Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 10:48
  • Data zakończenia: 17 grudnia 2025 10:59

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź C jest poprawna, gdyż ilustruje prawidłowy sposób podłączenia dwóch wyłączników RCD, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Rozdzielenie obwodów dla pokoju i łazienki oraz zastosowanie osobnych wyłączników RCD dla każdego z nich gwarantuje, że w przypadku wystąpienia awarii w jednym z obwodów, drugi obwód pozostanie funkcjonalny. To podejście jest zgodne z zaleceniami normy PN-IEC 61008, która podkreśla znaczenie stosowania wyłączników różnicowoprądowych w miejscach o zwiększonym ryzyku, takich jak łazienki. Dodatkowo, stosowanie RCD w oddzielnych obwodach minimalizuje ryzyko porażenia prądem, co jest niezwykle istotne w kontekście ochrony użytkowników. W praktyce, odpowiedni dobór wyłączników RCD oraz ich lokalizacja w instalacji poprawia nie tylko bezpieczeństwo, ale także komfort użytkowania. Przykładowo, w przypadku awarii w obwodzie łazienkowym, użytkownicy pokoju nie będą narażeni na problemy związane z brakiem zasilania, co może być szczególnie istotne w codziennym użytkowaniu.

Pytanie 2

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. D.
B. A.
C. C.
D. B.
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 3

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 1.
C. Symbolem 2.
D. Symbolem 4.
Kiedy wybierasz inny symbol niż ten numer 4, to mogą pojawić się nieporozumienia, które prowadzą do błędnego zrozumienia całego układu instalacji elektrycznej. Każdy symbol ma swoje konkretne znaczenie, więc jeśli oznaczysz łącznik świecznikowy niewłaściwie, możesz wprowadzić w błąd osoby, które projektują lub wykonują instalacje. Właściwie, oznaczenia powinny być zgodne z ogólnie przyjętymi normami, bo to zapewnia ich intuicyjność. Na przykład, jeśli użyjesz symbolu 2 albo 3, które odnoszą się do innych urządzeń, jak wyłączniki czy gniazda, to może to prowadzić do poważnych błędów w instalacji. Z własnego doświadczenia mogę powiedzieć, że gdy schemat ma złe oznaczenia, to może to skutkować tym, że urządzenia są źle podłączone, a to już stwarza zagrożenie dla bezpieczeństwa. Niewłaściwe dokumentacje mogą powodować zamieszanie podczas użytkowania obiektów, co w dłuższej perspektywie skutkuje dodatkowymi kosztami napraw. Dlatego naprawdę warto zwracać uwagę na użycie odpowiednich symboli, a także znać zasady ich stosowania zgodnie z normami branżowymi.

Pytanie 4

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Słabo dokręcone złącza wyłącznika
B. Zbyt wysoka moc zasilanego odbiornika
C. Niewłaściwe napięcie zasilania
D. Zbyt niski prąd znamionowy wyłącznika
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 5

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie D
B. W punkcie C
C. W punkcie A
D. W punkcie B
Wybór punktów B, C albo D jakby nie do końca trafiony. To może sugerować, że nie do końca rozumiesz, jak działa charakterystyka prądowo-napięciowa diody. Te punkty są w strefie, gdzie zmiany napięcia nie powodują szybkiego wzrostu prądu, co jest kluczowe do określenia momentu przebicia. Punkt B zazwyczaj jest w okolicach nasycenia diody, a nie w miejscu, gdzie zachodzi przebicie lawinowe. Punkt C to z kolei obszar zaporowy, w którym zwiększenie napięcia nie wpływa na przewodnictwo. Punkt D najczęściej pokazuje, że napięcie przekracza dopuszczalne wartości, co może uszkodzić diodę. Często myli się te punkty z momentem, kiedy dioda zaczyna przewodzić. Dlatego ważne jest, żeby naprawdę przyjrzeć się tej charakterystyce prądowo-napięciowej i wiedzieć, jakie parametry są kluczowe do prawidłowego działania diod w układach.

Pytanie 6

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. wykonanie pomiaru rezystancji uziemienia
B. przeprowadzenie pomiarów impedancji pętli zwarcia
C. określenie czasu oraz prądu zadziałania wyłącznika RCD
D. zweryfikowanie ciągłości połączeń w instalacji
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 7

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i PE
B. L1 i PE
C. N i L3
D. L1 i L3
Odpowiedzi L1 i PE, N i L3 oraz L1 i L3 są błędne z kilku powodów. Przede wszystkim, przy analizie wyników pomiarów rezystancji kluczowe jest zrozumienie, że rezystancja wynosząca 0 Ω wskazuje na bezpośrednie zwarcie, podczas gdy nieskończona rezystancja (∞) sugeruje odseparowane obwody. Wybranie odpowiedzi L1 i PE sugeruje, że te przewody są ze sobą zwarte, co jest sprzeczne z wynikami pomiarów. Takie błędne wnioski mogą wynikać z nieprawidłowej interpretacji danych pomiarowych. Z kolei odpowiedź N i L3 implikuje, że przewód neutralny jest w połączeniu z przewodem fazowym, co w rzeczywistości jest niewłaściwe, ponieważ nie powinno się łączyć przewodów fazowych z neutralnymi w sposób, który mógłby prowadzić do zwarcia. Odpowiedź L1 i L3 także jest błędna, ponieważ nie wykazuje żadnego zwarcia, a w praktyce powinna być traktowana jako odrębne obwody. Te nieporozumienia mogą wskazywać na brak zrozumienia przyczyn i skutków oraz standardów bezpieczeństwa elektrycznego, takich jak PN-IEC 60364, które zalecają szczegółowe analizy i stosowanie właściwych metod pomiarowych w celu zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 8

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. czyszczenia urządzeń w rozdzielniach
C. wymiany gniazd zasilających
D. montażu nowych punktów świetlnych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 9

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 2,5 mm2
B. 1,5 mm2
C. 10 mm2
D. 4 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 10

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q17 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 2NO + 1NC
B. 3NC + 2NO + 1NC
C. 3NC + 1NO + 2NC
D. 3NO + 1NO + 2NC
Odpowiedź 3NO + 2NO + 1NC jest poprawna, ponieważ na podstawie analizy schematu, stycznik Q17 rzeczywiście wymaga trzech zestyków normalnie otwartych (3NO), dwóch dodatkowych zestyków normalnie otwartych (2NO) oraz jednego zestyków normalnie zamkniętego (1NC). W praktycznych aplikacjach automatyki stosuje się styczniki do sterowania obwodami, gdzie zestyk NO (normalnie otwarty) umożliwia przepływ prądu po załączeniu stycznika, a zestyk NC (normalnie zamknięty) blokuje przepływ prądu. Taki dobór zestyków pozwala na realizację skomplikowanych układów automatyki, zapewniając równocześnie bezpieczeństwo i efektywność. Uwzględnienie odpowiedniej liczby zestyków jest zgodne z normami branżowymi, co jest kluczowe dla prawidłowego działania układów elektrycznych oraz spełnienia wymogów dotyczących zabezpieczeń. Wiedza o tym, jak dobierać elementy takie jak styczniki, jest niezbędna dla każdego inżyniera czy technika zajmującego się automatyką, co przekłada się na praktyczne zastosowanie w różnych aplikacjach przemysłowych.

Pytanie 11

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Weryfikacja stanu szczelin komutatora
B. Pomiar oporu izolacji
C. Wyważenie
D. Kontrola braku zwarć międzyzwojowych
Pomiar rezystancji izolacji jest niezbędnym działaniem w utrzymaniu maszyn elektrycznych, jednak nie należy do oględzin wirnika maszyny komutatorowej w ścisłym tego słowa znaczeniu. Izolacja wirników ma na celu zabezpieczenie przed przebiciem i zwarciami, ale nie odnosi się bezpośrednio do stanu mechanicznego wirnika. Również sprawdzenie braku zwarć międzyzwojowych jest istotne, lecz odnosi się do analizy stanu uzwojeń wirnika, a nie do oględzin wycinków komutatora. W przypadku wirników komutatorowych, zwarcia międzyzwojowe mogą przyczynić się do uszkodzeń, jednak podczas oględzin kluczowym jest skupienie się na samym komutatorze, a zwłaszcza na jego wycinkach. Wyważenie wirnika dotyczy jego dynamicznej równowagi podczas pracy, co również nie jest bezpośrednio związane z oględzinami stanu komutatora. W praktyce, nieprawidłowe podejście do oceny stanu wirnika może prowadzić do niewłaściwych wniosków i potencjalnych awarii. Właściwa interpretacja czynności związanych z konserwacją i oględzinami wirnika jest kluczowa dla jego efektywnej pracy oraz długowieczności systemu, a zaniedbania w tym zakresie mogą prowadzić do kosztownych awarii.

Pytanie 12

Narzędzie pokazane na rysunku służy do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. zaginania końcówek.
C. zdejmowania izolacji.
D. cięcia przewodów.
Odpowiedź "cięcia przewodów" jest poprawna, ponieważ narzędzie pokazane na zdjęciu to szczypce boczne, które są specjalnie zaprojektowane do precyzyjnego cięcia różnorodnych przewodów elektrycznych. Szczypce te charakteryzują się ostrymi, wąskimi krawędziami, które umożliwiają dotarcie do trudno dostępnych miejsc, co jest istotne w pracach instalacyjnych oraz naprawczych. W praktyce, użycie szczypiec bocznych pozwala na dokładne cięcie przewodów bez ryzyka uszkodzenia ich izolacji, co jest kluczowe dla zachowania bezpieczeństwa w instalacjach elektrycznych. To narzędzie jest niezbędne w branży elektrycznej oraz w wielu projektach DIY, gdzie precyzyjne cięcie przewodów jest wymagane, aby uniknąć zwarć oraz zapewnić estetykę i funkcjonalność instalacji. Zgodnie z normami bezpieczeństwa, właściwe użycie szczypiec bocznych powinno obejmować również stosowanie odzieży ochronnej, aby zminimalizować ryzyko kontuzji podczas pracy.

Pytanie 13

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 208 mA
B. 106 mA
C. 170 mA
D. 130 mA
Odpowiedź 208 mA jest poprawna, ponieważ wskazanie miliamperomierza na zdjęciu jest nieco powyżej wartości 200 mA. Dla użytkowników miliamperomierzy, takich jak elektronicy i technicy, dokładne odczyty są kluczowe dla zapewnienia prawidłowego działania obwodów i urządzeń. Odczytując wartość prądu, inżynierowie mogą precyzyjnie dostosować parametry urządzeń, takich jak zasilacze czy układy scalone, aby zapewnić ich optymalną wydajność. Wartości natężenia prądu są często używane w projektach elektronicznych, gdzie niewielkie zmiany w prądzie mogą wpływać na całkowitą funkcjonalność systemu. Dobre praktyki obejmują regularne kalibracje przyrządów pomiarowych oraz stosowanie ich w odpowiednich zakresach, aby uniknąć uszkodzeń lub błędnych odczytów. Przy stosowaniu miliamperomierzy w praktyce warto również pamiętać o zasadach bezpieczeństwa, aby zminimalizować ryzyko porażenia prądem.

Pytanie 14

Które parametry techniczne określają stycznik przedstawiony na rysunku?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do konkretnego modelu stycznika marki Eaton, oznaczonego jako Z-SCH230/40-31. Analizując dane techniczne, możemy zauważyć, że znamionowy prąd pracy tego stycznika wynosi 40 A, co odpowiada wymogom zastosowań w typowych instalacjach elektrycznych. Liczba styków NO (normalnie otwartych) wynosi 3, a liczba styków NC (normalnie zamkniętych) to 1, co jest zgodne z danymi przedstawionymi na zdjęciu. Takie styczniki są szeroko stosowane w automatyce budynkowej oraz w instalacjach przemysłowych, umożliwiając kontrolę nad obwodami elektrycznymi. Zastosowanie styczników o odpowiednich parametrach jest kluczowe, aby zapewnić bezpieczeństwo oraz efektywność energetyczną w różnych systemach. Warto również zaznaczyć, że przy doborze styczników należy kierować się normami IEC 60947-4-1, co zapewnia ich odpowiednie właściwości eksploatacyjne oraz bezpieczeństwo użytkowania.

Pytanie 15

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. oznaczenie i zabezpieczenie obszaru roboczego
B. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
C. wyłączenie zasilania z instalacji
D. pisemne polecenie do wykonania prac
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 16

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
B. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
C. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
D. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 17

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 014-6
B. 024-6
C. 015-6
D. 025-6
Wybór niewłaściwej wtyczki, takiej jak 014-6, 015-6 lub 024-6, może wydawać się na pierwszy rzut oka odpowiedni, jednakże przy bliższym przyjrzeniu się okazuje się, że każda z tych opcji nie spełnia podstawowych wymagań dla urządzenia o mocy 12 kVA. Wtyczka 014-6 jest zaprojektowana na niższe obciążenia, co oznacza, że jej maksymalna wartość prądu jest niewystarczająca dla betoniarki, która wymaga 17,32 A. Z kolei wtyczka 015-6 również nie jest przystosowana do pracy z takim obciążeniem, co może prowadzić do niebezpiecznych sytuacji związanych z przegrzewaniem i uszkodzeniem wtyczki. W przypadku wtyczki 024-6, choć może ona mieć nieco wyższe parametry, wciąż nie osiąga wymaganej wydajności prądowej. Użycie niewłaściwej wtyczki może skutkować nie tylko awarią sprzętu, ale także naruszeniem przepisów BHP, które wymuszają stosowanie odpowiednich, certyfikowanych komponentów do zasilania maszyn przemysłowych. Warto pamiętać, że każde urządzenie elektryczne powinno być zasilane zgodnie z jego specyfikacją, co obejmuje również właściwy dobór wtyczek oraz przewodów, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo użytkowania.

Pytanie 18

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 19

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Licznik przedpłatowy, taki jak przedstawiony w odpowiedzi B, jest specjalistycznym urządzeniem zaprojektowanym do umożliwienia użytkownikom płacenia za energię elektryczną przed jej zużyciem. Jest to szczególnie korzystne w kontekście budżetowania wydatków na energię, ponieważ użytkownik może kontrolować swoje wydatki na bieżąco. W liczniku tym znajduje się klawiatura numeryczna oraz wyświetlacz, co umożliwia wprowadzenie kodów doładowujących, które można nabyć w sklepach lub przez internet. Taki system zachęca do oszczędzania energii, gdyż użytkownicy są bardziej świadomi swojego zużycia. Instalacje elektryczne z licznikami przedpłatowymi są zgodne z normami branżowymi, takimi jak IEC 62053, które określają wymagania dla liczników energii elektrycznej. Wiele nowoczesnych liczników przedpłatowych oferuje również funkcje zdalnego monitorowania, co ułatwia zarządzanie zużyciem energii w czasie rzeczywistym.

Pytanie 20

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Lampy fluorescencyjne
B. Żarówki
C. Lampy ze rtęcią
D. Lampy indukcyjne
Żarówki tradycyjne, znane również jako żarówki wolframowe, charakteryzują się najniższą skutecznością świetlną spośród wymienionych źródeł światła. Ich efektywność świetlna, wynosząca zazwyczaj od 10 do 17 lumenów na wat, jest znacznie niższa w porównaniu do innych technologii oświetleniowych. To oznacza, że generują one mniej światła w stosunku do zużywanej energii, co czyni je mniej efektywnymi z punktu widzenia oszczędności energii. Przykładowo, w sytuacjach, gdzie długotrwałe oświetlenie jest potrzebne, takie jak w biurach czy na parkingach, wybór bardziej efektywnych źródeł światła, takich jak świetlówki czy lampy LED, może znacząco obniżyć koszty energii. W kontekście standardów branżowych, prowadzi to do przemyślenia wyboru technologii oświetleniowej, w szczególności w kontekście norm dotyczących efektywności energetycznej, takich jak dyrektywa unijna dotycząca ekoprojektu, która promuje rozwiązania optymalizujące zużycie energii.

Pytanie 21

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Trójfazowego bez styku ochronnego.
B. Trójfazowego ze stykiem ochronnym.
C. Jednofazowego bez styku ochronnego.
D. Jednofazowego ze stykiem ochronnym.
Poprawna odpowiedź to "Jednofazowego ze stykiem ochronnym". Symbol graficzny przedstawiony na ilustracji rzeczywiście odpowiada gniazdu jednofazowemu, co można zidentyfikować dzięki obecności trzech kluczowych elementów. Linia pionowa oznacza fazę, pozioma reprezentuje przewód neutralny, a półokrąg wskazuje na styk ochronny. Stosowanie gniazd jednofazowych ze stykiem ochronnym jest istotne w kontekście bezpieczeństwa elektrycznego, gdyż zapewniają one dodatkową ochronę przed porażeniem prądem elektrycznym. W praktyce, takie gniazda są powszechnie stosowane w gospodarstwach domowych oraz biurach, gdzie istnieje ryzyko kontaktu użytkownika z elementami przewodzącymi prąd. Standardy krajowe, takie jak PN-EN 60309, podkreślają znaczenie stosowania gniazd z zabezpieczeniem, zwłaszcza w środowiskach o dużym ryzyku, takich jak warsztaty czy miejsca pracy z zastosowaniem maszyn elektrycznych. Wiedza o tych standardach jest kluczowa dla odpowiedniego doboru sprzętu elektrycznego oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 22

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 5-10 krotności prądu znamionowego
B. 1-20 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 3-5 krotności prądu znamionowego
Pytanie dotyczące zakresu działania wyzwalaczy elektromagnetycznych wyłączników instalacyjnych nadprądowych dla charakterystyki C jest istotne dla zrozumienia właściwości tych urządzeń. Odpowiedzi, które sugerują zakresy takie jak "20-30 krotności prądu znamionowego", "3-5 krotności prądu znamionowego" oraz "1-20 krotności prądu znamionowego", nie są zgodne z rzeczywistymi charakterystykami tych wyłączników. Wyłączniki nadprądowe charakteryzujące się charakterystyką C są stworzone do ochrony przed krótkimi spięciami oraz przeciążeniami, które mogą wystąpić w typowych aplikacjach, takich jak silniki elektryczne. Zakres 20-30 krotności jest zbyt wysoki i nieodpowiedni dla standardowych aplikacji, co może prowadzić do niepożądanych skutków, takich jak opóźniona reakcja na rzeczywiste zagrożenia. Odpowiedzi 3-5 krotności oraz 1-20 krotności również nie są właściwe, gdyż wyłączniki C są zaprojektowane do działania w bardziej specyficznym zakresie, który gwarantuje zarówno odpowiednią ochronę, jak i możliwość pracy w warunkach normalnych. W praktyce, wybór niewłaściwego zakresu może skutkować nieefektywną ochroną instalacji, co w skrajnych przypadkach prowadzi do uszkodzenia urządzeń lub nawet pożaru. Dlatego kluczowe jest, aby przy wyborze wyłączników nadprądowych kierować się dokładnymi danymi technicznymi oraz standardami branżowymi, takimi jak PN-EN 60898, które określają wymagania i klasyfikacje dla sprzętu ochronnego w instalacjach elektrycznych.

Pytanie 23

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Rozłącznik.
B. Wyłącznik silnikowy.
C. Bezpiecznik.
D. Przekaźnik termobimetalowy.
Odpowiedź "Przekaźnik termobimetalowy" jest prawidłowa, ponieważ symbol dT na schemacie odnosi się do urządzenia, które ma kluczowe znaczenie w ochronie silników elektrycznych. Przekaźnik termobimetalowy działa na zasadzie reakcji na temperaturę, co czyni go idealnym rozwiązaniem do monitorowania i ochrony przed przeciążeniem prądowym. Kiedy prąd przekracza dopuszczalny poziom, generowane ciepło powoduje odkształcenie bimetalu, co prowadzi do otwarcia obwodu i wyłączenia silnika. Tego typu urządzenia są często stosowane w aplikacjach przemysłowych oraz w systemach automatyki, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem spowodowanym przeciążeniem. Zgodnie z normami IEC 60204-1, przekaźniki termobimetalowe są zalecane do ochrony silników, co podkreśla ich wysoką jakość i skuteczność w praktycznych zastosowaniach. Warto również zaznaczyć, że ich instalacja jest zgodna z dobrymi praktykami w zakresie bezpieczeństwa, co przyczynia się do długowieczności oraz efektywności pracy silników.

Pytanie 24

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. przewody fazowe oraz ochronny
B. tylko przewody fazowe
C. wyłącznie przewód neutralny
D. wszystkie przewody czynne
Wybór tylko przewodów fazowych lub przewodu neutralnego do pomiaru prądu upływu jest niezgodny z zasadami diagnostyki elektrycznej. Ograniczając pomiar do samych przewodów fazowych, pomijamy istotny element równowagi prądów w obwodzie, co może prowadzić do błędnych wniosków o stanie instalacji. Przewód neutralny odgrywa kluczową rolę w bilansowaniu prądów w instalacji trójfazowej, a jego wyłączenie z pomiaru nie pozwala na pełne zrozumienie prądów upływowych, które mogą występować. Z kolei pomiar tylko przewodu neutralnego jest całkowicie niewłaściwy, ponieważ nie dostarcza informacji o prądach płynących przez przewody fazowe, które mogą być źródłem zagrożenia. Dlatego istotne jest, aby w pomiarach uwzględniać wszystkie przewody czynne, co jest zgodne z kryteriami bezpieczeństwa zawartymi w normach, takich jak IEC 60364. Nieprawidłowe zrozumienie roli każdego z przewodów w instalacji elektrycznej prowadzi do ryzykownych sytuacji, w których prądy upływowe mogą pozostać niezauważone, a co za tym idzie, zwiększa się ryzyko wystąpienia porażenia prądem elektrycznym. Każdy pracownik zajmujący się eksploatacją instalacji elektrycznych powinien być świadomy tych aspektów, aby zapewnić pełne bezpieczeństwo oraz zgodność z obowiązującymi normami technicznymi.

Pytanie 25

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 25 A, 25 A
B. 25 A, 40 A
C. 40 A, 40 A
D. 40 A, 25 A
Wartości prądów znamionowych w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ nie uwzględniają one rzeczywistych wymagań technicznych związanych z mocą odbiorników. W przypadku, gdy dla obwodu trójfazowego zastosowano by zabezpieczenie o wartości 25 A, to byłoby to niewystarczające dla podgrzewacza wody, który wymaga przynajmniej 17,32 A, co w połączeniu z marginesem bezpieczeństwa powinno skutkować zabezpieczeniem 40 A. Ponadto, zastosowanie zabezpieczenia 25 A dla obwodu jednofazowego zmywarki również jest nieodpowiednie, ponieważ przy mocy 3,5 kW pobór prądu wynosi 15 A, co nie jest wystarczające w kontekście dodatkowych obciążeń, które mogą wystąpić w czasie pracy. Takie podejście ignoruje zasady dotyczące projektowania zabezpieczeń, które zalecają dobieranie wartości zabezpieczeń z uwzględnieniem maksymalnych obciążeń oraz ewentualnych skoków chwilowych poboru prądu. Zbyt niskie wartości zabezpieczeń mogą prowadzić do częstych wyłączeń, co wpłynie na komfort użytkowania oraz w dłuższej perspektywie może uszkodzić urządzenia. Wartości 40 A dla obu obwodów są zgodne z dobrymi praktykami branżowymi oraz uwzględniają zasady ochrony przed przeciążeniem, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 26

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy C
B. Klasy A
C. Klasy D
D. Klasy B
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 27

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. TROX
B. z bitem M8
C. płaski.
D. PH2
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 28

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 7,7 Ω
C. 2,3 Ω
D. 4,6 Ω
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 29

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. NYM-J
B. H03VV-F
C. NAYY-O
D. H07V-U
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 30

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przepięcie
B. Prąd błądzący
C. Zwarcie bezimpedancyjne
D. Przeciążenie
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 31

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie W
B. Przerwa w uzwojeniu fazy V
C. Zwarcie międzyzwojowe w fazie V
D. Przerwa w uzwojeniu fazy W
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 32

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
B. cęgi do zdejmowania izolacji oraz wkrętak
C. nóż monterski
D. prasę hydrauliczną
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 33

W której ze stref wskazanych na rysunku należy zainstalować łącznik oświetlenia głównego pomieszczenia?

Ilustracja do pytania
A. SH-s (1)
B. SP-d (1)
C. SP-d (2)
D. SH-s (2)
Wybierając inne strefy, takie jak SP-d (1), SH-s (2) czy SH-s (1), można napotkać na kilka istotnych problemów związanych z ergonomią oraz funkcjonalnością. Instalacja łącznika oświetlenia głównego w strefie SP-d (1) może prowadzić do sytuacji, w której użytkownik musiałby przemieszczać się dalej od drzwi wejściowych, aby włączyć światło, co znacznie obniża komfort użytkowania. Również strefa SH-s (2) jest nieodpowiednia, ponieważ jest zlokalizowana nieopodal strefy, która może być bardziej odizolowana od głównej drogi dostępu. W przypadku strefy SH-s (1) sytuacja jest podobna, ponieważ miejsce to nie zapewnia wygodnego i szybkiego dostępu do łącznika. Błędem myślowym jest zakładanie, że jakakolwiek lokalizacja, która nie znajduje się bezpośrednio przy wejściu, jest wystarczająca. Tego rodzaju podejście nie uwzględnia, iż łączniki powinny być umiejscowione w miejscach maksymalnie komfortowych dla użytkowników, co nie jest spełnione w tych przypadkach. Niewłaściwe umiejscowienie łącznika może również prowadzić do niebezpiecznych sytuacji, gdyż do pomieszczenia wejść można w nocy, a brak światła na początku drogi wprowadza ryzyko potknięć i upadków. Dlatego tak ważne jest przestrzeganie standardów i zasad dobrego projektowania, które nakazują umieszczanie łączników oświetleniowych w najwygodniejszych i najbezpieczniejszych lokalizacjach.

Pytanie 34

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Omomierza
B. Amperomierza
C. Megaomomierza
D. Watomierza
Wybór watomierza, amperomierza lub megaomomierza w celu sprawdzenia ciągłości przewodu jest nieprawidłowy, ponieważ każdy z tych instrumentów ma inne funkcje i zastosowania, które nie odpowiadają wymaganiom zadania. Watomierz jest używany do pomiaru mocy elektrycznej w obwodzie, co oznacza, że mierzy ilość energii zużywanej przez urządzenia. Nie jest użyteczny w kontekście sprawdzania ciągłości przewodów, ponieważ nie dostarcza informacji o oporze elektrycznym ani o ewentualnych przerwach w obwodzie. Amperomierz natomiast służy do pomiaru natężenia prądu, co również nie jest adekwatne w przypadku testowania ciągłości. Przyrząd ten nie wykryje, czy przewód jest zerwany czy uszkodzony, a jedynie zmierzy ilość przepływającego prądu, co ma znaczenie tylko w pełnoobciążonym obwodzie. Megaomomierz, z kolei, jest narzędziem przeznaczonym do pomiaru oporu izolacji, a nie ciągłości przewodu. Jego zastosowanie jest kluczowe w testach urządzeń wysokiego napięcia oraz w ocenie stanu izolacji, ale nie jest on przeznaczony do sprawdzania samej ciągłości przewodów. Typowym błędem jest mylenie funkcji tych przyrządów i ich zastosowań, co może prowadzić do nieprawidłowych diagnoz i potencjalnych zagrożeń w instalacjach elektrycznych.

Pytanie 35

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. izolacji pomiędzy zaciskami uzwojeń silnika.
B. pętli zwarciowej.
C. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
D. uzwojenia fazowego.
Pomiar rezystancji izolacji jest kluczowym zagadnieniem w diagnostyce silników elektrycznych, dlatego błędne podejścia do tego tematu mogą prowadzić do poważnych konsekwencji. Udzielenie odpowiedzi dotyczącej uzwojeń fazowego lub izolacji pomiędzy zaciskami uzwojeń a korpusem silnika wskazuje na niezrozumienie podstawowych zasad stosowanych w pomiarach elektrycznych. Uzwojenia fazowe są elementem, który nie powinien być bezpośrednio analizowany w kontekście izolacji, ponieważ ich pomiar odnosi się bardziej do stanu pracy silnika, a nie do izolacji. Izolacja pomiędzy zaciskami uzwojeń a korpusem silnika, chociaż istotna, nie jest punktem odniesienia przy tak skonstruowanym pomiarze, ponieważ skupia się na wykryciu problemów wewnętrznych, które mogą nie manifestować się w takim pomiarze. Inną niewłaściwą koncepcją jest pomiar pętli zwarciowej, który jest zupełnie innym procesem, wymagającym innej konfiguracji oraz celów, zazwyczaj związanych z bezpieczeństwem systemów elektrycznych. W praktyce, pomiar rezystancji izolacji powinien być wykonywany z użyciem odpowiednich przyrządów, które są zaprojektowane do tego celu, aby uniknąć błędów pomiarowych i zapewnić rzetelność wyników. Ignorowanie tych zasad prowadzi do nieprawidłowych wniosków i potencjalnych zagrożeń związanych z bezpieczeństwem urządzenia.

Pytanie 36

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. A.
B. C.
C. B.
D. D.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 37

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. odgromowy.
B. wyrównawczy.
C. neutralny.
D. ochronny.
Podłączenie przewodu neutralnego do miejsca, gdzie powinien być przewód ochronny, to niezbyt mądry krok. W systemie TN-S przewód neutralny (N) ma zupełnie inne zadanie – odprowadza prąd do źródła zasilania, a nie chroni przed porażeniem. Jeżeli zrobisz coś takiego, może to prowadzić do niebezpiecznych sytuacji, szczególnie w momencie awarii, gdy na przewodach neutralnych mogą pojawić się różne napięcia. Wybór przewodu wyrównawczego, który ma na celu wyrównanie potencjałów w instalacji, też nie ma sensu, bo on nie może pełnić roli przewodu ochronnego. Podobnie jest z przewodem odgromowym, który chroni budynki przed piorunami – to nie to samo, co zapewnienie bezpieczeństwa elektrycznego. Często myli się te przewody i myśli, że można je stosować zamiennie, ale to nie jest zgodne z zasadami projektowania instalacji oraz normami bezpieczeństwa. Każdy z tych przewodów ma swoje konkretne zadanie, które musi być przestrzegane, żeby uniknąć zagrożeń elektrycznych.

Pytanie 38

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 1000 V
B. 100 V
C. 250 V
D. 500 V
Wybór niewłaściwego napięcia probierczego przy pomiarach rezystancji izolacji może wynikać z niepełnego zrozumienia zasad bezpieczeństwa oraz specyfiki obwodów SELV i PELV. Użycie napięcia 100 V, na przykład, może być niewystarczające do skutecznego zdiagnozowania stanu izolacji. Praktyka pokazuje, że takie niskie napięcie nie jest w stanie ujawnić potencjalnych usterek, które są krytyczne dla bezpieczeństwa. W przypadku obwodów o napięciu roboczym, które wymagają wyższego poziomu izolacji, napięcie probiercze powinno być dostosowane do tych wymagań, co w przypadku SELV i PELV oznacza wartość nie mniejszą niż 250 V. Użycie napięcia 500 V lub 1000 V, z kolei, może prowadzić do uszkodzenia bardzo wrażliwych podzespołów w niektórych zastosowaniach, co jest szczególnie ważne w obwodach niskonapięciowych. Właściwe dobieranie napięcia probierczego to kluczowy element w zapewnieniu bezpieczeństwa systemów elektrycznych, a nieprzestrzeganie tych zasad może prowadzić do poważnych konsekwencji. Wiele osób błędnie zakłada, że wyższe napięcia są zawsze lepsze, jednak w rzeczywistości należy kierować się normami oraz zaleceniami producentów, aby zminimalizować ryzyko uszkodzeń oraz zapewnić bezpieczeństwo eksploatacyjne obwodów elektrycznych.

Pytanie 39

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę topikową bezpiecznika mocy.
B. Izolator wsporczy.
C. Izolator przepustowy wysokiego napięcia.
D. Bezpiecznik aparatowy.
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących funkcji i budowy różnych elementów zabezpieczeń elektrycznych. Izolator przepustowy wysokiego napięcia to komponent stosowany do przeprowadzania przewodów przez przegrody, takie jak ściany czy dachy, i nie ma żadnego zastosowania w kontekście zabezpieczeń przed przeciążeniami. Jego konstrukcja różni się znacznie od wkładki topikowej, która jest przeznaczona do ochrony obwodów. Bezpiecznik aparatowy, chociaż również ma na celu ochronę obwodów, jest innego typu urządzeniem – ma zazwyczaj bardziej złożoną budowę i może obejmować mechanizmy ręcznego resetowania, co czyni go odmiennego od prostoty budowy wkładki topikowej. Izolator wsporczy, będący elementem wspierającym przewody w stacjach elektroenergetycznych, również nie ma żadnego związku z funkcją zabezpieczającą obwody przed przeciążeniem. Te różnice w przeznaczeniu i konstrukcji mogą prowadzić do błędnych wniosków i wyboru niewłaściwych odpowiedzi, co podkreśla znaczenie znajomości właściwości oraz zastosowań poszczególnych komponentów w systemach elektrycznych. Warto zauważyć, że gruntowna wiedza na temat elementów zabezpieczających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności w pracy z instalacjami elektrycznymi.

Pytanie 40

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Sterownik rolet.
C. Przekaźnik priorytetowy.
D. Przekaźnik bistabilny.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.