościowych oraz osiadania konstrukcji. W przypadku dużych budowli, zwłaszcza o dużych powierzchniach, brak odpowiednich dylatacji może prowadzić do powstawania pęknięć i uszkodzeń strukturalnych, co przyczynia się do kosztownych napraw. Na przykład w przypadku budynków przemysłowych, takich jak magazyny czy hale produkcyjne, które charakteryzują się dużymi przeszklonymi powierzchniami, stosowanie dylatacji co 60 m minimalizuje ryzyko wystąpienia deformacji konstrukcji. Warto również podkreślić, że rozmieszczenie dylatacji powinno uwzględniać lokalne warunki klimatyczne oraz charakterystykę materiałów, co jest istotne dla zapewnienia długowieczności i stabilności budowli.

Pytanie 6

Na podstawie informacji podanych w tabeli oblicz, ile kilogramów masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0 należy zakupić, aby pokryć tynkiem prostokątną ścianę szczytową budynku o wymiarach 6 x 11 m.

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 264,0
B. 198,0
C. 125,4
D. 171,6
Odpowiedź 198,0 kg jest poprawna, ponieważ aby obliczyć potrzebną ilość masy tynkarskiej do pokrycia ściany o wymiarach 6 x 11 m, należy najpierw obliczyć powierzchnię tej ściany. Powierzchnia wynosi 66 m² (6 m x 11 m). Znając orientacyjne zużycie masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0, które wynosi 3 kg/m², możemy obliczyć całkowitą ilość potrzebnej masy. Mnożymy powierzchnię przez zużycie: 66 m² x 3 kg/m² = 198 kg. Prawidłowe obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na prawidłowe oszacowanie kosztów materiałów oraz ich zużycia. Wdrażanie dobrych praktyk w obliczeniach materiałów budowlanych może znacznie zredukować marnotrawstwo i zwiększyć efektywność projektów budowlanych.

Pytanie 7

Na którym rysunku przedstawiono narzędzie służące do narzucania zaprawy przy tynkowaniu ręcznym?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Na rysunku D przedstawiono kielnię murarską, która jest kluczowym narzędziem w procesie tynkowania ręcznego. Kielnia murarska służy do precyzyjnego nakładania zaprawy na powierzchnię, co jest niezwykle istotne, aby zapewnić równomierne pokrycie i właściwe przyczepienie materiału. Użycie kielni pozwala na kontrolowanie ilości zaprawy, co z kolei wpływa na jakość finalnego wykończenia. W praktyce, dobra technika pracy z kielnią obejmuje odpowiednie kątowanie, a także umiejętność wykonania gładkich ruchów, co minimalizuje ryzyko powstawania nierówności. Warto też zaznaczyć, że w tynkowaniu ręcznym, korzystanie z odpowiednich narzędzi, takich jak kielnia, jest zgodne z najlepszymi praktykami budowlanymi, które podkreślają znaczenie precyzji i jakości robót budowlanych. Dodatkowo, umiejętność posługiwania się tym narzędziem jest niezbędna w wielu innych dziedzinach budownictwa, takich jak murowanie czy stawianie ścianek działowych.

Pytanie 8

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 15,00 m
B. 1,50 m
C. 0,75 m
D. 7,50 m
Rozważając niepoprawne odpowiedzi, wiele osób może zrobić błędne założenie, że długość ściany w rzeczywistości odpowiada długości na rysunku. Odpowiedź 1,50 m sugeruje, że uczestnik mógł pomylić jednostki miary lub nie zastosować zasady przeliczenia skali. Rysunek w skali 1:50 oznacza, że każdemu centymetrowi na rysunku przypisuje się 50 centymetrów w rzeczywistości. Dlatego długość 15 cm na rysunku nie może być bezpośrednio przeliczona na metry bez uwzględnienia skali. Odpowiedzi 0,75 m oraz 15,00 m również wynikają z niepoprawnych obliczeń. Odpowiedź 0,75 m sugeruje, że respondent mógł przyjąć błędny współczynnik przeliczeniowy, a odpowiedź 15,00 m całkowicie ignoruje zasadę przeliczenia skali. Często przyczyną takich pomyłek jest nieuwaga lub brak zrozumienia, jak ważne jest przeliczenie wymiarów w kontekście skali. Umiejętność poprawnej interpretacji rysunków technicznych oraz znajomość reguł przeliczania skali są kluczowe w procesie projektowania, budowy oraz renowacji budynków i innych obiektów. W praktyce, błędne rozumienie tych zasad może prowadzić do poważnych konsekwencji, takich jak niewłaściwe oszacowanie potrzebnych materiałów, co z kolei może wpłynąć na budżet oraz harmonogram prac budowlanych. Wiedza na temat przeliczania skali jest zatem podstawą każdego projektu budowlanego i architektonicznego.

Pytanie 9

Zgodnie z wskazówkami producenta, zużycie gotowej mieszanki tynkarskiej do nałożenia tynku o grubości 15 mm wynosi 19,5 kg/m2. Ile worków po 30 kilogramów tej mieszanki jest potrzebnych do pokrycia powierzchni 150 m2 tym tynkiem?

A. 75 worków
B. 147 worków
C. 98 worków
D. 225 worków
Odpowiedź 98 worków jest poprawna, ponieważ aby obliczyć całkowite zużycie zaprawy tynkarskiej do wykonania tynku na powierzchni 150 m², należy pomnożyć zużycie na metr kwadratowy przez całkowitą powierzchnię. W tym przypadku, zużycie wynosi 19,5 kg/m², co daje 19,5 kg/m² * 150 m² = 2925 kg. Następnie, aby obliczyć liczbę worków zaprawy potrzebnych do zakupu, należy podzielić całkowite zapotrzebowanie na kilogramy przez wagę jednego worka. Przy masie worka wynoszącej 30 kg, obliczenie wygląda następująco: 2925 kg / 30 kg/worek = 97,5 worków. Ostatecznie, zaokrąglając w górę, potrzebujemy 98 worków. Takie obliczenia są istotne w praktyce budowlanej, ponieważ precyzyjne szacowanie materiałów pozwala uniknąć niedoborów oraz nadmiaru, co z kolei przekłada się na efektywność kosztową i terminowość realizacji projektów budowlanych. Wykorzystanie standardów kalkulacyjnych w branży budowlanej, takich jak normy PN-EN, wspiera dokładność tego procesu.

Pytanie 10

Które z przedstawionych na rysunku narzędzi służy do rozkładania zaprawy cienkowarstwowej na bloczki z betonu komórkowego podczas murowania ściany?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź A to trafny wybór, bo kielnia murarska jest naprawdę ważnym narzędziem przy murowaniu ścian, zwłaszcza z bloczków z betonu komórkowego. Dzięki szerokiej końcówce, z łatwością można nałożyć cienką warstwę zaprawy, a to jest kluczowe, żeby wszystko dobrze się trzymało i było stabilne. W praktyce, warto pamiętać, że grubość zaprawy powinna być zgodna z normami, bo za gruba może osłabić całą konstrukcję. Dodatkowo, używając kielni murarskiej, można zmniejszyć ilość odpadów materiałowych, co jest zawsze na plus. Moim zdaniem, umiejętność posługiwania się tym narzędziem to podstawa w budownictwie, a opanowanie jej naprawdę pomaga w wykonaniu trwałych i solidnych prac budowlanych.

Pytanie 11

Jakie materiały wykorzystuje się do realizacji izolacji przeciwwilgociowych?

A. płyty pilśniowe i emulsje asfaltowe
B. pasty asfaltowe i płyty wiórowe
C. folie izolacyjne i lepiki asfaltowe
D. roztwory asfaltowe oraz włókna celulozowe
Izolacja przeciwwilgociowa jest kluczowym aspektem w budownictwie, który ma na celu ochronę obiektów przed negatywnym wpływem wilgoci. Folie izolacyjne oraz lepiki asfaltowe to sprawdzone materiały, które skutecznie zapobiegają przenikaniu wilgoci do wnętrza budynków. Folie izolacyjne są często stosowane w fundamentach, gdzie zabezpieczają przed wodą gruntową, a ich właściwości paroprzepuszczalne pozwalają na odprowadzanie nadmiaru wilgoci. Lepiki asfaltowe, z kolei, służą do uszczelniania różnorodnych powierzchni budowlanych, takich jak dachy, tarasy czy fundamenty. Dzięki elastyczności i odporności na zmiany temperatury, lepiki te zachowują swoje właściwości w różnorodnych warunkach atmosferycznych. W branży budowlanej standardami stosowanymi przy izolacji przeciwwilgociowej są normy PN-B-03020 oraz PN-EN 15814, które określają wymagania oraz metody badań dla materiałów izolacyjnych. Przykładem praktycznego zastosowania tych materiałów może być budowa piwnic, gdzie odpowiednia izolacja przeciwwilgociowa jest kluczowa dla zapewnienia komfortu i trwałości budynku.

Pytanie 12

Na fotografii przedstawiono materiał izolacyjny przeznaczony do wykonywania izolacji

Ilustracja do pytania
A. termicznej i akustycznej.
B. akustycznej i przeciwwodnej.
C. przeciwwodnej i przeciwwilgociowej.
D. przeciwwilgociowej i paroprzepuszczalnej.
Odpowiedź dotycząca izolacji termicznej i akustycznej jest prawidłowa, ponieważ wełna mineralna, prezentowana na zdjęciu, jest jednym z najczęściej stosowanych materiałów izolacyjnych w budownictwie. Charakteryzuje się doskonałymi właściwościami termicznymi, co oznacza, że skutecznie ogranicza utratę ciepła w budynkach, co jest zgodne z aktualnymi standardami efektywności energetycznej budowli. Jest to kluczowy aspekt, gdyż odpowiednia izolacja termiczna wpływa na obniżenie kosztów ogrzewania. Dodatkowo, wełna mineralna ma także znakomite właściwości akustyczne, co czyni ją idealnym rozwiązaniem w kontekście budowy ścian działowych czy sufitów podwieszanych, gdzie istotne jest ograniczenie hałasu. W praktyce, materiał ten jest również łatwy w obróbce i może być stosowany zarówno w nowych budynkach, jak i podczas modernizacji starszych obiektów, co czyni go wszechstronnym rozwiązaniem w branży budowlanej.

Pytanie 13

Określona stawka robocizny za 1 m2wykonania tynku maszynowego cementowo-wapiennego wynosi 20 zł, natomiast koszt materiałów to 15 zł/ m2. Oblicz całkowity wydatek na tynkowanie 300 m2ścian?

A. 10 500 zł
B. 6 000 zł
C. 15 000 zł
D. 4 500 zł
Aby obliczyć całkowity koszt tynkowania 300 m² ścian, należy uwzględnić zarówno stawkę robocizny, jak i koszt materiału. Stawka robocizny za 1 m² wynosi 20 zł, co w przypadku 300 m² daje 300 m² * 20 zł/m² = 6000 zł. Koszt materiału wynosi 15 zł za m², co dla 300 m² daje 300 m² * 15 zł/m² = 4500 zł. Sumując te dwa koszty, otrzymujemy całkowity koszt tynkowania: 6000 zł + 4500 zł = 10500 zł. Taki sposób obliczeń jest zgodny z praktykami budowlanymi, gdzie często dzieli się koszty na robociznę i materiały. Wiedza o tym, jak obliczać całkowite koszty projektów budowlanych, jest niezwykle ważna dla planowania budżetu oraz negocjacji z podwykonawcami. Pozwala to na precyzyjne oszacowanie wydatków oraz optymalizację kosztów, co jest kluczowe w branży budowlanej.

Pytanie 14

Jakie podłoże powinno być zabezpieczone stalową siatką podtynkową przed nałożeniem tynku?

A. Drewniane
B. Z betonu zwykłego
C. Ceglane
D. Z betonu komórkowego
Odpowiedź dotycząca podłoża drewnianego jest prawidłowa, ponieważ przed otynkowaniem należy stosować stalową siatkę podtynkową w celu zapewnienia lepszej przyczepności tynku do powierzchni. Drewno, w przeciwieństwie do innych materiałów budowlanych, posiada właściwości, które mogą prowadzić do odkształceń i pęknięć. Stalowa siatka działa jako stabilizator, zapobiegając pękaniu tynku, co jest szczególnie istotne w przypadku drewnianych konstrukcji. Zastosowanie siatki podtynkowej jest również zgodne z normami budowlanymi, które zalecają takie rozwiązania w sytuacjach, gdy tynk ma być aplikowany na materiałach, które mogą się kurczyć lub rozszerzać. Przykładowo, w budownictwie mieszkaniowym, gdzie często stosuje się drewno jako materiał konstrukcyjny, zastosowanie siatki podtynkowej zwiększa trwałość i estetykę wykończenia. Dobrą praktyką jest także wykorzystanie siatek o odpowiedniej gęstości otworów, co jeszcze bardziej podnosi ich efektywność.

Pytanie 15

Betonowe podłoże, które ma być tynkowane, powinno charakteryzować się równą powierzchnią oraz

A. zwilżone i chropowate
B. suche i gładkie
C. suche i chropowate
D. zwilżone i gładkie
Odpowiedź zwilżone i chropowate jest prawidłowa, ponieważ podłoże betonowe przeznaczone do tynkowania powinno mieć odpowiednie właściwości fizyczne, które zapewniają skuteczne przywieranie tynku. Zastosowanie podłoża chropowatego zwiększa powierzchnię kontaktu pomiędzy tynkiem a podłożem, co wspomaga mechaniczne wiązanie. Dodatkowo lekko zwilżone podłoże redukuje ryzyko odparowania wody z tynku zbyt szybko, co może prowadzić do pęknięć i osłabienia struktury tynku. Przykładem dobrych praktyk jest stosowanie tzw. „mokra na mokrą” metody, gdzie świeżo nałożony tynk aplikowany jest na wcześniej nawilżone podłoże, co zapewnia lepsze połączenie. W kontekście standardów budowlanych, normy takie jak PN-EN 998-1 wskazują na konieczność odpowiedniego przygotowania podłoża dla zapewnienia długotrwałej trwałości i estetyki wykończenia. Instalacja tynku na podłożu spełniającym te wymogi znacząco wpływa na jakość wykonania i przyszłe użytkowanie pomieszczeń.

Pytanie 16

Na rysunku przedstawiono fragment stropu

Ilustracja do pytania
A. Teriva.
B. Fert.
C. DZ.
D. Akermana.
Odpowiedź Fert jest poprawna, ponieważ na rysunku przedstawiono charakterystyczny fragment stropu tego typu. Stropy Fert, znane z zastosowania prefabrykowanych belek kratownicowych oraz pustaków ceramicznych, są popularnym rozwiązaniem w budownictwie ze względu na swoją lekkość i wytrzymałość. Prefabrykowane belki kratownicowe pozwalają na osiągnięcie sporych rozpiętości, co jest istotne w nowoczesnych konstrukcjach budowlanych, gdzie często dąży się do otwartych przestrzeni. Pustaki ceramiczne, układane między belkami, nie tylko wspierają konstrukcję, ale również zapewniają odpowiednią izolację termiczną i akustyczną. Całość, po zalaniu betonem, tworzy trwałą i stabilną konstrukcję. W praktyce, stropy Fert często stosuje się w budynkach mieszkalnych i użyteczności publicznej, co podkreśla ich wszechstronność oraz zgodność z aktualnymi standardami budowlanymi.

Pytanie 17

Na rysunku przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. krzyżykowym.
B. wozówkowym.
C. polskim.
D. główkowym,
Wybór odpowiedzi, która nie odnosi się do wiązania wozówkowego, często może brać się z braku zrozumienia różnych technik murowania. Na przykład, wiązanie główkowe to układanie cegieł tylko na krótkich bokach, co nie jest najlepszym rozwiązaniem dla stabilności, zwłaszcza w wyższych murach. Z kolei wiązanie polskie, które stosuje cegły w różnych kierunkach, nie cieszy się dużym powodzeniem i nie jest za bardzo polecane w nowoczesnym budownictwie. Wiązanie krzyżykowe, które polega na układaniu cegieł w krzyż, też nie wygląda najlepiej w kontekście stabilności. Wiedza o tych systemach wiązania jest bardzo ważna, żeby nie popełniać błędów w projektach. W praktyce trzeba pamiętać, że wybór odpowiedniego wiązania powinien opierać się na tym, jakie są wymagania projektu, jak obciążenia i stabilność. Użycie złego wiązania może prowadzić do poważnych problemów, takich jak pęknięcia murów czy obniżenie nośności, co może być niebezpieczne dla ludzi korzystających z budynku.

Pytanie 18

Do tworzenia tynków zabezpieczających przed promieniowaniem rentgenowskim, wykorzystywanych w pomieszczeniach pracowni diagnostycznych, stosuje się zaprawy z dodatkiem kruszywa

A. barytowego
B. wapiennego
C. granitowego
D. bazaltowego
Odpowiedź barytowego jest poprawna, ponieważ baryt, będący siarczanem baru, charakteryzuje się wysoką gęstością, co czyni go skutecznym materiałem do ochrony przed promieniowaniem rentgenowskim. Tynki z dodatkiem barytu są powszechnie stosowane w pomieszczeniach diagnostycznych, takich jak RTG czy CT, gdzie istnieje potrzeba zabezpieczenia ścian przed przenikaniem promieniowania. Przykładem praktycznego zastosowania może być wykończenie pomieszczenia, w którym odbywają się badania radiologiczne, gdzie tynk barytowy pomaga zminimalizować promieniowanie, tym samym chroniąc personel oraz pacjentów. Zgodnie z normami bezpieczeństwa radiologicznego, takie tynki powinny spełniać określone standardy, które zapewniają odpowiedni poziom ochrony. Warto również zaznaczyć, że poza tynkami, baryt jest wykorzystywany w różnych rozwiązaniach budowlanych, takich jak płyty gipsowo-kartonowe z dodatkiem barytu, co zwiększa ich efektywność w ochronie przed promieniowaniem.

Pytanie 19

Na rysunku przedstawiono mur wykonany z zastosowaniem wiązania

Ilustracja do pytania
A. krzyżykowego.
B. polskiego.
C. pospolitego.
D. wielowarstwowego.
Wybór wiązania krzyżykowego, pospolitego lub wielowarstwowego jest nieprawidłowy ze względu na fundamentalne różnice w sposobie układania cegieł, które wpływają na stabilność i wytrzymałość muru. Wiązanie krzyżykowe charakteryzuje się stosowaniem cegieł w układzie, gdzie na zmianę ułożone są długie i krótkie boki cegieł, co może prowadzić do niejednorodnego rozkładu obciążeń oraz potencjalnych punktów osłabienia. Wiązanie pospolite, z kolei, polega na układaniu cegieł w taki sposób, że wszystkie są ustawione w linii, co również osłabia spoiny i zwiększa ryzyko pęknięć. Zastosowanie wiązania wielowarstwowego, mimo że może być korzystne w niektórych konstrukcjach, nie jest adekwatne w kontekście muru przedstawionego w pytaniu, gdzie kluczowe jest zapewnienie jednorodności i stabilności. Typowym błędem myślowym jest zrozumienie, że różne metody układania cegieł mogą być używane wymiennie; jednak każda z nich ma swoje unikalne właściwości i zastosowania, które powinny być dostosowane do specyficznych wymagań projektowych. W związku z tym, ważne jest, aby przy wyborze odpowiedniego wiązania kierować się nie tylko estetyką, ale przede wszystkim zasadami inżynierii budowlanej i najlepszymi praktykami w zakresie konstrukcji.

Pytanie 20

Na ilustracji przedstawiono fragment stropu

Ilustracja do pytania
A. Kleina.
B. Fert.
C. Akermana.
D. Teriva.
Strop Kleina stanowi jedno z bardziej klasycznych rozwiązań w budownictwie, które zyskało popularność dzięki swojej solidności oraz prostocie konstrukcyjnej. W jego budowie wykorzystuje się stalowe belki, co pozwala na znaczne zmniejszenie ciężaru całej konstrukcji, a jednocześnie zapewnia wysoką nośność. Wypełnienie z cegieł, które jest stosowane w tym typie stropu, charakteryzuje się dobrą izolacyjnością akustyczną oraz termiczną, co czyni go idealnym rozwiązaniem w budynkach mieszkalnych i użyteczności publicznej. Strop Kleina jest również zgodny z normami budowlanymi, co czyni go bezpiecznym i trwałym rozwiązaniem. Z punktu widzenia inżynierii, ważnym aspektem jest możliwość dostosowania tego typu stropu do różnych warunków oraz obciążeń, co czyni go elastycznym rozwiązaniem w projektowaniu budynków. Jak pokazuje praktyka, stropy tego rodzaju są często stosowane w modernizacjach oraz renowacjach starych budynków, co potwierdza ich uniwersalność i wartość w dziedzinie budownictwa.

Pytanie 21

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Kominowe
B. Fundamentowe
C. Piwniczne
D. Osłonowe
Cegła kratówka klasy 5 jest materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością na ściskanie oraz korzystnymi właściwościami izolacyjnymi. Jest to materiał o dobrych parametrach mechanicznych, co sprawia, że może być stosowany do budowy murów osłonowych. Mury osłonowe pełnią kluczową rolę w ochronie budynków przed działaniem warunków atmosferycznych, a ich konstrukcja często wymaga zastosowania materiałów, które zapewniają odpowiednią trwałość i izolację. W praktyce mury osłonowe wykonane z cegły kratówki klasy 5 mogą wspierać efektywność energetyczną budynku, a także przyczyniać się do jego estetyki. Dodatkowo, przy budowie murów osłonowych należy przestrzegać norm budowlanych, takich jak PN-EN 1996, które określają wymagania dotyczące materiałów, konstrukcji i ich właściwości. Dzięki tym standardom, inwestorzy mogą mieć pewność, że ich budowle będą nie tylko estetyczne, ale także funkcjonalne i trwałe.

Pytanie 22

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 14,0 litrów
B. 3,5 litra
C. 7,0 litrów
D. 10,5 litra
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 23

Na ilustracji przedstawiono fragment lica muru wykonanego w wiązaniu

Ilustracja do pytania
A. krzyżykowym.
B. wozówkowym.
C. kowadełkowym.
D. główkowym.
Wybór odpowiedzi związanych z innymi typami wiązań, takimi jak krzyżykowe, kowadełkowe lub główkowe, wskazuje na pewne nieporozumienia dotyczące technik murowania. Wiązanie krzyżykowe, które charakteryzuje się układaniem cegieł w przeplatane wzory, jest mniej stabilne w porównaniu do wozówkowego. Takie podejście może prowadzić do problemów z równomiernym rozkładem obciążeń, co w dłuższej perspektywie może skutkować uszkodzeniami muru. Z kolei wiązanie kowadełkowe, które polega na układaniu cegieł w sposób, który wygląda jak kowadło, również nie zapewnia takiej samej efektywności strukturalnej jak wozówkowe. Ten typ wiązania może powodować większe obciążenia punktowe, a to z kolei wpływa na trwałość konstrukcji. Wiązanie główkowe polega na układaniu cegieł w taki sposób, że ich krótsze boki są ustawione w kierunku ściany, co również nie jest zgodne z najlepszymi praktykami w budownictwie. Wybór niewłaściwego wiązania może prowadzić do nieefektywności w budowie oraz zwiększonego ryzyka uszkodzeń. Dlatego ważne jest, aby przy wyborze techniki murowania kierować się standardami branżowymi oraz wiedzą na temat ich zastosowania, aby zapewnić zarówno estetykę, jak i funkcjonalność w projektach budowlanych.

Pytanie 24

W trakcie tynkowania ceglanego gzymsu zaprawę narzutu aplikujemy na

A. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
B. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
C. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
D. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
Podczas tynkowania gzymsu ceglanego, kluczowe jest, aby zaprawę narzutu nanosić na odpowiednio dobranym odcinku. Pozwala to na precyzyjne wyprofilowanie gzymsu przed związaniem zaprawy. W praktyce oznacza to, że można przesuwać szablon po prowadnicach w obu kierunkach - do przodu i do tyłu, co umożliwia uzyskanie równomiernego i estetycznego wykończenia. Takie podejście jest zgodne z najlepszymi praktykami w budownictwie, które sugerują, że kontrola nad aplikacją zaprawy jest kluczowa dla trwałości i wyglądu wykończenia. Przykładowo, w przypadku gzymsów, które są często narażone na działanie warunków atmosferycznych, odpowiednia technika tynkowania może znacząco wpłynąć na ich odporność na wilgoć czy uszkodzenia mechaniczne. Warto również zwrócić uwagę na sposób nanoszenia zaprawy, aby uniknąć powstawania szczelin i nierówności, które mogą prowadzić do późniejszych problemów z estetyką i funkcjonalnością. Zachowanie procedur nanoszenia zaprawy z uwagą na czas związania umożliwia lepszą kontrolę nad ostatecznym efektem.

Pytanie 25

Na rysunku przedstawiono rzut pomieszczenia, w którym zaplanowano wyburzenie ściany. Oblicz powierzchnię ściany przeznaczonej do rozbiórki, jeżeli wysokość pomieszczenia wynosi 3,2 m.

Ilustracja do pytania
A. 8,00 m2
B. 8,96 m2
C. 5,44 m2
D. 10,88 m2
Błędne odpowiedzi, takie jak 8,00 m2, 10,88 m2 oraz 8,96 m2, mogą wynikać z nieprawidłowego zrozumienia zasad obliczania powierzchni ściany. W przypadku obliczeń dotyczących powierzchni, istotne jest, aby prawidłowo określić zarówno długość, jak i wysokość analizowanego obiektu. W tym zadaniu długość ściany wynosi 1,7 m, co już samo w sobie jest kluczowym punktem. Wybór wartości, które znacząco różnią się od 1,7 m, może świadczyć o mylnym założeniu, że długość ściany jest większa niż w rzeczywistości. Często spotykaną pomyłką jest również ignorowanie jednostek miary, co prowadzi do nieprawidłowych wyników. Ponadto, nieprawidłowe podejścia do obliczeń, takie jak sumowanie długości lub wysokości, zamiast ich mnożenia, mogą prowadzić do zawyżenia lub zaniżenia wyników. Kluczowe w takich sytuacjach jest zrozumienie, że powierzchnia jest wielkością dwu- lub trójwymiarową, co oznacza, że obliczenia powinny być oparte na właściwych operacjach matematycznych, jak mnożenie, a nie dodawanie. Warto zatem zwracać uwagę na detale i upewnić się, że każdy element obliczeń jest właściwie uwzględniony i przemyślany, aby uniknąć nieporozumień w przyszłości.

Pytanie 26

Jakie kruszywo wykorzystuje się do produkcji ciepłochronnych zapraw murarskich?

A. Perlit
B. Kruszywo piaskowe
C. Pospółka
D. Kruszywo żwirowe
Perlit to materiał o doskonałych właściwościach izolacyjnych, który jest powszechnie stosowany do produkcji ciepłochronnych zapraw murarskich. Jego unikalna struktura, powstała w wyniku poddania wysokiej temperaturze naturalnego wulkanicznego szkła, sprawia, że perlit ma niską przewodność cieplną. Dzięki temu, zaprawy murarskie z dodatkiem perlitu skutecznie ograniczają straty ciepła, co jest istotne w kontekście budownictwa energooszczędnego. Przykłady zastosowania perlitu obejmują budowę domów pasywnych, gdzie kluczowe jest osiągnięcie jak najniższego zapotrzebowania na energię. Standardy branżowe, takie jak PN-EN 998-1, podkreślają znaczenie jakości izolacji w budynkach, a użycie perlitu w zaprawach murarskich jest zgodne z najlepszymi praktykami w tej dziedzinie. Warto dodać, że perlit jest materiałem ekologicznym, co dodatkowo zwiększa jego atrakcyjność w nowoczesnym budownictwie.

Pytanie 27

W murze niespoinowanym z pustaków ceramicznych zostały wykonane otwory okienne o zaprojektowanych wymiarach 120 x 150 cm (szer. x wys.). Który z rzeczywistych wymiarów szerokości otworu spełnia warunki techniczne wykonania i odbioru robót murarskich podanych w tabeli?

Ilustracja do pytania
A. 119 cm
B. 115 cm
C. 121 cm
D. 130 cm
Odpowiedź 121 cm jest na pewno w porządku, bo mieści się w dopuszczalnych odchyłkach dla otworów w murach niespoinowanych z pustaków ceramicznych. Z tego, co pamiętam z normy PN-EN 1996-1-1, dla otworów o wymiarach 120 x 150 cm tolerancja dla szerokości wynosi +/- 10 mm. To znaczy, że akceptowane wymiary to 110 do 130 cm. Wybierając 121 cm, naprawdę spełniasz wszystkie wymagania jakościowe. To ważne, bo dobrze dobrane wymiary otworów mają duże znaczenie dla trwałości i bezpieczeństwa całej konstrukcji. Na przykład, jeśli wymiary będą źle dobrane, mogą pojawić się problemy z osadzaniem okien, a to później prowadzi do nieszczelności i strat ciepła. Przy projektowaniu otworów okiennych warto zawsze pamiętać o tolerancjach i lepiej skonsultować się z wykonawcą, żeby upewnić się, że wszystko będzie zgodne z wymaganiami technicznymi.

Pytanie 28

Który etap naprawy spękanego tynku przedstawiono na fotografii?

Ilustracja do pytania
A. Poszerzanie rysy.
B. Gruntowanie obrzeża rysy.
C. Oczyszczanie obrzeża rysy.
D. Nakładanie zaprawy szpachlowej.
Poszerzanie rysy to kluczowy etap w procesie naprawy spękanego tynku. Na przedstawionej fotografii widzimy osobę, która za pomocą szpachelki poszerza rysę, co jest istotne dla zapewnienia trwałości naprawy. Poszerzając rysę, tworzymy większą powierzchnię dla przyczepności zaprawy szpachlowej, co pozwala na skuteczniejsze wypełnienie ubytków i zapobiega ponownemu pojawieniu się pęknięć. Zgodnie z zasadami dobrych praktyk budowlanych, przed nałożeniem nowego materiału naprawczego należy dokładnie przygotować powierzchnię, aby uniknąć problemów w przyszłości. Warto również pamiętać, że odpowiednie poszerzenie rysy może wymagać zastosowania narzędzi o różnych kształtach i rozmiarach, aby dostosować się do specyfiki uszkodzenia. Po zakończeniu tego etapu, kolejną czynnością jest gruntowanie obrzeża rysy, co dodatkowo zwiększa przyczepność. Dzięki tym działaniom można osiągnąć długotrwałe efekty naprawy, co przekłada się na zadowolenie właścicieli budynków i redukcję kosztów związanych z późniejszymi naprawami. Przykłady zastosowania tej metody można znaleźć w wielu projektach remontowych, gdzie poszerzenie rys jest standardem w procesie renowacji tynków.

Pytanie 29

Jaką ilość mieszanki betonowej wykorzystano do stworzenia 3 stóp fundamentowych o rozmiarach 1,4 x 1,4 m i wysokości 0,5 m, jeśli norma zużycia mieszanki betonowej do uzyskania 1 m3 betonu wynosi 1,015 m3?

A. 5,880 m3
B. 2,984 m3
C. 2,940 m3
D. 0,995 m3
W przypadku obliczeń dotyczących ilości mieszanki betonowej, kluczowe jest zrozumienie, że błędne wartości mogą wynikać z nieprawidłowej interpretacji objętości betonu i norm zużycia. Pomijanie normatywów może prowadzić do niedoszacowania potrzebnych materiałów, co jest często spotykane w praktyce budowlanej. Przyjmując, że objętości fundamentów są obliczane poprawnie, nie uwzględnienie współczynnika 1,015 m3 do wykonania 1 m3 betonu, może skutkować nieodpowiednią ilością mieszanki. Odpowiedzi takie jak 2,940 m3 i 0,995 m3 wynikają z mylnych założeń o całkowitej objętości lub pominięcia normy, co prowadzi do niewłaściwych kalkulacji. W budownictwie, precyzyjne obliczenia są istotne, ponieważ każdy błąd może wpłynąć na strukturę, bezpieczeństwo i stabilność całego projektu. Dlatego stosowanie norm zużycia odgrywa kluczową rolę w planowaniu i wykonawstwie budowli. Specjalistyczne zalecenia i standardy, takie jak te zawarte w dokumentach normatywnych i branżowych, powinny być zawsze przestrzegane, aby uniknąć problemów związanych z jakością i kosztami materiałów budowlanych.

Pytanie 30

Wskaż oznaczenie graficzne zaprawy stosowane na rysunkach budowlanych.

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź "B" jest właściwa, ponieważ zgodnie z polskimi normami, oznaczenie graficzne zaprawy murarskiej na rysunkach budowlanych reprezentowane jest przez symbole składające się z małych kropek. Tego rodzaju oznaczenie umieszczane jest w projektach budowlanych, aby ułatwić wykonawcom identyfikację używanych materiałów i technik budowlanych. Użycie takich symboli znacznie zwiększa czytelność rysunków, co jest szczególnie istotne w przypadku kompleksowych projektów, gdzie precyzyjna komunikacja pomiędzy projektantami a wykonawcami jest kluczowa. Oznaczenie to jest zgodne z normą PN-EN 1990, która określa zasady projektowania budowlanego, w tym konieczność stosowania ustalonych symboli i oznaczeń, aby zapewnić jednolitość i zrozumiałość dokumentacji. W praktyce architektonicznej, znajomość tych symboli jest niezbędna, aby uniknąć nieporozumień i błędów w realizacji projektów, co może prowadzić do kosztownych przeróbek i opóźnień w budowie.

Pytanie 31

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 1092,00 zł
B. 1386,00 zł
C. 945,00 zł
D. 546,00 zł
Aby obliczyć koszt całkowity wykonania tynku maszynowego gipsowego, należy najpierw ustalić powierzchnię ściany, która ma być pokryta tynkiem. Ściana o wymiarach 7 m na 3 m ma powierzchnię wynoszącą 21 m². Ponieważ tynk ma być wykonany po obu stronach, całkowita powierzchnia do pokrycia wynosi 21 m² x 2 = 42 m². Następnie obliczamy koszty robocizny i materiałów. Koszt jednostkowy robocizny wynosi 19,00 zł/m², co daje 42 m² x 19,00 zł/m² = 798,00 zł. Koszt materiałów wynosi 7,00 zł/m², co daje 42 m² x 7,00 zł/m² = 294,00 zł. Suma kosztów robocizny i materiałów wynosi 798,00 zł + 294,00 zł = 1092,00 zł. Taki sposób obliczeń jest zgodny z standardami branżowymi, gdzie uwzględnia się zarówno koszty pracy, jak i koszty materiałów, co jest kluczowe w procesie przygotowania kosztorysu budowlanego. Praktyczne zastosowanie tej wiedzy pozwala na dokładne zaplanowanie budżetu na prace budowlane i remontowe.

Pytanie 32

Nominalna grubość spoin poziomych wynosi 12 mm (-2 mm; +5 mm), a spoin pionowych 10 mm (±5 mm). Na którym rysunku przedstawiono grubość spoin niezgodna z dopuszczalną?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór innej odpowiedzi może wynikać z kilku typowych błędów myślowych oraz nieporozumień dotyczących tolerancji oraz zakresów grubości spoin. Na przykład, niektórzy mogą myśleć, że pokrewieństwo między tolerancją a nominalną wartością oznacza, iż mniejsze różnice nie mają znaczenia. To podejście jest błędne, ponieważ każda spoinę należy oceniać w kontekście jej nominalnej wartości oraz określonej tolerancji. W przypadku spoin pionowych, które mają tolerancję ±5 mm, wiele osób może mylnie ocenić, że grubość 5 mm jest akceptowalna bez uwzględnienia, że maksymalna dopuszczalna grubość spoiny poziomej na rysunku B również musi być w granicach tolerancji. Inny błąd to ignorowanie wpływu grubości spoin na trwałość konstrukcji. Przekroczenie tolerancji może prowadzić do osłabienia spoiny, co znacznie zwiększa ryzyko awarii. W praktyce inżynierowie muszą znać granice tolerancji i umieć je stosować, aby zapewnić bezpieczeństwo oraz zgodność projektu z obowiązującymi normami. Nieprzestrzeganie tych zasad prowadzi do kosztownych błędów oraz potencjalnych zagrożeń dla bezpieczeństwa w budownictwie.

Pytanie 33

Jaki sposób wiązania cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Wiązanie holenderskie.
B. Wiązanie flamandzkie.
C. Wiązanie gotyckie.
D. Wiązanie śląskie.
Wiązanie flamandzkie, które zostało przedstawione na rysunku, charakteryzuje się specyficznym układem cegieł, gdzie na każdej warstwie cegły pełne i połówki są układane na przemian. Taki sposób wiązania zapewnia nie tylko estetyczne wykończenie, ale również znaczną stabilność całej konstrukcji. Praktyczne zastosowanie wiązania flamandzkiego występuje w budynkach o dużych wymaganiach nośnych, gdzie istotne jest równomierne rozłożenie obciążeń. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami w budownictwie, które kładą nacisk na trwałość i efektywność materiałową. Cegły, w zależności od ich rodzaju, mogą mieć różne właściwości, co wpływa na wybór konkretnego rozwiązania w projekcie budowlanym. Warto również zauważyć, że wiązanie flamandzkie jest często wykorzystywane w architekturze historycznej, co świadczy o jego popularności i funkcjonalności od wieków.

Pytanie 34

Która zaprawa charakteryzuje się najlepszymi właściwościami plastycznymi?

A. Cementowo-wapienna
B. Cementowo-gliniana
C. Gipsowa
D. Wapienna
Zaprawa wapienna posiada najlepsze właściwości plastyczne spośród wymienionych opcji, co czyni ją idealnym materiałem w wielu zastosowaniach budowlanych. Jej plastyczność wynika z obecności węglanu wapnia, który po zmieszaniu z wodą tworzy pastę, umożliwiającą łatwe formowanie i aplikację. Dzięki temu, zaprawy wapienne są niezwykle wszechstronne i stosowane w tradycyjnym murarstwie, renowacji zabytków oraz w budownictwie ekologicznym, gdzie istotne jest zachowanie naturalnych właściwości materiałów. W praktyce, zaprawy wapienne są często wykorzystywane do łączenia cegieł i kamieni, oferując korzystne właściwości odprowadzania wilgoci, co chroni przed rozwojem pleśni i grzybów. Dodatkowo, w porównaniu do innych zapraw, takich jak gipsowe czy cementowe, zaprawy wapienne są bardziej elastyczne, co pozwala im lepiej dostosowywać się do ruchów budynku oraz minimalizuje ryzyko pęknięć. Standardy budowlane, takie jak PN-EN 998-1, podkreślają znaczenie zapraw wapiennych w kontekście ich zastosowania w budownictwie, co czyni je preferowanym wyborem w wielu projektach.

Pytanie 35

Jak należy przygotować suchą zaprawę murarską do użycia?

A. wszystkie składniki zaprawy są odważane i mieszane w betoniarni
B. spoiwo, piasek oraz ewentualne dodatki są odmierzane na sucho w betoniarni, a na miejscu budowy trzeba jedynie dodać wodę i wymieszać
C. wszystkie składniki zaprawy są odważane i mieszane na miejscu budowy
D. piasek i woda są odmierzane w betoniarni, a na miejscu budowy należy dodać spoiwo i wymieszać
Wiele z błędnych koncepcji dotyczących przygotowania suchej zaprawy murarskiej wynika z niepełnego zrozumienia procesu technologicznego i wymagań dotyczących jakości materiałów budowlanych. Odmierzanie wszystkich składników na placu budowy, jak wskazuje jedna z odpowiedzi, może prowadzić do niejednorodności mieszanki i błędów w proporcjach, co negatywnie wpłynie na wytrzymałość i trwałość zaprawy. Na placu budowy trudniej jest osiągnąć spójność, ponieważ warunki atmosferyczne mogą wpłynąć na sposób mieszania oraz na ilość wody dodawanej do mieszanki. Ponadto, pominięcie etapu wcześniejszego wymieszania wszystkich składników w betoniarni, gdzie można kontrolować jakość piasku i spoiwa, zwiększa ryzyko wykorzystania materiałów o różnej granulacji czy zanieczyszczeń, co może być szkodliwe dla konstrukcji. Inne nieprawidłowe podejście, polegające na dodawaniu piasku i wody w betoniarni, a następnie dołożeniu spoiwa na placu budowy, prowadzi do problemów z jednorodnością zaprawy. W takiej sytuacji spoiwo może nie zostać dokładnie wymieszane z pozostałymi składnikami, co skutkuje niespójną jakością zaprawy. Kluczowe jest zrozumienie, że każda zmiana w procesie przygotowania materiałów budowlanych może wpłynąć na finalny wynik, a tym samym na bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 36

W trakcie murowania ścian w zimowych warunkach należy podgrzać

A. jedynie piasek
B. tylko wodę i piasek
C. zaprawę po połączeniu wszystkich składników
D. wszystkie składniki zaprawy przed ich połączeniem
Podgrzewanie wody i piasku przed murowaniem w warunkach zimowych ma kluczowe znaczenie dla zapewnienia odpowiedniej aplikacji zaprawy. Woda jest najważniejszym składnikiem, który wpływa na właściwości zaprawy, a jej temperatura bezpośrednio oddziałuje na proces wiązania. Zimne warunki mogą spowolnić czas wiązania zaprawy, co prowadzi do osłabienia strukturalnego muru. Podgrzewanie piasku ma na celu zwiększenie temperatury całej mieszanki, co przyspiesza proces hydratacji cementu. W praktyce, aby uzyskać najlepsze rezultaty, wodę należy podgrzać do temperatury nieprzekraczającej 60°C, co zapewnia optymalne warunki do mieszania. Dobrą praktyką jest również zabezpieczenie murów przed mrozem w pierwszych dniach po zakończeniu murowania, aby uniknąć ryzyka uszkodzeń spowodowanych niską temperaturą. Takie działania są zgodne z normami budowlanymi, które zalecają szczególnie staranne podejście do prac w trudnych warunkach atmosferycznych, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 37

Jakiego typu rusztowanie nie nadaje się do przeprowadzenia naprawy uszkodzonego tynku w okapie na wysokości około 7 metrów nad poziomem gruntu?

A. Ramowego
B. Wiszącego
C. Kozłowego
D. Na wysuwnicach
Wybór rusztowania do prac na wysokości jest kluczowy dla bezpieczeństwa i efektywności prowadzonych działań. W przypadku rusztowania na wysuwnicach, jego konstrukcja umożliwia łatwe dostosowanie do różnych wysokości, co czyni je odpowiednim rozwiązaniem dla prac przy okapie na wysokości 7 metrów. Wysuwane platformy robocze pozwalają na precyzyjne manewrowanie i zapewniają stabilną przestrzeń roboczą, co jest niezbędne podczas napraw tynku, gdzie konieczne może być utrzymanie równowagi i precyzyjnych ruchów. Z kolei rusztowania ramowe, które są powszechnie stosowane w budownictwie, zapewniają solidną konstrukcję, łatwy montaż i demontaż oraz stabilność, co czyni je idealnym narzędziem do wykonywania prac na większych wysokościach. Zastosowanie rusztowania wiszącego, które z kolei może być używane do prac elewacyjnych, również może być korzystne, zwłaszcza gdy dostęp do powierzchni roboczej jest utrudniony przez inne elementy architektoniczne. Wybór rusztowania kozłowego w sytuacji wymagającej pracy na wysokości 7 metrów może prowadzić do poważnych zagrożeń, takich jak niestabilność konstrukcji, brak dostatecznego wsparcia oraz ograniczona możliwość manipulacji narzędziami czy materiałami. Warto zatem zwrócić uwagę na specyfikę i przeznaczenie każdego typu rusztowania, a także na wymagania norm i standardów dotyczących pracy na wysokości, aby uniknąć niebezpieczeństw i zapewnić efektywność prowadzonych prac.

Pytanie 38

Jaką izolację wykonano na fragmencie ściany przedstawionej na rysunku?

Ilustracja do pytania
A. Przeciwdrganiową.
B. Termiczną.
C. Paroszczelną.
D. Przeciwwilgociową.
Odpowiedzi takie jak przeciwwilgociowa, paroszczelna czy przeciwdrganiowa dotyczą zupełnie innych aspektów izolacji budowlanej. Izolacja przeciwwilgociowa ma na celu ochronę przed przenikaniem wilgoci do konstrukcji budynku, co jest istotne w obszarach o wysokiej wilgotności lub w pobliżu zbiorników wodnych. Wykonana w formie folii, membran lub specjalnych materiałów, jej zastosowanie nie ma związku z tworzeniem bariery termicznej. Z kolei izolacja paroszczelna jest często stosowana w pomieszczeniach, w których występuje duża ilość pary wodnej, aby zapobiec kondensacji pary wewnątrz przegrody budowlanej. Zastosowanie paroszczelnych barier w niewłaściwy sposób może prowadzić do problemów z wilgocią, co jest dowodem na to, że rozumienie ich funkcji jest kluczowe. Izolacja przeciwdrganiowa natomiast odnosi się do redukcji przenoszenia drgań, które mogą być szkodliwe dla konstrukcji lub komfortu użytkowników, ale nie zmniejsza wymiany ciepła. Zrozumienie różnic między tymi rodzajami izolacji jest kluczowe, aby prawidłowo zaprojektować budynek, który będzie zarówno energooszczędny, jak i komfortowy w użytkowaniu. Warto zwrócić uwagę, że fundamentalnym błędem w podejściu do tego zagadnienia jest mylenie funkcji izolacyjnych, co może prowadzić do niewłaściwego doboru materiałów i technologii, a w konsekwencji do obniżenia efektywności energetycznej budynku.

Pytanie 39

Grupa złożona z 6 pracowników prowadziła prace rozbiórkowe budynku przez 5 dni roboczych, każdego dnia pracując 8 godzin. Jaki był całkowity koszt robocizny, jeżeli cena za 1 roboczogodzinę wynosiła 10 zł?

A. 240 zł
B. 2 400 zł
C. 400 zł
D. 480 zł
Obliczanie kosztów robocizny może wydawać się prostym procesem, jednak często pojawiają się błędy, które prowadzą do mylnych wniosków. W przypadku odpowiedzi, które wskazują na kwoty 480 zł, 400 zł lub 240 zł, można zauważyć kilka typowych błędów myślowych. Na przykład, odpowiedź 480 zł mogła wynikać z nieprawidłowego obliczenia liczby roboczogodzin. Jeśli ktoś ograniczyłby całkowity czas pracy do jednego dnia, mnożąc liczbę robotników przez 8 godzin i stawkę, uzyskałby błędną kwotę, nie uwzględniając pozostałych dni pracy. Podobnie, odpowiedzi 400 zł oraz 240 zł mogą sugerować, że ktoś obliczał tylko część roboczogodzin lub mylnie interpretował stawkę za roboczogodzinę. W rzeczywistości, jak pokazuje poprawne obliczenie, kluczowe jest uwzględnienie wszystkich pracowników oraz całkowitego czasu pracy, co prowadzi do otrzymania pełnego obrazu kosztów. Inne błędy mogą wynikać z nieprawidłowego mnożenia, co jest częstym problemem w obliczeniach finansowych. Takie nieścisłości mogą prowadzić do niedoszacowania lub przeszacowania kosztów budowy, co jest niebezpieczne w kontekście zarządzania projektami budowlanymi. W związku z tym, zrozumienie i prawidłowe wykonanie tych obliczeń jest kluczowe w codziennej pracy w branży budowlanej, aby uniknąć problemów z budżetowaniem oraz planowaniem finansowym.

Pytanie 40

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednej zmiany
B. jednej godziny
C. jednego tygodnia
D. jednego dnia
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.