Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 29 października 2025 21:04
  • Data zakończenia: 29 października 2025 21:19

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie zalecenie dotyczące weryfikacji ciągłości obwodu ochronnego urządzeń zaprojektowanych w I klasie ochronności powinno być zawarte w dokumentacji eksploatacyjnej urządzeń elektrycznych?

A. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem neutralnym wtyczki
B. Pomiar wykonuje się pomiędzy stykiem fazowym wtyczki, a metalowymi elementami obudowy urządzenia
C. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem fazowym wtyczki
D. Pomiar wykonuje się pomiędzy stykiem ochronnym wtyczki, a metalowymi elementami obudowy urządzenia
Pomiar ciągłości obwodu ochronnego dla urządzeń wykonanych w I klasie ochronności jest kluczowy dla zapewnienia bezpieczeństwa ich użytkowania. Właściwe wykonanie tego pomiaru polega na sprawdzeniu ciągłości połączenia między stykiem ochronnym wtyczki a metalowymi elementami obudowy urządzenia, ponieważ obwód ochronny ma za zadanie odprowadzenie ewentualnych prądów upływowych do ziemi, co skutecznie zapobiega porażeniu prądem. Zgodnie z normami, takimi jak PN-IEC 60364, każdy element metalowy, mogący stać się naładowany w przypadku uszkodzenia izolacji, musi być odpowiednio uziemiony. W praktyce, wykonując ten pomiar, możemy użyć urządzenia pomiarowego, które umożliwia sprawdzenie oporności między tymi punktami. Niska wartość oporności wskazuje na dobrą ciągłość obwodu ochronnego. Dobrą praktyką jest również regularne przeprowadzanie takich pomiarów w ramach konserwacji urządzeń, aby zapewnić ich bezpieczeństwo i sprawność.

Pytanie 2

Jak często należy wykonywać przeglądy techniczne w urządzeniach i systemach mechatronicznych?

A. Raz na pięć lat
B. Co dwa lata
C. Minimum raz do roku
D. Co trzy lata
Odpowiedź "Co najmniej raz w roku" jest zgodna z obowiązującymi przepisami prawa oraz najlepszymi praktykami w zarządzaniu urządzeniami i systemami mechatronicznymi. Regularne przeglądy techniczne, przeprowadzane co najmniej raz w roku, mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników oraz niezawodności operacyjnej urządzeń. Takie przeglądy pozwalają na wczesne wykrycie potencjalnych usterek, co w konsekwencji minimalizuje ryzyko awarii. Przykładem może być systemy automatyki przemysłowej, w których regularne inspekcje komponentów, takich jak czujniki czy siłowniki, mogą zapobiec kosztownym przestojom produkcyjnym. Ponadto, zgodnie z normą PN-EN ISO 13849-1, regularne przeglądy są niezbędne do zapewnienia zgodności systemów z wymaganiami bezpieczeństwa. Wiedza na temat częstotliwości przeglądów jest kluczowa dla inżynierów i techników, którzy odpowiadają za operacyjną gotowość i bezpieczeństwo systemów mechatronicznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie kroki należy podjąć w celu stworzenia układu kombinacyjnego asynchronicznego?

A. Przygotować graf sekwencji, stworzyć program lub wykonać schemat układu z użyciem przerzutników
B. Zbudować tabelę Karnaugha, zredukować funkcję, sformułować równanie i w oparciu o nie wykonać schemat logiczny układu
C. Przygotować diagram czasowy, na jego podstawie sformułować równanie stanu oraz narysować schemat z użyciem przerzutników JK
D. Opracować algorytm przy pomocy metody Grafcet, a następnie na jego podstawie stworzyć program dla sterownika PLC
Wybór alternatywnych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnicy między układami kombinacyjnymi a sekwencyjnymi. W przypadku projektowania układów kombinacyjnych asynchronicznych, kluczowe jest zrozumienie, że te układy nie zawierają pamięci ani stanów, co odróżnia je od układów sekwencyjnych, które wykorzystują przerzutniki i mają pamięć o stanie. Odpowiedzi dotyczące sporządzania grafu sekwencji oraz diagramu czasowego sugerują mylną interpretację, gdyż te metody są bardziej odpowiednie dla układów sekwencyjnych, gdzie istotne jest śledzenie stanów i ich przejść. W przypadku układów asynchronicznych, skupiamy się na bezpośrednich relacjach między wejściem a wyjściem, co jest zatem niezbędne do właściwego funkcjonowania układu bez opóźnień związanych z pamięcią. Koncepcja użycia algorytmu Grafcet w kontekście układów kombinacyjnych jest także nieadekwatna, ponieważ Grafcet jest narzędziem stosowanym do modelowania systemów sekwencyjnych, a nie kombinacyjnych. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz ich zastosowania w praktycznych rozwiązaniach inżynieryjnych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki sterownik powinien być wykorzystany do zarządzania 5 pompami napełniającymi 5 zbiorników, gdy włączanie i wyłączanie poszczególnych pomp opiera się na sygnałach z czujników binarnych, które wykrywają niski oraz wysoki poziom cieczy, a także system uruchamiany jest ręcznie przyciskiem zwiernym i wyłączany przyciskiem rozwiernym?

A. Posiadający co najmniej 8 wejść i 4 wyjścia analogowe
B. Posiadający co najmniej 8 wejść i 4 wyjścia cyfrowe
C. Posiadający co najmniej 16 wejść i 8 wyjść analogowych
D. Posiadający co najmniej 16 wejść i 8 wyjść cyfrowych
Prawidłowa odpowiedź to ta o 16 wejściach i 8 wyjściach cyfrowych. Sterownik z taką liczbą portów może bez problemu obsługiwać 5 pomp i 5 czujników, które sygnalizują niski oraz wysoki poziom cieczy. W automatyce przemysłowej, zgodnie z normą IEC 61131, ważne jest, aby mieć wystarczającą liczbę wejść i wyjść, żeby móc dobrze monitorować i sterować urządzeniami. Dzięki tym 16 wejściom można podłączyć wszystkie potrzebne czujniki i przyciski, co jest niezbędne do ręcznej obsługi np. pomp. Wyjścia cyfrowe są tutaj istotne, bo pozwalają na kontrolowanie urządzeń wykonawczych, jak pompy. Moim zdaniem to kluczowe, bo w sytuacji awaryjnej szybkie wyłączenie pompy może zapobiec przelaniu i związanym z tym szkodom. Warto też dodać, że cyfrowe sygnały zwiększają niezawodność systemu i ułatwiają integrację z innymi elementami automatyki.

Pytanie 8

Który z wymienionych elementów jest najważniejszy przy projektowaniu automatycznej linii do napełniania i etykietowania rozcieńczalników do farb?

A. Jak największa niezawodność funkcjonowania zaprojektowanej linii
B. Użycie najtańszych komponentów
C. Brak elektryzowania się zastosowanych elementów
D. Wysoka wydajność zaprojektowanej linii
Wybór najtańszych podzespołów może wydawać się atrakcyjną opcją z perspektywy budżetowej, jednak w kontekście projektowania zautomatyzowanej linii do napełniania i etykietowania rozcieńczalników do farb, jest to podejście mylące. Tanie podzespoły często charakteryzują się niższą jakością, co prowadzi do większej podatności na awarie. W dłuższej perspektywie, oszczędności w kosztach początkowych mogą prowadzić do znacznych wydatków związanych z naprawą, wymianą sprzętu oraz przestojami w produkcji, co jest szczególnie krytyczne w branży zajmującej się materiałami łatwopalnymi. Ponadto, niezawodność jest kluczowym czynnikiem w każdej linii produkcyjnej, a użycie niskiej jakości komponentów może negatywnie wpłynąć na wydajność i bezpieczeństwo. Z kolei dążenie do maksymalnej wydajności bez odpowiednich zabezpieczeń, takich jak antystatyczność podzespołów, może prowadzić do sytuacji, w której proces produkcyjny zostanie przerwany przez uszkodzenia lub awarie sprzętu. Takie podejście pokazuje brak zrozumienia istoty projektowania systemów, w których bezpieczeństwo i niezawodność powinny mieć najwyższy priorytet, zwłaszcza w kontekście pracy z substancjami chemicznymi. Dlatego ważne jest, aby inwestować w wysokiej jakości podzespoły, które zapewnią bezpieczeństwo i stabilność operacyjną, zgodnie z najlepszymi praktykami inżynieryjnymi.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C użytego w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i dokładności 10 bitów?

A. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
B. 1024 poziomów kwantyzacji i rozdzielczość napięciowa 9,76 mV
C. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
D. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
Przetwornik A/C o rozdzielczości 10 bitów umożliwia przetwarzanie sygnału wejściowego na 1024 poziomy kwantyzacji, co jest wynikiem obliczenia 2^10. Każdy poziom odpowiada konkretnej wartości napięcia, a w przypadku skali pomiarowej 0÷10 V, rozdzielczość napięciowa wynosi około 9,76 mV. Oznacza to, że najmniejsza różnica napięcia, którą można rozróżnić, wynosi właśnie 9,76 mV. Taki przetwornik znajduje zastosowanie w wielu urządzeniach mechatronicznych, gdzie precyzyjny pomiar napięcia jest kluczowy, na przykład w systemach automatyki przemysłowej, czujnikach temperatury czy systemach monitorowania parametrów w czasie rzeczywistym. Zrozumienie działania przetworników A/C oraz ich parametrów, takich jak rozdzielczość i poziomy kwantyzacji, jest niezbędne dla inżynierów projektujących nowoczesne systemy, które muszą współpracować z różnorodnymi sygnałami analogowymi. W praktyce stosuje się te przetworniki w aplikacjach, gdzie wymagane jest dokładne odwzorowanie zmiennych sygnałów analogowych na wartości cyfrowe, co pozwala na dalsze przetwarzanie i analizy danych.

Pytanie 14

Zmierzyliśmy rezystancję pomiędzy czterema końcówkami 1, 2, 3, 4 uzwojeń transformatora napięcia 230 V/24 V i otrzymaliśmy następujące wartości: R12 = ∞, R13 = 0,05 Ω, R14 = ∞, R23 = ∞, R24 = 0,85 Ω, R34 = ∞. Które końcówki powinny być użyte do podłączenia napięcia 230 V?

A. 2, 3
B. 1, 2
C. 1, 3
D. 2, 4
Podane odpowiedzi mogą prowadzić do nieporozumień związanych z analizą połączeń w transformatorach. Wybór końcówek 2 i 3 lub 1 i 4 nie uwzględnia faktu, że transformator działa na zasadzie współpracy uzwojeń, a niewłaściwe połączenie może prowadzić do zjawiska, w którym transformator nie będzie w stanie poprawnie funkcjonować lub wręcz może ulec uszkodzeniu. Na przykład, końcówki 2 i 3 mają nieskończoną rezystancję, co oznacza, że nie są one fizycznie połączone w obwodzie uzwojenia transformatora. Oznacza to, że podłączenie napięcia do tych końcówek nie przyniesie oczekiwanych rezultatów i nie aktywuje transformatora. Ponadto, podłączenie końcówek 1 i 4, gdzie rezystancja również wynosi nieskończoność, jest kolejnym błędem, ponieważ uniemożliwia to przepływ prądu przez uzwojenie. W praktyce, aby prawidłowo zasilić transformator, należy zwrócić uwagę na rezystancje pomiędzy końcówkami oraz na to, które z nich rzeczywiście są połączone. Zrozumienie tych zasad jest kluczowe dla zapewnienia efektywnego funkcjonowania układów elektrycznych w zastosowaniach przemysłowych i domowych, a także dla przestrzegania norm bezpieczeństwa i dobrych praktyk w branży elektrotechnicznej.

Pytanie 15

Wskaż element funkcyjny, którego zastosowanie w programie sterującym umożliwi bezpośrednie zliczanie impulsów na wejściu PLC?

A. Regulator PID
B. Timer TON
C. Multiplekser
D. Licznik
Licznik jako blok funkcyjny jest kluczowym elementem w programowaniu systemów PLC, wykorzystywanym do zliczania impulsów. Jego fundamentalna funkcja polega na inkrementacji wartości licznika w odpowiedzi na otrzymane sygnały impulsowe, co pozwala na dokładne monitorowanie zdarzeń w czasie rzeczywistym. Przykładowo, w aplikacjach takich jak zliczanie produktów na linii produkcyjnej, licznik może być użyty do rejestrowania liczby sztuk, które przeszły przez określony punkt. Dobre praktyki w programowaniu PLC sugerują, aby zawsze wybierać odpowiednie bloki funkcyjne do konkretnego zadania, a licznik jest najbardziej efektywnym wyborem do zliczania impulsów. W kontekście standardów branżowych, ważne jest także, aby projektując systemy automatyki, uwzględniać aspekty takie jak szybkość reakcji i dokładność pomiarów, co licznik w pełni spełnia. Dodatkowo, korzystając z liczników, można implementować funkcje takie jak zliczanie do określonej wartości lub resetowanie, co zwiększa elastyczność w zastosowaniach automatyki.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Maksymalnym ciśnieniu, które występuje w trakcie pracy
B. Ciśnieniu testowemu 6 bar
C. Większym o 10% od ciśnienia roboczego
D. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
Poprawna odpowiedź "Maksymalnym ciśnieniu, jakie występuje podczas pracy." odnosi się do kluczowego aspektu przeprowadzania prób szczelności w układach hydraulicznych. Podczas normalnej eksploatacji, układ hydrauliczny jest narażony na różne obciążenia, a maksymalne ciśnienie odzwierciedla najwyższe wartości, jakie mogą wystąpić w czasie pracy. Przeprowadzenie próby szczelności na tym poziomie ciśnienia zapewnia, że wszystkie elementy układu, takie jak przewody, złącza czy siłowniki, są w stanie wytrzymać ekstremalne warunki i nie dojdzie do wycieków. W praktyce, stosowanie maksymalnego ciśnienia jako wartości testowej jest zgodne z normami branżowymi, takimi jak ISO 4413, które podkreślają znaczenie bezpieczeństwa i niezawodności układów hydraulicznych. W przypadku wykrycia jakichkolwiek nieszczelności podczas takiej próby, można podjąć odpowiednie kroki naprawcze, zanim układ zostanie oddany do użytku, co jest kluczowe dla bezpieczeństwa operacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na podstawie fragmentu instrukcji określ, co należy zrobić przed zamontowaniem reduktora podczas podłączania butli z gazem ochronnym do półautomatu spawalniczego.

Podłączenie gazu ochronnego
1. Butlę z odpowiednim gazem ochronnym należy ustawić obok półautomatu i zabezpieczyć ją przed przewróceniem się.
2. Zdjąć zabezpieczający ją kołpak i na moment odkręcić zawór butli w celu usunięcia ewentualnych zanieczyszczeń.
3. Zamontować reduktor tak, aby manometry były w pozycji pionowej.
4. Połączyć półautomat z butlą wężem.
5. Odkręcić zawór reduktora tylko przed przystąpieniem do spawania. Po zakończeniu spawania, zawór butli należy zakręcić.
A. Zdjąć kołpak z butli i na krótką chwilę odkręcić zawór butli.
B. Podłączyć wąż do półautomatu i do butli.
C. Odkręcić zawór reduktora na czas montażu, a następnie go zakręcić.
D. Ustawić poziomo butlę z gazem ochronnym.
Zdejmowanie kołpaka z butli oraz chwilowe odkręcenie zaworu butli jest kluczowym krokiem przed montażem reduktora. Kołpak działa jako zabezpieczenie, chroniące zawór przed uszkodzeniem oraz zanieczyszczeniami, które mogą wpłynąć na jakość gazu podczas użytkowania. Krótkie odkręcenie zaworu pozwala na wydostanie się niewielkiej ilości gazu, co pomaga w usunięciu zanieczyszczeń, takich jak kurz czy resztki, które mogą znajdować się w zaworze. Zgodnie z dobrymi praktykami w branży spawalniczej, takie działania zapobiegają późniejszym problemom, które mogą wystąpić w trakcie pracy, jak np. nieprawidłowe ciśnienie gazu, które wpłynie na jakość spawania. Dbanie o detale w procedurach przygotowawczych zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Obowiązujące normy dotyczące bezpieczeństwa, takie jak PN-EN ISO 2503, podkreślają znaczenie czystości i bezpieczeństwa przy podłączaniu urządzeń gazowych, co czyni ten krok nieodzownym elementem procesu.

Pytanie 22

Który z wymienionych fragmentów kodu assemblera wskazuje na realizację operacji dodawania przez procesor?

A. ADD
B. SUB
C. MUL
D. DIV
Kod 'ADD' jest skrótem od angielskiego słowa 'addition', co w kontekście programowania assemblerowego oznacza operację dodawania. W zasadzie instrukcja ta instruuje procesor, aby dodał wartości znajdujące się w dwóch rejestrach lub pomiędzy rejestrami a pamięcią. Przykładowo, jeśli mamy rejestry R1 i R2, używając instrukcji 'ADD R1, R2', procesor doda wartość z R2 do wartości w R1 i zapisze wynik z powrotem w R1. To podejście jest kluczowe w obliczeniach arytmetycznych i w wielu algorytmach przetwarzania danych. Dodatkowo, stosowanie instrukcji 'ADD' w kodzie assemblera jest zgodne z najlepszymi praktykami w programowaniu niskopoziomowym, gdzie precyzyjne zarządzanie operacjami arytmetycznymi jest niezbędne dla wydajności aplikacji. Użycie tej instrukcji jest również powszechne w kontekście optymalizacji kodu, gdzie reducowanie liczby operacji arytmetycznych przekłada się na szybsze działanie programów.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Sterownik PLC powinien zarządzać systemem nagrzewnicy, który składa się z wentylatora oraz zestawu grzałek. Jaką czynność należy podjąć, aby uniknąć przegrzania obudowy nagrzewnicy po jej dezaktywowaniu?

A. Zmniejszyć prędkość obrotową silnika wentylatora
B. Opóźnić dezaktywację wentylatora
C. Opóźnić dezaktywację grzałek
D. Zwiększyć moc grzałek
Opóźnienie wyłączenia wentylatora jest kluczowym działaniem mającym na celu ochronę obudowy nagrzewnicy przed przegrzewaniem się. Kiedy grzałki są wyłączone, obudowa nagrzewnicy wciąż emituje ciepło, a wentylator odgrywa istotną rolę w odprowadzaniu tego ciepła do otoczenia. Działający wentylator pomoże w utrzymaniu właściwej temperatury obudowy, zapobiegając jej uszkodzeniu oraz wydłużając żywotność urządzenia. W praktyce, opóźnienie wyłączenia wentylatora można zrealizować poprzez zaprogramowanie odpowiedniego czasu w sterowniku PLC, po którym wentylator będzie kontynuował pracę. Tego typu rozwiązania są zgodne z zasadami inżynierii automatyki, gdzie bezpieczeństwo i niezawodność systemu są priorytetem. Właściwe zarządzanie temperaturą nie tylko chroni urządzenie, ale również wpływa na efektywność energetyczną całego systemu grzewczego.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką rolę pełnią enkodery w serwonapędach AC?

A. Stanowią element wykonawczy serwonapędu
B. Chronią serwonapęd przed przeciążeniem
C. Informują o momencie generowanym przez napęd
D. Dostarczają informacji o pozycji i prędkości napędu
Enkodery w serwonapędach AC pełnią kluczową rolę w monitorowaniu i regulacji ruchu napędu. Ich głównym zadaniem jest dostarczanie informacji o aktualnej pozycji i prędkości, co jest niezbędne do precyzyjnego sterowania. Dzięki enkoderom, systemy automatyki mogą realizować złożone zadania, takie jak kontrola pozycji w aplikacjach robotycznych czy CNC. Przykładowo, w maszynach sterowanych numerycznie, enkodery umożliwiają dokładne pozycjonowanie narzędzi, co ma kluczowe znaczenie dla precyzji obróbczej. Zgodnie z najlepszymi praktykami w branży, stosowanie wysokiej jakości enkoderów pozwala na osiągnięcie lepszej dynamiki systemu oraz zwiększenie efektywności energetycznej. W standardach takich jak ISO 13849, zaleca się użycie enkoderów w kontekście bezpieczeństwa funkcjonalnego, co podkreśla ich znaczenie nie tylko w kontekście wydajności, ale i bezpieczeństwa operacyjnego.

Pytanie 32

Co opisuje pojęcie 'histereza' w kontekście przetworników ciśnienia?

A. Czas reakcji przetwornika na zmianę ciśnienia
B. Maksymalne ciśnienie robocze przetwornika
C. Minimalna wartość ciśnienia, jaką może zmierzyć przetwornik
D. Różnica między wartościami mierzonego sygnału przy zwiększaniu i zmniejszaniu ciśnienia
Histereza w kontekście przetworników ciśnienia to zjawisko polegające na różnicy w wartościach sygnału wyjściowego dla tego samego ciśnienia, zależnie od tego, czy ciśnienie to zostało osiągnięte poprzez jego zwiększanie czy zmniejszanie. Jest to istotny parametr, który wpływa na dokładność pomiarów. W praktyce, gdy ciśnienie wzrasta, sygnał wyjściowy przyjmuje inną wartość niż w przypadku, gdy ciśnienie maleje do tej samej wartości. Dlatego, podczas kalibracji i eksploatacji przetworników, wartość histerezy jest uwzględniana, aby zapewnić precyzyjne odczyty. Dobre praktyki inżynierskie zalecają zwracanie uwagi na specyfikację histerezy, szczególnie w aplikacjach, gdzie dokładność jest kluczowa, jak w systemach sterowania czy monitorowania procesów. Zrozumienie histerezy pozwala lepiej dostosować systemy pomiarowe do wymagań aplikacji i zminimalizować potencjalne błędy pomiarowe wynikające z tego zjawiska.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby zmierzyć dystans robota mobilnego od przeszkód, można zastosować m.in. czujniki

A. tensometryczne
B. pirometryczne
C. piezoelektryczne
D. ultradźwiękowe
Czujniki ultradźwiękowe są powszechnie stosowane w robotyce do pomiaru odległości, ponieważ działają na zasadzie emisji fal dźwiękowych o wysokiej częstotliwości, które po odbiciu od przeszkody wracają do czujnika. Dzięki temu możliwe jest precyzyjne określenie odległości do obiektów w otoczeniu robota. Przykładem zastosowania czujników ultradźwiękowych może być unikanie kolizji przez roboty mobilne, gdzie czujniki te umożliwiają wykrywanie przeszkód w czasie rzeczywistym, co jest kluczowe dla autonomicznych systemów nawigacyjnych. W branży stosuje się różne standardy, takie jak ISO 12100 dotyczący bezpieczeństwa maszyn, które podkreślają konieczność implementacji skutecznych systemów detekcji przeszkód. Ponadto, ultradźwiękowe czujniki odległości są często stosowane w połączeniu z algorytmami sztucznej inteligencji do analizy otoczenia, co zwiększa efektywność i bezpieczeństwo operacji robotów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.