Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 lutego 2026 19:25
  • Data zakończenia: 7 lutego 2026 19:45

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonych jak na przedstawionym schemacie. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość
Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwojeniu V1 – V2
B. przerwie w uzwojeniu V1 – V2
C. zwarciu międzyzwojowym w uzwojeniu U1 – U2
D. przerwie w uzwojeniu W1 – W2
Przerwa w uzwojeniu W1 – W2 została zidentyfikowana na podstawie wyników pomiarów rezystancji, które są kluczowe w diagnostyce silników elektrycznych. Wynik pomiaru rezonansowego dla uzwojenia U1 – V1 wynoszący 15 Ω wskazuje na prawidłowe połączenie oraz sprawność tego uzwojenia. Jednak rezystancja między zaciskami V1 – W1 oraz W1 – U1 wskazująca na nieskończoność (∞) jest jednoznacznym sygnałem, że w obwodzie występuje przerwa. W praktycznych zastosowaniach, takie pomiary pomagają w szybkiej diagnostyce i identyfikacji uszkodzeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034 dotyczące silników elektrycznych. Zrozumienie tego procesu może być przydatne w utrzymaniu ruchu i optymalizacji pracy maszyn, co jest kluczowe dla zapewnienia ciągłości produkcji. Warto również zwrócić uwagę na regularne wykonywanie takich pomiarów w celu wczesnego wykrywania problemów i unikania poważniejszych awarii.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Które urządzenie jest przedstawione na ilustracji?

Ilustracja do pytania
A. Bezpiecznik.
B. Wyłącznik.
C. Odłącznik.
D. Rozłącznik.
Na ilustracji pokazano typowy rozłącznik modułowy, ale w praktyce wielu osobom myli się on z innymi aparatami: odłącznikiem, wyłącznikiem czy nawet bezpiecznikiem. Wynika to z faktu, że cała ta aparatura ma podobną, „szynową” obudowę i montowana jest w jednej rozdzielnicy. Warto więc uporządkować pojęcia. Rozłącznik jest łącznikiem ręcznym, który służy do załączania i wyłączania obwodu przy prądach roboczych oraz do zapewnienia funkcji izolacyjnej – zgodnie z IEC 60947-3. Ma wyraźną dźwignię, pozycje pracy i często oznaczenia typu AC-20, AC-22. Nie ma natomiast wbudowanej charakterystyki zwarciowej czy przeciążeniowej. Odłącznik z kolei to aparat przeznaczony typowo do funkcji izolacyjnej, zwykle nie jest przeznaczony do częstego łączenia pod obciążeniem. Spotyka się go raczej w sieciach średniego napięcia, w polach rozdzielczych, jako odłącznik szyn zbiorczych czy linii – konstrukcyjnie wygląda zupełnie inaczej niż kompaktowy moduł na szynę DIN. Wyłącznik bywa mylony z rozłącznikiem, bo również ma dźwignię, ale wyłącznik mocy czy wyłącznik nadprądowy ma dodatkowo człon wyzwalający, który samoczynnie rozłącza obwód przy zwarciu lub przeciążeniu. Na obudowie znajdziemy charakterystykę B, C, D, wartości Icu, Ics itd. Tutaj tego nie ma, więc zakwalifikowanie tego aparatu jako zwykły „wyłącznik” sugeruje, że patrzymy tylko na wygląd, a nie na oznaczenia. Bezpiecznik natomiast to zupełnie inny typ zabezpieczenia – ma wkładkę topikową, która się przepala przy nadmiernym prądzie. Wkładki topikowe gG, aM, czy cylindryczne nie mają ruchomej dźwigni do ręcznego manewrowania obwodem. Typowym błędem jest utożsamianie każdego białego „klocka” w rozdzielnicy z bezpiecznikiem, co w praktyce prowadzi potem do złego doboru elementów i nieprawidłowej eksploatacji. Klucz do poprawnej identyfikacji to czytanie oznaczeń normowych, symboli łączeniowych i rozróżnianie funkcji: rozłączanie, odłączanie, zabezpieczanie. Na tym zdjęciu wszystkie te przesłanki wskazują jednoznacznie na rozłącznik.

Pytanie 4

Na rysunku przedstawiono schemat układu pracy grupy silników trójfazowych w zakładzie przemysłowym. Zmiana wartości pojemności baterii kondensatorów C powoduje zmianę

Ilustracja do pytania
A. mocy biernej pobieranej przez układ.
B. częstotliwości napięcia w układzie.
C. prądu rozruchowego silników.
D. prędkości obrotowej silników.
Wybór odpowiedzi dotyczących prędkości obrotowej silników, prądu rozruchowego lub częstotliwości napięcia w układzie, wskazuje na pewne nieporozumienia dotyczące podstawowych zasad działania silników trójfazowych oraz ich zasilania. Prędkość obrotowa silników asynchronicznych jest ściśle powiązana z częstotliwością napięcia zasilającego, a zmiana pojemności kondensatorów nie wpływa bezpośrednio na tę częstotliwość. Silniki pracują w oparciu o zjawisko indukcji elektromagnetycznej, gdzie częstotliwość napięcia zasilającego determinuje ich prędkość obrotową zgodnie z wzorem: n = 120*f/p, gdzie n to prędkość obrotowa, f to częstotliwość, a p to liczba par biegunów. Podobnie, prąd rozruchowy silników nie jest bezpośrednio związany z pojemnością kondensatorów, lecz z charakterystyką obciążenia i momentem rozruchowym. Typowym błędem myślowym jest mylenie pojęć mocy czynnej i mocy biernej, co prowadzi do wniosku, że zmiana kondensatorów wpływa na prąd rozruchowy. W rzeczywistości moc bierna, którą kondensatory kompensują, nie ma bezpośredniego wpływu na parametry rozruchowe silników, a jej zrozumienie jest kluczowe dla efektywnego zarządzania energią w zakładach. To fundamentalne zrozumienie ma ogromne znaczenie w kontekście optymalizacji pracy instalacji elektrycznych oraz minimalizacji kosztów eksploatacji.

Pytanie 5

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TT
B. TN-S
C. IT
D. TN-C
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
B. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
C. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
D. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
Wszystkie pozostałe działania, takie jak zwiększenie częstotliwości przeglądów maszyn elektrycznych, podnoszenie kwalifikacji pracowników czy uzyskiwanie większego przydziału mocy w Zakładzie Energetycznym, nie prowadzą bezpośrednio do poprawy współczynnika mocy, co może prowadzić do błędnych wniosków w zakresie zarządzania energetycznego. Zwiększenie częstotliwości przeglądów maszyn elektrycznych, chociaż istotne dla utrzymania ich sprawności i wydajności, nie wpływa na współczynnik mocy sam w sobie. Główne korzyści związane z przeglądami dotyczą zapobiegania awariom i przedłużenia żywotności sprzętu, a nie bezpośredniej poprawy PF. Podnoszenie kwalifikacji pracowników jest z pewnością korzystne dla ogólnej efektywności operacyjnej zakładu, jednak nie jest to działanie, które bezpośrednio wpłynie na poprawę współczynnika mocy. Natomiast uzyskanie większego przydziału mocy w Zakładzie Energetycznym może wręcz prowadzić do zwiększenia obciążeń, co często skutkuje pogorszeniem współczynnika mocy. Właściwa strategia zarządzania mocą powinna koncentrować się na optymalizacji istniejącego sprzętu oraz eliminacji nieefektywnych operacji, zamiast na zwiększaniu przydziału mocy, co może prowadzić do niepotrzebnych kosztów.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
B. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
C. Montowanie w instalacji wyłącznika różnicowoprądowego
D. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
Wykonanie instalacji elektrycznej przewodem o żyłach w postaci linki nie zapewnia podstawowej ochrony przed porażeniem prądem. Choć zastosowanie przewodów wielożyłowych może być korzystne w kontekście elastyczności i łatwości montażu, nie wpływa bezpośrednio na poziom ochrony przed porażeniem. Kluczowym czynnikiem w zabezpieczeniu przed prądem jest jakość izolacji oraz jej rezystancja, a nie sam rodzaj przewodu. Połączenie styków ochronnych gniazd z przewodem ochronnym sieci, mimo że jest istotne dla uziemienia, samo w sobie nie wystarczy, aby zapobiec porażeniu. Uziemienie działa jako zabezpieczenie, ale najsłabszym ogniwem w systemie mogą być właśnie przewody robocze, których izolacja nie jest odpowiednia. Zastosowanie wyłącznika różnicowoprądowego, chociaż bardzo ważne, również nie jest jedynym czynnikiem, który zapewnia bezpieczeństwo. Wyłączniki te działają w momencie wykrycia różnicy prądów, ale nie eliminują ryzyka wynikającego z nieodpowiedniej izolacji przewodów. Dlatego kluczowym elementem bezpieczeństwa jest monitorowanie stanu izolacji przewodów roboczych oraz ich odpowiednia specyfikacja, co powinno być standardem w każdej instalacji elektrycznej.

Pytanie 10

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C6
B. B16
C. B10
D. C10
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 11

Przeglądu przeciwpożarowego wyłącznika prądu należy dokonywać w okresach ustalonych przez producenta, lecz nie rzadziej niż raz na

A. pięć lat.
B. trzy lata.
C. dwa lata.
D. rok.
W przypadku przeciwpożarowego wyłącznika prądu kluczowe jest zrozumienie, że nie jest to zwykły aparat łączeniowy, tylko element systemu bezpieczeństwa pożarowego. Dlatego przyjęcie okresu co dwa, trzy czy pięć lat jest po prostu zbyt ryzykowne, nawet jeśli komuś wydaje się, że przecież „nic się nie dzieje” i instalacja działa latami. W praktyce takie wydłużanie interwałów przeglądów wynika często z myślenia w stylu: skoro wyłącznik jest rzadko używany, to zapewne się nie zużywa. To jest typowy błąd – aparatura, która długo stoi bez ruchu, potrafi się wręcz szybciej degradować: utleniają się styki, zapiekają się mechanizmy, uszczelki twardnieją, a środowisko (wilgoć, kurz, drgania) robi swoje. Okresy rzędu dwóch czy trzech lat mogą komuś kojarzyć się z przeglądami niektórych instalacji elektrycznych albo z kontrolą innych urządzeń, ale dla urządzeń przeciwpożarowych standardem jest cykliczność co najmniej roczna. Przy pięciu latach przerwy ryzyko, że w momencie pożaru wyłącznik nie zadziała prawidłowo, rośnie w sposób trudny do zaakceptowania, zarówno z punktu widzenia bezpieczeństwa ludzi, jak i odpowiedzialności prawnej właściciela obiektu. Moim zdaniem największy problem przy wybieraniu zbyt długiego okresu polega na tym, że ignoruje się rolę dokumentacji i wymogów producenta – instrukcje eksploatacji i zapisy przepisów ochrony przeciwpożarowej jasno wskazują, że urządzenia tego typu muszą być utrzymywane w stanie pełnej sprawności, a to bez regularnego, corocznego sprawdzania po prostu się nie uda. Dłuższe interwały mogą być kuszące z punktu widzenia kosztów, ale technicznie i formalnie nie bronią się, bo nie zapewniają wymaganej niezawodności w sytuacji zagrożenia.

Pytanie 12

Który z przyrządów pomiarowych przeznaczony jest do wykonania kompletnych okresowych pomiarów eksploatacyjnych instalacji elektrycznej w budynku mieszkalnym?

Ilustracja do pytania
A. Przyrząd 2.
B. Przyrząd 4.
C. Przyrząd 3.
D. Przyrząd 1.
Przyrząd 4. to miernik wielofunkcyjny, który odgrywa kluczową rolę w wykonywaniu kompleksowych okresowych pomiarów eksploatacyjnych instalacji elektrycznych w budynkach mieszkalnych. Tego rodzaju miernik pozwala na przeprowadzenie wielu istotnych testów, takich jak pomiar rezystancji izolacji, pętli zwarcia oraz ciągłości przewodów ochronnych, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Dokładność i wszechstronność miernika wielofunkcyjnego sprawiają, że jest on zgodny z zaleceniami norm krajowych i międzynarodowych, takich jak norma PN-EN 61557, która dotyczy pomiarów w instalacjach elektrycznych. Użycie tego przyrządu pozwala na wczesne wykrywanie usterek oraz ocenę stanu technicznego instalacji, co przekłada się na dłuższy okres eksploatacji oraz minimalizację ryzyka wystąpienia awarii. Przykładem zastosowania może być kontrola instalacji elektrycznych w domach jednorodzinnych, gdzie regularne pomiary są zalecane co najmniej raz na pięć lat, aby zapewnić zgodność z obowiązującymi przepisami oraz bezpieczeństwo domowników.

Pytanie 13

W trakcie eksploatacji typowej instalacji z żarowym źródłem światła zauważono po kilku minutach pracy częste zmiany natężenia oświetlenia (miganie światła). Najbardziej prawdopodobną przyczyną usterki jest

A. wypalenie styków w łączniku.
B. zwarcie pomiędzy przewodem ochronnym i neutralnym.
C. zwarcie pomiędzy przewodem fazowym i neutralnym.
D. zawilgocona izolacja przewodów zasilających.
W opisanej sytuacji mamy klasyczny objaw niestabilnego połączenia w obwodzie zasilania oprawy: częste zmiany natężenia oświetlenia po kilku minutach pracy, czyli takie „mruganie” żarówki. Najbardziej typową i w praktyce najczęstszą przyczyną jest wypalenie lub nadpalanie styków w łączniku (wyłączniku światła). Styki, które są zużyte, nadpalone albo poluzowane, mają podwyższoną rezystancję przejścia. Przy przepływie prądu powoduje to lokalne nagrzewanie, rozszerzanie się materiału, a potem jego schładzanie. W efekcie styk raz przewodzi lepiej, raz gorzej, pojawiają się mikroprzerwy i żarówka przygasa lub błyska. Moim zdaniem to jeden z typowych usterek spotykanych w starszych instalacjach, szczególnie tam, gdzie łączniki są kiepskiej jakości albo często używane. Z punktu widzenia dobrej praktyki eksploatacyjnej PN-HD 60364 i ogólnych zasad montażu, połączenia stykowe muszą być pewne mechanicznie, bez luzów, a aparatura łączeniowa powinna mieć odpowiednio dobraną obciążalność prądową i kategorię użytkowania. Wymiana łącznika na nowy, markowy, z solidnymi stykami i prawidłowo dokręconymi zaciskami zazwyczaj całkowicie eliminuje problem. W praktyce serwisowej, gdy klient zgłasza miganie tylko jednego obwodu oświetleniowego z żarowym źródłem światła, pierwsza rzecz do sprawdzenia to właśnie łącznik i jego styki, a dopiero potem szuka się dalej w oprawie czy puszce instalacyjnej. Dobrze jest też okresowo kontrolować stan zacisków i nie dopuszczać do pracy z nadpalonymi elementami, bo długotrwałe przegrzewanie może prowadzić do uszkodzenia izolacji przewodów, a w skrajnym przypadku nawet do zagrożenia pożarowego.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Na rysunku przedstawiono schemat instalacji ochronnej łazienki w budynku wielopiętrowym. Które elementy nie wymagają przyłączenia do miejscowej szyny wyrównawczej?

1 – instalacja centralnego ogrzewania
2 – instalacja centralnego ogrzewania
3 – instalacja wody ciepłej
4 – instalacja wody zimnej
5 – instalacja gazowa
6 – wanna z tworzywa sztucznego
7 – syfon z PVC
8 – instalacja kanalizacyjna z PVC
9 – styk ochronny gniazdka
10 – tablica rozdzielcza mieszkaniowa
11 – szyna wyrównawcza miejscowa

Ilustracja do pytania
A. 1 i 2
B. 3 i 4
C. 6 i 8
D. 5 i 9
Wybór odpowiedzi 6 i 8 jest prawidłowy, ponieważ elementy te, czyli wanna z tworzywa sztucznego oraz syfon z PVC, nie przewodzą prądu elektrycznego, co eliminuje ich konieczność przyłączenia do miejscowej szyny wyrównawczej. Zgodnie z normą PN-IEC 60364, szyna wyrównawcza ma na celu minimalizowanie ryzyka porażenia prądem poprzez uziemienie elementów mogących przewodzić prąd w przypadku uszkodzenia izolacji. Wanna z tworzywa sztucznego (6), jako element wykonany z materiałów izolacyjnych, nie stwarza ryzyka napięcia dotykowego. Podobnie, syfon z PVC (8) nie jest przewodnikiem prądu. Przykładem użycia tego schematu są łazienki w budynkach wielopiętrowych, gdzie prawidłowe przyłączenie do systemu wyrównawczego elementów metalowych, takich jak rury wodne czy instalacje centralnego ogrzewania, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Warto pamiętać, że przepisy budowlane i normy techniczne (takie jak PN-EN 61140) wyraźnie określają zasady dotyczące ochrony przed porażeniem prądem, co powinno być przestrzegane w każdym projekcie budowlanym.

Pytanie 16

Na ilustracji przedstawiono tabliczkę zaciskową typowego silnika trójfazowego z uzwojeniami stojana połączonymi w gwiazdę. Które pary zacisków po zdjęciu metalowych zwieraczy należy ze sobą zewrzeć, aby uzwojenia silnika zostały skojarzone w trójkąt?

Ilustracja do pytania
A. 1-4, 2-5, 3-6
B. 1-6, 2-4, 3-5
C. 1-5, 2-4, 3-6
D. 1-5, 2-6, 3-4
Połączenie uzwojeń silnika trójfazowego w gwiazdę i trójkąt jest kluczowe dla dostosowania jego parametrów pracy do różnych warunków zasilania. W przypadku połączenia w trójkąt, zewrzeć należy zaciski 1-4, 2-5 oraz 3-6, co pozwala na efektywne wykorzystanie napięcia zasilania. Dlaczego ta kombinacja jest poprawna? Zaciski 1-4 łączą początek pierwszego uzwojenia z jego końcem, co umożliwia przepływ prądu przez to uzwojenie. Analogicznie, zaciski 2-5 i 3-6 pełnią tę samą funkcję dla drugiego i trzeciego uzwojenia. W praktyce, takie połączenie zwiększa moc silnika oraz jego moment obrotowy, co jest szczególnie istotne w aplikacjach wymagających wyższych obciążeń, np. w przemyśle ciężkim lub przy napędzie maszyn. Warto zauważyć, że zgodnie z normami IEC w przypadku silników elektrycznych, właściwe ustawienie uzwojeń jest kluczowe dla ich bezpieczeństwa i wydajności. Dobrze skonfigurowany silnik z połączeniem trójkątnym będzie pracował stabilnie i wydajnie, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej.

Pytanie 17

Który rodzaj kondensatora przedstawiono na ilustracji?

Ilustracja do pytania
A. Powietrzny.
B. Foliowy.
C. Elektrolityczny.
D. Ceramiczny.
Wybranie kondensatora elektrolitycznego jest tutaj jak najbardziej trafne. Na zdjęciu widać typową cylindryczną obudowę z aluminiową puszką, nadrukowaną biegunowością oraz dużą pojemnością 6800 µF przy napięciu 25 V – to klasyczne cechy kondensatorów elektrolitycznych. Tego typu elementy mają zazwyczaj oznaczony minus (ciemny pasek z oznaczeniem „−”) oraz dłuższą końcówkę jako plus, co jest bardzo ważne przy montażu, bo są to kondensatory spolaryzowane. W praktyce stosuje się je głównie w zasilaczach do wygładzania napięcia po prostowniku, w układach filtrujących, w torach zasilania urządzeń elektronicznych, przy rozruchu niektórych silników jednofazowych (choć tam częściej stosuje się inne wykonania). Moim zdaniem, każdy kto składał kiedyś prosty zasilacz, kojarzy właśnie takie „puszki” na płytce. W dobrych praktykach montażu zwraca się uwagę na pracę poniżej napięcia znamionowego i w odpowiedniej temperaturze, bo kondensatory elektrolityczne starzeją się, tracą pojemność i rośnie im ESR. Normy i zalecenia producentów kładą nacisk na poprawną polaryzację, unikanie przepięć oraz dobór odpowiedniego marginesu napięcia, najczęściej 20–50% powyżej spodziewanego napięcia pracy. Dodatkowo warto pamiętać, że kondensatory elektrolityczne mają stosunkowo dużą tolerancję pojemności i nie nadają się do precyzyjnych obwodów rezonansowych, ale za to świetnie sprawdzają się tam, gdzie trzeba dużej pojemności przy stosunkowo małych rozmiarach i akceptowalnych kosztach. W serwisie spotyka się często spuchnięte lub wylane elektrolity w zasilaczach impulsowych – to typowa usterka, którą warto umieć rozpoznać już na pierwszy rzut oka.

Pytanie 18

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 4
B. 6
C. 10
D. 12
Odpowiedź 10 gniazd wtyczkowych na jedno gniazdo obwodowe jest zgodna z normami oraz praktykami stosowanymi w instalacjach elektrycznych. Zgodnie z Polskimi Normami, a także wytycznymi zawartymi w normach europejskich, maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu, powinna wynosić 10. To ograniczenie wynika z konieczności zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji przed przeciążeniem. Zbyt duża liczba gniazd wtyczkowych podłączonych do jednego obwodu może prowadzić do przegrzewania się przewodów, a co za tym idzie, do ryzyka pożaru. Przykładem może być sytuacja, w której użytkownik podłącza wiele urządzeń o dużym poborze mocy, takich jak czajniki, mikrofalówki czy komputery, co może przekroczyć dopuszczalny prąd obwodu. Dlatego ważne jest przestrzeganie zasad bezpieczeństwa oraz odpowiednie projektowanie instalacji elektrycznych, aby uniknąć niebezpieczeństw związanych z przeciążeniem.

Pytanie 19

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. prądu upływu
B. symetrii uzwojeń
C. rezystancji przewodu ochronnego
D. rezystancji uzwojeń stojana
Pomiar rezystancji uzwojeń stojana oraz rezystancji przewodu ochronnego nie dostarcza bezpośrednich informacji na temat stanu izolacji względem korpusu silnika. Rezystancja uzwojeń wskazuje na ich ogólny stan, ale nie uwzględnia ewentualnych uszkodzeń izolacji, które mogą występować w postaci przebicia. Tego rodzaju defekty mogą być niewidoczne podczas pomiarów rezystancji, co prowadzi do fałszywego poczucia bezpieczeństwa. Z kolei pomiar rezystancji przewodu ochronnego odnosi się do skuteczności uziemienia, które ma na celu ochronę przed porażeniem prądem elektrycznym, ale nie jest wskaźnikiem stanu izolacji wewnętrznej uzwojeń. Symetria uzwojeń, mimo że jest istotna dla prawidłowego działania silnika, nie ma bezpośredniego związku z izolacją. Problemy z symetrią mogą prowadzić do nierównomiernego rozkładu prądów w uzwojeniach, co z kolei może powodować przegrzewanie silnika, ale nie wykryje uszkodzeń izolacji. W branży elektrotechnicznej kluczowe jest zrozumienie, że różne metody pomiarowe mają swoje unikalne zastosowania i ograniczenia, a ich niewłaściwe stosowanie może prowadzić do niebezpieczeństwa oraz kosztownych napraw. Warto zwracać uwagę na odpowiednie procedury diagnostyczne, aby zapewnić bezpieczeństwo i efektywność działania maszyn elektrycznych.

Pytanie 20

Który przedział wartości napięcia U2 można uzyskać w przedstawionym na schemacie układzie dzielnika napięcia o danych: U1 = 12V, R1 = 3Ω, R2 = 9Ω?

Ilustracja do pytania
A. 3 V ÷ 12 V
B. 0 V ÷ 12 V
C. 9 V ÷ 12 V
D. 0 V ÷ 9 V
Rozwiązując zadania z dzielnikiem napięcia warto trzymać się prostego, ale bardzo konkretnego schematu myślenia: dwa rezystory w szeregu dzielą napięcie proporcjonalnie do swoich rezystancji. Przy U1 = 12 V oraz R1 = 3 Ω i R2 = 9 Ω całkowita rezystancja wynosi 12 Ω, więc prąd to 1 A. To od razu narzuca, że spadek napięcia na R1 wyniesie 3 V, a na R2 – 9 V. Widzimy więc, że na zaciskach U2, przy idealnym, nieobciążonym wyjściu, nie da się uzyskać 12 V, bo całe napięcie 12 V rozkłada się na dwóch elementach i tylko część przypada na R2. Stąd odpowiedzi sugerujące przedział 0–12 V wynikają zwykle z myślenia w stylu „na wyjściu zawsze może być tyle co na zasilaniu”, co jest prawdziwe dla przewodu, ale nie dla dzielnika rezystorowego. Pojawia się też często intuicja, że skoro na górnym rezystorze jest 3 V, to na wyjściu napięcie musi zaczynać się od 3 V, a więc przedział 3–12 V. To jest typowy błąd: mylenie napięcia w jednym punkcie z różnicą potencjałów między innymi punktami obwodu. W dzielniku napięcia U2 mierzymy względem dolnego bieguna (masy), dlatego może ono przyjąć wartość od 0 V (zwarcie do masy lub bardzo silne obciążenie) do maksymalnie 9 V przy braku obciążenia. Z kolei zakres 9–12 V nie ma uzasadnienia fizycznego, bo napięcie na R2 z definicji nie może przekroczyć części całkowitego napięcia przypadającej na ten element, wynikającej z proporcji rezystancji. Dobra praktyka projektowa, opisana w większości podręczników do elektrotechniki i elektroniki, zaleca zawsze liczenie konkretnych wartości z prawa Ohma i z zależności U2 = U1 · R2 / (R1 + R2), zamiast opierania się na „przeczuciu”, bo właśnie to przeczucie najczęściej prowadzi do takich błędnych przedziałów.

Pytanie 21

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Pomiarów oraz weryfikacji spadków napięć
B. Pomiarów rezystancji izolacji przewodów
C. Badania zabezpieczeń przed dotykiem pośrednim
D. Oględzin związanych z ochroną przeciwpożarową
Badania okresowe instalacji elektrycznej są niezbędnym elementem zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemów elektroenergetycznych. Pomiar rezystancji izolacji przewodów to kluczowy element tych badań, który pozwala na ocenę integralności izolacji. Niska rezystancja może wskazywać na uszkodzenia izolacji, co stwarza ryzyko porażenia prądem lub awarii systemu. Sprawdzanie ochrony przed dotykiem pośrednim, które ma na celu zminimalizowanie ryzyka kontaktu z elementami na potencjale uziemienia, również jest istotne w kontekście analiz okresowych. Oględziny dotyczące ochrony przeciwpożarowej, które obejmują ocenę układów elektrycznych pod kątem możliwości zapłonu lub zwarcia, są zgodne z normami bezpieczeństwa. Z kolei pomiar i sprawdzanie spadków napięć, chociaż ważne w kontekście analizy wydajności i jakości energii elektrycznej, nie jest częścią standardowego zakresu badań okresowych. Użytkownicy mogą mylnie uznać, że każde badanie związane z instalacją elektryczną powinno być uwzględnione w okresowych przeglądach, jednak różnica w celach tych badań jest kluczowa dla ich odpowiedniego przeprowadzenia. Właściwe podejście do badań określa, które pomiary są kluczowe dla dbałości o bezpieczeństwo oraz funkcjonalność instalacji.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką czynność należy wykonać podczas konserwacji instalacji elektrycznej w biurze?

A. Wymienić wszystkie gniazda elektryczne
B. Sprawdzić średnicę wszystkich przewodów w instalacji
C. Zweryfikować działanie wyłącznika różnicowoprądowego za pomocą przycisku testowego
D. Zamienić przewody w rurach winidurowych
Sprawdzanie wyłącznika różnicowoprądowego przyciskiem testowym jest kluczowym etapem okresowej konserwacji instalacji elektrycznej. Wyłączniki różnicowoprądowe (RCD) mają za zadanie zabezpieczenie przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Użycie przycisku testowego pozwala na symulację sytuacji, w której RCD powinien zareagować, co potwierdza jego sprawność. Regularne testowanie tych urządzeń jest zgodne z normą PN-EN 61008-1, która zaleca, aby RCD były testowane co najmniej raz na 3 miesiące. W praktyce, jeżeli wyłącznik nie wyłącza obwodu po naciśnięciu przycisku testowego, oznacza to, że wymaga on natychmiastowej wymiany lub naprawy, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. W przypadku biura, gdzie pracuje wiele osób, poziom bezpieczeństwa elektrycznego powinien być szczególnie priorytetowy. Dodatkowo, zaleca się prowadzenie dokumentacji wykonanych testów.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Trójfazowy silnik indukcyjny jest przystosowany do uruchamiania z wykorzystaniem przełącznika gwiazda-trójkąt. Jaką mocą, w porównaniu do mocy znamionowej, można go obciążyć przy połączeniu uzwojeń w konfiguracji gwiazdy?

A. Trzykrotnie większą
B. Dwukrotnie większą
C. Trzykrotnie mniejszą
D. Dwukrotnie mniejszą
Odpowiedź, że silnik indukcyjny trójfazowy można obciążyć trzykrotnie mniejszą mocą przy połączeniu uzwojeń w gwiazdę, jest poprawna z technicznego punktu widzenia. W układzie gwiazda napięcie zasilające na każdym uzwojeniu wynosi 1/√3 napięcia fazowego, co wpływa na moc, jaką silnik może wygenerować. W momencie rozruchu w trybie gwiazdy, silnik może dostarczyć jedynie 1/3 mocy znamionowej, co jest kluczowe, aby uniknąć przeciążenia uzwojeń i nadmiernych prądów rozruchowych, które mogłyby prowadzić do uszkodzenia silnika. W praktyce, stosowanie przełącznika gwiazda-trójkąt w dużych silnikach indukcyjnych pozwala na zredukowanie prądów rozruchowych, co jest zgodne z dobrymi praktykami w inżynierii elektrycznej. Przykładem zastosowania tej metody są silniki napędzające duże wentylatory, pompy czy sprężarki, w których istotne jest kontrolowanie momentu rozruchowego oraz ograniczenie obciążeń mechanicznych w początkowej fazie pracy.

Pytanie 26

W ramce zamieszczono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych i napięciowych watomierzy należy wybrać, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i obciążony znamionowo przy połączeniu w gwiazdę?

Silnik 3~   Typ 1E2-90S-4 S1
1,1 kW   3,2/1,8 A   Izol. F
IP55   1420 obr/min   cosφ 0,75
230/400 V   50 Hz
A. In = 2 A, Un = 200 V
B. In = 1 A, Un = 200 V
C. In = 1 A, Un = 400 V
D. In = 2 A, Un = 400 V
Wybór nieodpowiednich zakresów cewek prądowych i napięciowych watomierzy może prowadzić do wielu problemów w pomiarach mocy silnika trójfazowego. Przykładowo, wybór cewki prądowej o nominalnej wartości 1 A jest niewłaściwy, ponieważ znamionowy prąd silnika wynosi 1,8 A. Użycie cewki o niższym zakresie może skutkować jej przeciążeniem, co z kolei może prowadzić do uszkodzenia watomierza oraz błędnych odczytów. Dodatkowo, wykorzystanie cewki napięciowej o wartości 200 V w sytuacji, gdy wymagane jest 400 V, będzie prowadziło do niedopasowania zakresów pomiarowych. Tego typu błędy mogą wynikać z niepełnego zrozumienia zasad działania układów trójfazowych oraz ich specyfiki. W praktyce pomiarowej niezwykle istotne jest, aby parametry urządzenia pomiarowego były bezpośrednio związane z parametrami mierzonymi obiektami. Przy wyborze cewki prądowej i napięciowej, istotne jest uwzględnienie nie tylko znamionowych wartości prądu i napięcia, ale również ich zmienności w czasie pracy silnika. Ignorowanie tych zasad prowadzi do ograniczenia dokładności pomiarów, a także może skutkować uszkodzeniem sprzętu, co w dłuższej perspektywie wiąże się z większymi kosztami napraw czy wymiany urządzeń. Dlatego tak ważne jest odpowiednie przeszkolenie w zakresie doboru sprzętu pomiarowego oraz znajomość specyfikacji technicznych silników trójfazowych.

Pytanie 27

Którego z przedstawionych urządzeń należy użyć do zabezpieczenia przed skutkami zmiany kolejności faz i zaniku napięcia fazowego w instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
W przypadku tego pytania, wybór niewłaściwego urządzenia do zabezpieczenia przed skutkami zmiany kolejności faz i zaniku napięcia fazowego może prowadzić do poważnych konsekwencji. Urządzenia, które nie są przekaźnikami kontroli faz, mogą nie posiadać funkcji monitorowania sekwencji faz lub zaniku napięcia, co oznacza, że nie będą w stanie skutecznie chronić podłączonych urządzeń. Wybierając inny typ zabezpieczenia, można wpaść w pułapkę myślenia, że inne urządzenia, takie jak wyłączniki automatyczne czy bezpieczniki, pełnią tę samą rolę. W rzeczywistości, wyłączniki automatyczne są zaprojektowane głównie do ochrony przed przeciążeniem i zwarciem, a nie do monitorowania kolejności faz. Z kolei bezpieczniki działają na zasadzie przerywania ciągłości obwodu w przypadku nadmiernego prądu, co nie ma bezpośredniego związku z kolejnością faz. Ponadto, błędne wyobrażenie, że można polegać na innych zabezpieczeniach, wynika często z niedoceniania roli, jaką odgrywa prawidłowe podłączenie faz w systemach trójfazowych. Przekonanie, że wystarczy zabezpieczenie przed przeciążeniem, może prowadzić do sytuacji, w której urządzenia nie są odpowiednio chronione, co z kolei zwiększa ryzyko ich uszkodzenia i obniża bezpieczeństwo całej instalacji elektrycznej.

Pytanie 28

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6200
B. 6700
C. 6301
D. 6001
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 29

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Higrometru termo.
B. Prądnicy tachometrycznej.
C. Tensometru mostkowego.
D. Pirometru
Prądnica tachometryczna to przyrząd pomiarowy, który jest powszechnie stosowany do pomiaru prędkości obrotowej wałów silników. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału, co pozwala na łatwe i precyzyjne odczyty. Przykładem zastosowania prądnicy tachometrycznej są silniki elektryczne w przemyśle, gdzie monitorowanie prędkości obrotowej jest kluczowe dla zapewnienia optymalnej pracy maszyny oraz ochrony przed przeciążeniem. Standardy branżowe, takie jak IEC 60034, zalecają stosowanie prądnic tachometrycznych w systemach automatyzacji i sterowania, co podkreśla ich znaczenie w zapewnianiu efektywności energetycznej i bezpieczeństwa eksploatacji. Dodatkowo, prądnice tachometryczne mogą być używane w systemach feedbackowych, co pozwala na automatyczne dostosowywanie parametrów pracy silnika w odpowiedzi na zmieniające się warunki operacyjne.

Pytanie 30

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP2X
B. IP5X
C. IP3X
D. IP4X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 31

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 0,63
B. MMS-32S – 1,6A
C. MMS-32S – 4A
D. PKZM01 – 1
Wybór niewłaściwych wyłączników silnikowych często wynika z niepełnego zrozumienia zasad doboru urządzeń zabezpieczających dla silników elektrycznych. Na przykład, MMS-32S – 4A oferuje zbyt wysoki prąd znamionowy, co może prowadzić do braku skutecznej ochrony silnika. Taki wyłącznik nie zadziała w przypadku przeciążenia, co naraża silnik na uszkodzenia. Z kolei PKZM01 – 0,63, mimo że jest bliższy wymaganiom silnika, także nie spełnia norm, ponieważ jego maksymalny prąd jest zbyt niski w stosunku do prądu znamionowego silnika. Wybierając wyłączniki, należy pamiętać o odpowiednich marginesach prądowych, co oznacza, że wyłącznik powinien mieć wartość znamionową prądu większą niż prąd roboczy silnika, ale nie przeładowaną, aby nie doszło do fałszywych zadziałań. Niewłaściwy dobór wyłączników może prowadzić do poważnych konsekwencji, takich jak uszkodzenie silnika, a także potencjalne ryzyko pożaru z powodu przeciążeń. W związku z tym, kluczowe jest przestrzeganie norm dotyczących instalacji elektrycznych i zabezpieczeń, takich jak IEC 60947, które dostarczają wytycznych na temat bezpiecznego doboru urządzeń ochronnych dla silników. Zrozumienie tych zasad jest fundamentalne dla właściwego funkcjonowania systemów elektrycznych i ochrony sprzętu.

Pytanie 32

Ile wynosi wartość mocy wskazana przez watomierz przedstawiony na ilustracji?

Ilustracja do pytania
A. 500 W
B. 1 000 W
C. 100 W
D. 50 W
Wybór wartości mocy innej niż 500 W może wynikać z nieprawidłowej analizy danych dostępnych na watomierzu lub błędnego rozumienia zasad działania urządzeń elektrycznych. Odpowiedzi takie jak 50 W, 100 W czy 1 000 W mogłyby być interpretowane w kontekście niewłaściwej oceny rzeczywistego zużycia energii. Przykładowo, niektórzy mogą błędnie założyć, że wartość 50 W oznacza, iż urządzenie działa w trybie oszczędnym przy minimalnym obciążeniu, ignorując jednak, że w rzeczywistości to maksymalne obciążenie dla danego urządzenia. Podobnie, wartość 100 W może być mylona z typowym zużyciem małego urządzenia, podczas gdy rzeczywista wartość mocy może być znacznie wyższa. W przypadku wyboru 1 000 W, może to sugerować mylne przeświadczenie o wydajności urządzenia i jego zapotrzebowaniu na moc, co w rezultacie prowadzi do niewłaściwego projektowania instalacji elektrycznych oraz do zwiększonych kosztów eksploatacji. W praktyce, poprawne odczytywanie pomiarów mocy na watomierzu jest kluczowe dla efektywnego zarządzania energią oraz dla zgodności z normami bezpieczeństwa, a także dla optymalizacji kosztów związanych z użytkowaniem energii elektrycznej.

Pytanie 33

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Wyłączniki różnicowoprądowe
B. Obudowy i osłony
C. Miejscowe połączenia wyrównawcze
D. Separacja elektryczna
Miejscowe połączenia wyrównawcze, separacja elektryczna oraz wyłączniki różnicowoprądowe to metody ochrony przed porażeniem prądem, które są istotne, jednak nie stanowią podstawowego zabezpieczenia w kontekście warsztatu remontowego. Miejscowe połączenia wyrównawcze są stosowane w celu eliminacji różnic potencjałów między elementami instalacji, co może być istotne w sytuacjach, gdy różne części instalacji mogą mieć inne napięcia. To podejście nie eliminuje jednak bezpośredniego ryzyka kontaktu z elementami pod napięciem. Separacja elektryczna, z kolei, polega na oddzieleniu obwodów elektrycznych od innych obwodów, co również nie wystarcza jako główna forma ochrony, gdyż nie zabezpiecza przed przypadkowym dotknięciem żywych części. Wyłączniki różnicowoprądowe, choć bardzo ważne w systemach zabezpieczeń elektrycznych, działają jako dodatkowa warstwa ochrony, a nie jako podstawowe zabezpieczenie. Ich funkcja polega na szybkim odcięciu zasilania w przypadku wykrycia różnicy między prądem wpływającym a prądem wypływającym, co nie zastąpi fizycznej ochrony urządzeń poprzez obudowy i osłony. Te metody powinny być traktowane jako uzupełnienie, a nie substytut dla podstawowego zabezpieczenia, jakim są obudowy i osłony, które chronią przed bezpośrednim dotykiem.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Ile wynosi najmniejsza wartość prądu wywołującego zadziałanie wyłącznika nadprądowego o przedstawionej charakterystyce i prądzie znamionowym 10 A, aby wyłącznik ten zapewniał w sieci TN-S skuteczną ochronę przeciwporażeniową przy uszkodzeniu?

Ilustracja do pytania
A. 30 A
B. 12 A
C. 50 A
D. 15 A
Wybór 30 A, 15 A czy 12 A jako minimalnego prądu do działania wyłącznika to nie jest najlepszy pomysł i mam kilka powodów. Po pierwsze, te odpowiedzi nie biorą pod uwagę, jak działają wyłączniki nadprądowe z charakterystyką B, które powinny działać w zakresie 3-5 razy większym niż ich prąd znamionowy. Dla wyłącznika z prądem znamionowym 10 A, minimalny prąd do zadziałania to 30 A, więc to już jest dolna granica. Wybierając 30 A, trzeba pamiętać, że wyłącznik nie zabezpieczy nas w sytuacjach kryzysowych, gdy prąd może być wyższy. Odpowiedzi 15 A i 12 A są zupełnie nietrafione, bo nie mają związku z realnym działaniem wyłącznika. W praktyce, zbyt niska wartość prądu zadziałania może sprawić, że systemy zabezpieczeń zawiodą, a to już jest niebezpieczne. Ważne jest też, żeby wiedzieć, że normy takie jak PN-IEC 60364-4-41 podkreślają potrzebę stosowania wyłączników, które mogą zadziałać przy wyższych prądach, żeby naprawdę chronić nas przed niebezpieczeństwem związanym z elektrycznością.

Pytanie 36

Na podstawie wyników pomiarów przedstawionych w tabeli, wykonanych dla pokazanego wyłącznika silnikowego ustawionego w pozycji włączony (ON) określ, które uszkodzenie występuje w tym wyłączniku.

Lp.Mierzony odcinekWartość rezystancji Ω
11 - 20,1
21 - 3
32 - 3
43 - 4
55 - 4
65 - 60,1
Ilustracja do pytania
A. Przerwa między zaciskami 5 i 6
B. Zwarcie między zaciskami 1 i 3
C. Przerwa między zaciskami 3 i 4
D. Zwarcie między zaciskami 2 i 3
Analizując takie zadanie, warto podejść do pomiarów trochę jak do czytania schematu. Wyłącznik silnikowy w pozycji ON powinien przewodzić prąd w trzech niezależnych torach: 1–2, 3–4, 5–6. Każdy z tych torów ma mieć małą rezystancję, rzędu dziesiątych części oma. Jednocześnie między poszczególnymi torami fazowymi nie może być żadnego połączenia – tam spodziewamy się rezystancji nieskończonej. Stąd typowy błąd polega na tym, że ktoś widzi w tabeli dużo symboli nieskończoności i automatycznie kojarzy to ze zwarciem albo z jakimś innym „poważnym” uszkodzeniem, zamiast na spokojnie porównać wyniki z tym, jak aparat powinien działać. Zwarcie między zaciskami 1 i 3 albo 2 i 3 oznaczałoby, że dwa różne tory fazowe są połączone ze sobą. W pomiarach miałoby to postać bardzo małej rezystancji między tymi zaciskami. Tutaj jest odwrotnie – między 1–3 i 2–3 mamy nieskończoność, czyli izolacja jest zachowana, więc o żadnym zwarciu nie ma mowy. Podobnie błędny wniosek o przerwie między 5 i 6 wynika z nieuwagi: tabela jasno pokazuje około 0,1 Ω między tymi zaciskami, czyli tor jest sprawny. W praktyce przy przeglądach i pomiarach instalacji oraz aparatury, zgodnie z dobrą praktyką pomiarową i wymaganiami norm dotyczącymi badań ciągłości obwodów, zawsze weryfikuje się każdy tor osobno. Uszkodzenie polegające na przerwie w jednym torze wyłącznika silnikowego jest zresztą dość typowe, szczególnie przy długotrwałym przeciążaniu lub luźnych zaciskach. W takiej sytuacji silnik dostaje tylko dwie fazy, co może prowadzić do przegrzania i zadziałania zabezpieczeń. Dlatego kluczem jest poprawne zinterpretowanie wartości: mała rezystancja oznacza połączenie robocze, nieskończona rezystancja – izolację lub przerwę. Dopiero zestawienie tych informacji pozwala poprawnie wskazać, że uszkodzony jest tor 3–4, a inne proponowane odpowiedzi nie pasują do wyników pomiarów.

Pytanie 37

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Praca na biegu jałowym
B. Drgania skrajnych blach rdzenia
C. Nieszczelność kadzi transformatora
D. Niesymetryczność obciążenia
To nie tak, że niesymetryczność obciążenia bezpośrednio powoduje to nienormalne brzęczenie w transformatorze. Chociaż może prowadzić do innych kłopotów, jak przegrzewanie czy większe straty mocy. Generalnie brzęczenie, które słychać podczas pracy transformatora, najczęściej jest spowodowane drganiami rdzenia. Nieszczelność kadzi również wpływa na wydajność, ale nie jest to główny powód brzęczenia. Jak transformator pracuje na biegu jałowym, to mogą się pojawić inne dźwięki, ale niekoniecznie związane z brzęczeniem. To błędne myślenie, że brzęczenie = problemy z obciążeniem, bo można łatwo pomylić obciążenie z powodem hałasu. W rzeczywistości to mechanika konstrukcji transformatora i interakcje jego elementów mają większy wpływ na te dźwięki. Zrozumienie tego jest istotne dla inżynierów i techników, żeby transformatory mogły działać efektywnie i bez hałasu.

Pytanie 38

Między którymi z podanych kombinacji przewodów należy wymusić prąd różnicowy, aby sprawdzić poprawność działania trójfazowego wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. L1 i N
B. L1 i L2
C. L1 i PE
D. L1 i L3
Wybór przewodów L1 i N, L1 i L2, czy L1 i L3 w celu wymuszenia prądu różnicowego do testu trójfazowego wyłącznika różnicowoprądowego nie jest poprawny. Przewód neutralny (N) nie jest odpowiedni do tego typu testów, ponieważ nie pełni funkcji ochronnej. Wyłącznik różnicowoprądowy działa na zasadzie porównywania wartości prądów płynących w przewodach fazowych i neutralnych, a jego zadaniem jest wykrywanie różnic, które mogą wskazywać na usterki. W przypadku testowania należy pamiętać, że przewód ochronny (PE) powinien być wykorzystywany do wzbudzenia prądu różnicowego, ponieważ jest on zaprojektowany do ochrony przed porażeniem prądem elektrycznym. Wybierając kombinacje przewodów L1 i L2, L1 i L3, czy L1 i N, można trwale uszkodzić wyłącznik różnicowoprądowy lub nie uzyskać właściwych wyników testu, co może prowadzić do mylnej interpretacji stanu bezpieczeństwa instalacji. W myśleniu o testach wyłączników różnicowoprądowych należy skupić się na ich roli w systemach zabezpieczeń, w których kluczowe jest wykrywanie nieprawidłowości w przepływie prądu, a nie na porównywaniu faz w obwodach elektrycznych. Stosowanie niewłaściwych przewodów w testach może prowadzić do fałszywego poczucia bezpieczeństwa, co w dłuższej perspektywie może skutkować poważnymi zagrożeniami dla użytkowników i mienia.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zmniejszy się dwukrotnie
B. Zwiększy się dwukrotnie
C. Zwiększy się trzykrotnie
D. Zmniejszy się trzykrotnie
Odpowiedź, że spadek napięcia na przewodzie zasilającym odbiornik przenośny zwiększy się dwukrotnie, jest poprawna z perspektywy prawa Ohma oraz zasad obliczania spadku napięcia. Spadek napięcia (U) na przewodniku oblicza się według wzoru U = I * R, gdzie I to prąd płynący przez przewód, a R to oporność przewodu. Oporność przewodu wyrażona jest wzorem R = ρ * (L/A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego pole przekroju. Zastępując przewód OWY 5×4 mm² o długości 5 m przewodem OWY 5×6 mm² o długości 15 m, zwiększamy długość przewodu trzykrotnie (15 m do 5 m) oraz zmniejszamy pole przekroju o 1,5 razy (4 mm² do 6 mm²). Mimo większego pola przekroju nowego przewodu, jego długość powoduje, że spadek napięcia wzrasta. W praktyce oznacza to, że dla zastosowań wymagających długich przewodów zasilających, dobór odpowiedniego przekroju przewodu jest kluczowy, aby zminimalizować straty energetyczne i zapewnić stabilność zasilania. Dostosowywanie długości i przekrojów przewodów jest zgodne z normą PN-IEC 60364, która zaleca obliczanie spadków napięcia dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych.