Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 14:53
  • Data zakończenia: 8 grudnia 2025 15:21

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Wartość napięcia wskazywana przez woltomierz wynosi

Ilustracja do pytania
A. 8 V
B. 4 V
C. 16 V
D. 40 V
Poprawna odpowiedź to 8 V. Odczytywanie wartości napięcia z woltomierza analogowego wymaga zrozumienia, jak działa zasada wskazania. W tym przypadku wskazówka znajduje się blisko oznaczenia 8 V, co jasno wskazuje, że wartość napięcia jest właśnie równa 8 V. W praktyce, aby zapewnić dokładność pomiaru, należy także uwzględnić tolerancję przyrządu oraz ich kalibrację, co jest kluczowe dla uzyskania wiarygodnych wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie pomiary napięcia są niezbędne do monitorowania systemów elektrycznych, konieczne jest stosowanie woltomierzy o wysokiej dokładności, aby uniknąć błędnych decyzji inżynieryjnych. Ponadto, zgodnie z międzynarodowymi standardami, woltomierze powinny być regularnie kalibrowane w celu zapewnienia ich dokładności i spójności wyników. W każdym przypadku, umiejętność prawidłowego odczytywania wyników z woltomierza jest niezbędna dla techników i inżynierów w wielu dziedzinach, w tym w energetyce i automatyce.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Wynik pomiaru wskazany przez manometr wynosi

Ilustracja do pytania
A. 7,2 bar
B. 7,1 bar
C. 6,7 bar
D. 6,6 bar
Odpowiedź 7,2 bar jest prawidłowa, ponieważ zgodnie z wizualną analizą manometru, wskazówka znajduje się bliżej wartości 7 bar, jednak nieco powyżej. Wartość 7,2 bar jest najbliższa rzeczywistemu pomiarowi ciśnienia, co jest kluczowe w kontekście zastosowania manometrów w różnych systemach technologicznych. Przykładowo, w instalacjach hydraulicznych czy pneumatycznych, precyzyjny pomiar ciśnienia jest niezbędny do zapewnienia prawidłowego działania systemu oraz bezpieczeństwa operacji. Prawidłowe odczyty ciśnienia mają również znaczenie w diagnostyce awarii, pozwalając na szybką identyfikację problemów. W przemyśle i inżynierii, zgodność z normami pomiarowymi (np. ISO 3767) jest niezbędna, aby zapewnić wiarygodność pomiarów. Dlatego umiejętność dokładnego odczytywania wskazania manometru ma znaczenie nie tylko teoretyczne, ale również praktyczne dla inżynierów i techników.

Pytanie 5

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20
A. 4 urządzenia.
B. 2 urządzenia.
C. 3 urządzenia.
D. 1 urządzenie.
Poprawna odpowiedź wskazuje, że maksymalnie można podłączyć 3 urządzenia sieciowe do sterownika za pomocą dodatkowego modułu CSM 1277. Moduł ten wyposażony jest w 4 interfejsy RJ45, z których jeden jest przeznaczony do połączenia z sterownikiem. To oznacza, że pozostają 3 wolne interfejsy, które mogą być wykorzystane do podłączenia dodatkowych urządzeń. W praktyce, takie podejście umożliwia rozbudowę systemu w sieciach przemysłowych, gdzie często zachodzi potrzeba podłączenia różnych urządzeń, jak czujniki, kamery czy komputerowe systemy kontroli. Wiedza na temat liczby dostępnych interfejsów jest kluczowa w projektowaniu architektury sieci, co pozwala na optymalne wykorzystanie zasobów i zwiększenie efektywności działania systemu. W kontekście branżowym, takie rozwiązania muszą być zgodne z normami, jak na przykład IEC 61158, które regulują komunikację w systemach automatyki. Dlatego też, prawidłowe zrozumienie parametrów technicznych urządzeń jest niezbędne do ich efektywnego wdrażania.

Pytanie 6

Zasilanie podsystemu hydraulicznego w urządzeniu mechatronicznym wykonane zostało zgodnie ze schematem przedstawionym na rysunku. Którą z wymienionych funkcji pełni element oznaczony cyfrą 1?

Ilustracja do pytania
A. Zabezpieczanie cieczy hydraulicznej przed zanieczyszczeniami pochodzącymi z otoczenia.
B. Zabezpieczanie przed nadmiernym zużywaniem elementów układu hydraulicznego.
C. Schładzanie cieczy hydraulicznej wprowadzanej do układu.
D. Stabilizowanie ciśnienia cieczy hydraulicznej w całym układzie.
Zabezpieczanie cieczy hydraulicznej przed zanieczyszczeniami to funkcja, która również odgrywa istotną rolę w układach hydraulicznych, jednak nie jest to główne zadanie elementu oznaczonego cyfrą 1. Filtr cieczy hydraulicznej nie jest jedynie elementem zabezpieczającym przed zanieczyszczeniami, ale również kluczowym komponentem chroniącym układ przed nadmiernym zużyciem spowodowanym tymi zanieczyszczeniami. Stabilizowanie ciśnienia cieczy hydraulicznej to kolejna funkcja, która jest realizowana przez różne komponenty układu, takie jak zawory regulacyjne, a nie przez filtr. Ponadto schładzanie cieczy hydraulicznej jest zadaniem, które przypisuje się elementom chłodzącym, a nie filtrom. Właściwe zrozumienie tych ról jest fundamentalne dla projektowania i eksploatacji układów hydraulicznych. Często mylone są funkcje elementów w układzie, co może prowadzić do błędnego doboru komponentów lub niewłaściwego użytkowania, co z kolei przekłada się na obniżenie efektywności i trwałości systemu. W praktyce należy zwrócić uwagę na integralne połączenie różnych elementów układu hydraulicznego, które współpracują, aby zapewnić optymalną wydajność, a ignorowanie funkcji filtrów może skutkować poważnymi konsekwencjami w dłuższej perspektywie.

Pytanie 7

Oceń na podstawie przedstawionej na rysunku dokumentacji stan łożysk silnika napędowego o mocy 35 kW bez specjalnych fundamentów, jeżeli prędkość drgań łożysk zmierzona podczas przeglądu wynosi 1,9 mm/s.

UrządzenieKlasa IKlasa IIKlasa IIIKlasa IV
Prędkość
drgań RMS
mm/s
0.28
0.45
0.71
1.12
1.8
2.8
4.5
7.1
11.2
18
28
45.9

Legenda tabeli:

Stan dobry
Stan zadawalający
Stan przejściowo dopuszczalny
Stan niedopuszczalny

Klasa I: poszczególne podzespoły silników i urządzeń stanowią integralną część urządzenia podczas normalnej pracy. Przykładem urządzeń w tej kategorii są silniki elektryczne o maksymalnej mocy 15 kW.

Klasa II: średniej wielkości urządzenia (zwykle silniki elektryczne o mocy od 15 kW do 75 kW) bez specjalnych fundamentów, sztywno zamontowane silniki lub urządzenia (do 300 kW) na specjalnych fundamentach.

Klasa III: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na sztywnych i ciężkich podstawach, stosunkowo sztywne w kierunku pomiaru drgań.

Klasa IV: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na podstawach, stosunkowo podatnych w kierunku mierzonych drgań (np. turbo generatory i turbiny gazowych o mocy wyjściowej powyżej 10 MW).

A. Przejściowo dopuszczalny.
B. Zadawalający.
C. Dobry.
D. Niedopuszczalny.
Odpowiedź 'Zadawalający' jest w porządku, bo patrząc na tabelę, prędkość drgań 1,9 mm/s to stan, który nie wymaga od razu interwencji. Dla silników 35 kW bez specjalnych fundamentów wygląda na to, że jeśli mamy wartości RMS drgań w okolicy 1,5-2,5 mm/s, to wszystko gra. To znaczy, że łożyska pracują w miarę dobrze i nie ma co się martwić o poważne awarie. Z mojego doświadczenia, umiejętność rozpoznawania tych drgań jest super ważna w utrzymaniu ruchu, bo dzięki temu można wychwycić problemy na wczesnym etapie. Regularne pilnowanie tych parametrów w naszej pracy obniża koszty napraw, a efektywność produkcji rośnie.

Pytanie 8

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. okulary ochronne
B. buty ochronne
C. kask ochronny
D. maskę przeciwpyłową
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. obniżenia wartości napięcia zasilania
B. zmniejszenia reaktancji uzwojeń silnika
C. spadku obrotów silnika
D. wzrostu obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 14

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s
A. warunkowo.
B. z opóźnieniem czasowym.
C. impulsowo.
D. z ograniczeniem czasowym.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Wskaż zawór, który należy zamontować w miejsce szarego prostokąta, aby w układzie przedstawionym na schemacie zapewnić uruchomienie siłownika wyłącznie po jednoczesnym naciśnięciu obu zaworów rozdzielających.

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Zawór podwójnego sygnału, oznaczony jako odpowiedź C, jest kluczowym elementem w układzie pneumatycznym, który umożliwia uruchomienie siłownika wyłącznie po jednoczesnym naciśnięciu obu zaworów rozdzielających. Takie podejście zapewnia, że siłownik zostanie aktywowany tylko wtedy, gdy oba sygnały wejściowe są aktywne, co jest zgodne z logiką AND. W praktyce zastosowanie zaworu podwójnego sygnału jest niezwykle istotne w systemach wymagających wysokiego poziomu bezpieczeństwa, na przykład w automatyce przemysłowej. Dzięki temu rozwiązaniu można zminimalizować ryzyko przypadkowego uruchomienia maszyny, co jest szczególnie ważne w środowiskach, gdzie operują ludzie. Zastosowanie zaworów podwójnego sygnału jest także zgodne z normami bezpieczeństwa i dobrymi praktykami w projektowaniu instalacji pneumatycznych, co pozwala na spełnienie wymagań norm ISO oraz przepisów BHP. Warto również zauważyć, że takie rozwiązanie ułatwia kontrolę nad procesami zachodzącymi w układzie, co jest niezbędne w złożonych systemach automatyzacji.

Pytanie 18

W przenośniku taśmowym zastosowano napęd mechatroniczny, którego schemat blokowy przedstawiono na rysunku. Który element umożliwiający programowe zmiany prędkości obrotowej silników napędowych oznaczono znakiem zapytania?

Ilustracja do pytania
A. Mostek typu H.
B. Prostownik sterowany.
C. Softstart.
D. Przemiennik częstotliwości.
Przemiennik częstotliwości, znany także jako falownik, jest kluczowym elementem w układach napędu elektrycznego, umożliwiającym precyzyjne kontrolowanie prędkości obrotowej silników. W kontekście przenośnika taśmowego, pozwala on na dostosowanie prędkości taśmy do zmieniających się warunków pracy, co jest niezbędne w wielu aplikacjach przemysłowych, gdzie obciążenie i wymagania transportowe mogą się różnić. Dzięki zastosowaniu przemiennika, operatorzy mogą optymalizować zużycie energii, unikając nadmiernego zużycia prądu w momentach, gdy pełna moc nie jest wymagana. W praktyce, regulacja częstotliwości zasilania silnika elektrycznego przekłada się na proporcjonalną zmianę jego prędkości obrotowej, co pozwala na osiągnięcie wyspecjalizowanych parametrów pracy. W standardach branżowych, takich jak IEC 61800, przemienniki częstotliwości są uznawane za efektywne urządzenia do zarządzania energią i zwiększania efektywności energetycznej systemów napędowych, co czyni ich nieodzownym elementem nowoczesnych systemów automatyki.

Pytanie 19

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. zmiany pojemności elektrycznej
B. zmiany rezystancji
C. zmiany indukcyjności własnej
D. efektu piezoelektrycznego
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na podstawie ilustracji z instrukcji obsługi rotametru wskaż sposób jego montażu.

Ilustracja do pytania
A. Rotametr należy montować w pozycji pionowej z przepływem czynnika z dołu do góry.
B. Rotametr należy montować w pozycji poziomej z przepływem czynnika z prawej do lewej.
C. Rotametr należy montować w pozycji pionowej z przepływem czynnika z góry do dołu.
D. Rotametr należy montować w pozycji poziomej z przepływem czynnika z lewej do prawej.
Nieprawidłowy montaż rotametru w pozycji poziomej lub w odwrotnym kierunku przepływu może prowadzić do wielu poważnych konsekwencji. W przypadku montażu w pozycji poziomej, ciśnienie hydrostatyczne oraz siły grawitacji nie działają w sposób, który pozwala na precyzyjne pomiaru przepływu. Możliwe jest, że wirnik rotametru nie porusza się w odpowiedni sposób, co prowadzi do błędnych wskazań. W przypadku próby montażu z przepływem czynnika z góry do dołu, rotametr mógłby działać na zasadzie przeciwnej do zamierzonej, co skutkowałoby dodatkowo zafałszowaniem odczytów. Niezrozumienie zasady działania tych urządzeń często prowadzi do mylnych wniosków i niewłaściwego stosowania, co może generować nieefektywność procesów oraz ryzyko dla bezpieczeństwa. Aby uniknąć takich problemów, kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej oraz standardów jakości, które jasno określają wymagania dotyczące instalacji rotametru. Zamiast podejmować decyzje na podstawie intuicji lub doświadczenia, warto korzystać z popartych dowodami praktyk, które zapewniają minimalizację błędów oraz maksymalizują efektywność pomiarów.

Pytanie 22

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
B. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
D. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 23

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Wygładzanie
B. Gratowanie
C. Szlifowanie
D. Powiercanie
Wybór odpowiedzi takich jak wygładzanie, szlifowanie czy powiercanie wskazuje na pewne nieporozumienia dotyczące procesów obróbczych. Wygładzanie to termin odnoszący się do redukcji chropowatości powierzchni, ale nie koncentruje się na usuwaniu zadziorów czy resztek metalu. Zazwyczaj stosuje się je w kontekście wykańczania powierzchni, jednak nie jest to proces dedykowany do postępowania ze krawędziami otworów. Szlifowanie natomiast jest bardziej skomplikowanym procesem obróbczy, który polega na użyciu narzędzi szlifierskich do precyzyjnego formowania i wygładzania, ale również nie jest to najbardziej efektywna metoda do usuwania zadziorów w otworach. Powiercanie, z kolei, odnosi się do samego procesu wiercenia, podczas którego powstają otwory, ale nie dotyczy to usuwania resztek metalu, które pozostają po tym procesie. Wybór tych terminów może wynikać z braku zrozumienia specyfiki obróbki metali oraz celów poszczególnych technik. Kluczowe w pracy z materiałami metalowymi jest zrozumienie, że gratowanie jest niezbędnym krokiem, który zapewnia bezpieczeństwo i jakość połączeń śrubowych, a także wpływa na ogólną efektywność i trwałość wykonanych elementów.

Pytanie 24

Który z przedstawionych sposobów ułożenia przewodu hydraulicznego jest prawidłowy?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Zły wybór! To ułożenie przewodu hydraulicznego niestety nie jest odpowiednie, bo może sprawić, że system nie będzie działał jak należy. Opcje A, B i C mają te zagięcia pod ostrymi kątami, co jest naprawdę niekorzystne. Takie zagięcia mogą powodować wzrost oporu przepływu i przez to wydajność systemu leci na łeb na szyję. Niektórzy mogą myśleć, że te zagięcia to nic wielkiego, ale w praktyce prowadzą one do turbulencji, co może zdziałać niezłe szkody. A to nie koniec, bo ich skomplikowane układanie to także problem, jeśli chodzi o konserwację i naprawy. Z tego, co wiem, w hydraulice liczy się prostota, więc lepiej unikać zbędnych zakrętów. Warto trzymać się norm i dobrych praktyk, żeby zabezpieczyć system przed awariami i zagwarantować wydajność.

Pytanie 25

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%
A. 15 V DC
B. 20 V DC
C. 25 V DC
D. 30 V DC
Odpowiedź 25 V DC jest zgodna z parametrami napięcia zasilania sterownika PLC, które wynosi od 21,2 V DC do 28,8 V DC. Wybierając napięcie w tym zakresie, zapewniamy stabilną pracę urządzenia mechatronicznego, co jest kluczowe dla prawidłowego działania systemów automatyki. Przykładowo, w systemach przemysłowych będziemy mieli do czynienia z zasilaczami, które dostarczają napięcia 24 V DC, co jest standardem w wielu aplikacjach. Wybór 25 V DC nie tylko mieści się w zalecanym zakresie, ale także minimalizuje ryzyko uszkodzeń komponentów elektronicznych, które mogą wystąpić przy zasilaniu napięciem poza określonym zakresem. W praktyce, stosowanie napięcia zasilania zgodnego z dokumentacją techniczną zapewnia dłuższą żywotność urządzeń oraz ich niezawodność w działaniu. W przypadku stosowania zasilaczy, ważne jest również, aby były one zgodne z normami bezpieczeństwa i zapewniały odpowiednie zabezpieczenia przeciwprzepięciowe.

Pytanie 26

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Sworzniowe
B. Wpustowe
C. Nitowane
D. Wciskowe
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 27

Do montażu pneumatycznego zaworu rozdzielającego przy pomocy wkręta przedstawionego na rysunku, należy użyć wkrętaka typu

Ilustracja do pytania
A. Tora
B. Philips
C. Pozidriv
D. Tri-Wing
Odpowiedź "Tri-Wing" jest prawidłowa, ponieważ wkręty tego typu charakteryzują się unikalnym kształtem nacięcia, które składa się z trzech skrzydeł. To rozwiązanie pozwala na pewniejsze dopasowanie wkrętaka do wkręta, co znacząco.reduce ryzyko uszkodzenia zarówno narzędzia, jak i elementu, który jest montowany. Wkręty Tri-Wing są szeroko stosowane w przemyśle lotniczym oraz elektronicznym, gdzie wymagana jest wysoka precyzja oraz odporność na nieautoryzowane manipulacje. Dzięki technice montażu z użyciem wkrętów Tri-Wing, możliwe jest uzyskanie solidnego połączenia, które wytrzymuje duże obciążenia i wibracje. W praktyce, użycie wkrętaka odpowiedniego do nacięcia wkręta jest kluczowe dla zapewnienia długowieczności montażu oraz bezpieczeństwa operacji. Zgodnie z najlepszymi praktykami w inżynierii, wykorzystanie dedykowanych narzędzi do konkretnych typów wkrętów jest zalecane, aby uniknąć problemów związanych z niewłaściwym dopasowaniem. W związku z tym, wybór wkrętaka Tri-Wing w tym przypadku jest absolutnie uzasadniony.

Pytanie 28

Na podstawie przedstawionych parametrów technicznych przetwornika ciśnienia wskaż przedział wartości napięcia zasilania elektrycznego, pozwalający na prawidłową pracę przetwornika trójprzewodowego dla napięciowego sygnału wyjściowego 0 ÷ 10 V DC.

Sygnały wyjściowe

Typ sygnałuSygnał
Prądowy (2-przewodowy)4 ... 20 mA
Prądowy (3-przewodowy)0 ... 20 mA
Napięciowy (3-przewodowy)DC 0 ... 5 V
DC 0 ... 10 V
DC 0,5 ... 2,5 V

Zasilanie elektryczne

Zasilanie elektryczne zależy od wybranego sygnału wyjściowego.

4 ... 20 mA:DC 10 ... 30 V
0 ... 20 mA:DC 10 ... 30 V
DC 0 ... 5 V:DC 10 ... 30 V
DC 0 ... 10 V:DC 14 ... 30 V
C 0,5 ... 2,5 V:DC 5 ... 30 V (odpowiedni do
zasilania bateryjnego)
A. 10 V DC ÷ 30 V DC
B. 10 V DC ÷ 14 V DC
C. 5 V DC ÷ 30 V DC
D. 14 V DC ÷ 30 V DC
Zakres zasilania przetwornika ciśnienia trójprzewodowego dla napięciowego sygnału wyjściowego 0 ÷ 10 V DC wynoszący 14 V DC ÷ 30 V DC jest zgodny z normami i standardami branżowymi. Przetworniki tego typu są powszechnie stosowane w automatyce przemysłowej, gdzie precyzyjne pomiary ciśnienia są kluczowe dla efektywności procesów. Wskazany zakres napięcia zasilania zapewnia stabilność pracy urządzenia, co jest istotne dla unikania zakłóceń w przesyłanym sygnale. Zasilając przetwornik napięciem poniżej 14 V DC, możemy doświadczyć niewłaściwego działania, co może prowadzić do błędnych odczytów lub całkowitej utraty funkcjonalności. Z kolei napięcie powyżej 30 V DC może uszkodzić przetwornik. Przykładowo, w systemach monitorowania ciśnienia w systemach hydraulicznych, stosowanie właściwego zakresu napięcia zasilania jest niezbędne dla zapewnienia dokładnych i niezawodnych pomiarów, co pozwala na efektywne zarządzanie procesami przemysłowymi i minimalizację ryzyka awarii.

Pytanie 29

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. Q
C. T
D. I
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Na rysunkach przedstawiono nakrętkę

Ilustracja do pytania
A. radełkową.
B. kwadratową.
C. koronową.
D. motylkową.
Nakrętka koronowa, przedstawiona na rysunku, jest powszechnie stosowanym elementem złącznym, charakteryzującym się sześciokątnym kształtem oraz wypustami na zewnętrznej krawędzi. Te wypusty pozwalają na łatwe dokręcanie i odkręcanie nakrętki za pomocą klucza, co jest kluczowe w wielu zastosowaniach inżynieryjnych i mechanicznych. Nakrętki koronowe są często wykorzystywane w konstrukcjach maszyn, gdzie wymagana jest wysoka siła zaciągająca oraz odporność na luzowanie się połączeń. Dzięki ich konstrukcji, umożliwiają one uzyskanie lepszego momentu dokręcania, co jest zgodne z dobrymi praktykami w inżynierii mechanicznej. Warto również zauważyć, że zastosowanie nakrętek koronowych jest preferowane w standardach takich jak ISO 4032, które regulują wymiary i tolerancje dla takich elementów złącznych. Używanie nakrętek koronowych przyczynia się do zwiększenia bezpieczeństwa połączeń mechanicznych, minimalizując ryzyko ich awarii.

Pytanie 32

Który z przedstawionych manipulatorów posiada zamknięty łańcuch kinematyczny?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedzi A, B i D mówią o manipulatorach z otwartymi łańcuchami kinematycznymi, a to zasadniczo się różni od tego, co mamy w manipulatorze z C. Te otwarte łańcuchy mają swobodny ruch, ale są bardziej skomplikowane, bo każdy element działa niezależnie. W praktyce są super do zastosowań, gdzie liczy się elastyczność, ale niekoniecznie precyzja. Mylimy tu często te pojęcia, nie zdając sobie sprawy, że delta daje lepszą stabilność i dokładność. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe, jeśli projektujemy roboty. Trzeba to brać pod uwagę!

Pytanie 33

Jaką wartość znamionową ma natężenie prądu wzbudzenia silnika prądu stałego, którego dane techniczne zamieszczono w ramce?

- MotorNr 20026 976
230 V2,2 A
0,3 WS1cos φ
2000 min-1– Hz
ERR.230 V0,45 A
I. KLFIP23
VDE 0530
A. 2,65 A
B. 2,20 A
C. 1,75 A
D. 0,45 A
Wybór innej wartości natężenia prądu wzbudzenia niż 0,45 A może prowadzić do kilku nieporozumień i błędnych założeń technicznych. Na przykład, odpowiadając 1,75 A, można myśleć, że jest to wartość, która zapewni silnikowi lepszą wydajność. W rzeczywistości, zbyt wysoki prąd wzbudzenia może skutkować przegrzewaniem się uzwojeń oraz obniżeniem sprawności silnika. Podobnie, odpowiedź 2,20 A, chociaż również wydaje się logiczna, nie ma pokrycia w danych technicznych i może prowadzić do poważnych problemów eksploatacyjnych. Taka sytuacja może wystąpić, gdy osoba odpowiadająca na pytanie nie zwraca uwagi na konkretne wartości przedstawione w dokumentacji technicznej. Ponadto, wybierając 2,65 A, można fałszywie założyć, że duża wartość prądu wzbudzenia zawsze przynosi lepsze rezultaty. Jest to typowy błąd myślowy, który może prowadzić do nieefektywnego wykorzystania zasobów energetycznych i zwiększenia kosztów eksploatacji. Kluczowe jest, aby zawsze odnosić się do oficjalnych danych technicznych i stosować się do standardów branżowych, takich jak normy IEC, które precyzują, jakie wartości prądu wzbudzenia są odpowiednie dla różnych zastosowań, aby uniknąć nieprawidłowych obliczeń i potencjalnych uszkodzeń sprzętu.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Ile wynosi wartość pojemności kondensatora, przedstawionego na rysunku?

Ilustracja do pytania
A. 470 μF
B. 474 nF
C. 470 nF
D. 474 μF
Wybór jednej z innych opcji wskazuje na nieporozumienie dotyczące zasad oznaczania pojemności kondensatorów. Odpowiedzi takie jak 470 μF czy 474 μF sugerują znacznie większą pojemność, co jest niezgodne z oznaczeniem "474", które właściwie odzwierciedla pojemność 470 nF. Często popełnianym błędem jest mylenie jednostek miary; mikrofarady (μF) są znacznie większe od nanofaradów (nF) i nie można ich stosować zamiennie. Ponadto, sugerowanie wartości 474 nF również jest błędne, ponieważ nie odzwierciedla rzeczywistej wartości, którą można odczytać z kodu na kondensatorze. W praktyce, zrozumienie konwencji oznaczania pojemności jest niezbędne dla inżynierów w celu zapewnienia, że wykorzystywane komponenty są zgodne z wymaganiami obwodu. Pamiętaj, że kondensatory o niewłaściwej pojemności mogą prowadzić do nieprawidłowego działania układów elektronicznych, co może skutkować uszkodzeniem innych komponentów w systemie. Zwracaj uwagę na detale oznaczeń, aby uniknąć takich sytuacji w przyszłości.

Pytanie 36

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Podłączyć prądnicę na krótko do pracy silnikowej
B. Odwrócić kierunek prędkości obrotowej na przeciwny
C. Zmienić sposób podłączenia w obwodzie wzbudzenia
D. Zwiększyć opór w obwodzie wzbudzenia
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 37

Który z przedstawionych symboli graficznych oznacza tranzystor MOSFET ze wzbogaconym kanałem typu n?

Ilustracja do pytania
A. Symbol 2.
B. Symbol 1.
C. Symbol 3.
D. Symbol 4.
Wybór innego symbolu niż Symbol 3 może wynikać z nieporozumienia dotyczącego oznaczeń tranzystorów MOSFET. Każdy z pozostałych symboli może przedstawiać różne typy tranzystorów, ale brak w nich poprawnych cech, które definiują tranzystor MOSFET ze wzbogaconym kanałem typu n. Niezrozumienie symboliki może prowadzić do zastosowania niewłaściwych komponentów w projektach, co w efekcie może skutkować nieprawidłowym działaniem całego układu. Często zdarza się, że osoby projektujące obwody mylą tranzystory typu n z tranzystorami typu p, co może wynikać z niedostatecznej znajomości podstawowych cech tych komponentów. Przykładowo, tranzystory typu p mają strzałki skierowane do wnętrza kanału, co odzwierciedla ich odmienny charakter. Kluczowym aspektem, który należy wziąć pod uwagę, jest także charakterystyka elektryczna zastosowanego tranzystora, która różni się w zależności od typu i może mieć wpływ na wydajność obwodu. Dlatego ważne jest, aby inżynierowie mieli solidną wiedzę na temat symboliki oraz właściwości tranzystorów MOSFET, aby uniknąć typowych błędów, które mogą prowadzić do awarii systemów. Zrozumienie, jak interpretować symbole i jakie mają implikacje dla projektowania układów, jest niezbędne w praktyce inżynierskiej.

Pytanie 38

Który podzespół jest badany pod względem szczelności w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. Siłownik pneumatyczny.
B. Zawór Z3.
C. Zespół przygotowania powietrza.
D. Zawór Z1.
Wybierając odpowiedzi inne niż siłownik pneumatyczny, można wpaść w pułapki związane z niepełnym zrozumieniem funkcji poszczególnych elementów układu pneumatycznego oraz ich roli w zachowaniu szczelności systemu. Zawory, takie jak Z1 i Z3, owszem, są istotnymi komponentami, ale ich główną funkcją jest kontrola przepływu powietrza, a nie bezpośrednie przekształcanie energii. Choć ich szczelność również jest ważna, nie jest to element, który najczęściej ulega nieszczelności. Zespół przygotowania powietrza ma za zadanie przygotować powietrze do pracy w układzie, ale nie jest on odpowiedzialny za bezpośrednie przekształcanie energii w ruch. Typowym błędem myślowym jest skupienie się na elementach, które nie mają bezpośredniego wpływu na ruch w systemie, co prowadzi do błędnych wniosków. Należy pamiętać, że w układach pneumatycznych to właśnie siłowniki są najbardziej narażone na utratę ciśnienia, dlatego to one powinny być przedmiotem szczegółowego badania szczelności.

Pytanie 39

Wyłącznik silnikowy może zadziałać na skutek

A. użycia stałego napięcia w obwodzie sterowania silnika
B. uruchomienia silnika przy niewielkim obciążeniu
C. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
D. braku jednej fazy zasilającej silnik
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.