Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 lutego 2026 06:09
  • Data zakończenia: 19 lutego 2026 06:44

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na zdjęciu przedstawiono

Ilustracja do pytania
A. rozłącznik.
B. bezpiecznik.
C. odłącznik.
D. wyłącznik.
Często ludzie mylą rozłącznik z innymi urządzeniami elektrycznymi, co prowadzi do zamieszania. Wyłącznik działa trochę inaczej, bo przerywa obwód automatycznie przy przeciążeniu czy zwarciu, a jego funkcja jest inna niż rozłącznika, który nie wyłącza automatycznie. Odłącznik też się myli, bo chociaż służy do rozłączania, to ma swoje ograniczenia i nie nadaje się do pracy pod obciążeniem. Wiele osób nie zdaje sobie sprawy, że odłącznik nie jest dobrym wyborem w sytuacjach, kiedy jest ryzyko rozłączania pod napięciem. Bezpiecznik to inna sprawa, działa na zasadzie przepalania się, gdy jest przeciążenie, czyli też jest zupełnie czym innym niż rozłącznik. Wiele osób myśli, że te trzy urządzenia są takie same, a to może powodować problemy przy doborze sprzętu w instalacjach elektrycznych. Dlatego zrozumienie różnic między nimi to podstawa dla każdego technika czy inżyniera, żeby wszystko działało jak należy i było bezpieczne.

Pytanie 2

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór symbolu D. jako oznaczenia łącznika świecznikowego jest prawidłowy, ponieważ ten symbol odpowiada branżowym standardom reprezentującym urządzenia do sterowania oświetleniem. Łącznik świecznikowy, znany również jako łącznik grupowy, umożliwia kontrolowanie kilku obwodów oświetleniowych jednocześnie, co jest szczególnie przydatne w dużych pomieszczeniach, takich jak sale konferencyjne lub przestrzenie otwarte. W takich zastosowaniach zastosowanie łącznika grupowego pozwala na efektywne zarządzanie oświetleniem, a także oszczędność energii. Zgodnie z normą PN-IEC 60617 dotyczącą symboli graficznych w elektrotechnice, symbol D. jest uznawany za standardowy sposób przedstawiania tego typu urządzenia. W praktyce, poprawne użycie symboli graficznych na schematach ideowych jest kluczowe dla zrozumienia i prawidłowego wykonania instalacji elektrycznych, co pozwala na bezpieczne i efektywne korzystanie z oświetlenia w różnych środowiskach.

Pytanie 3

Urządzenie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. odkręcania zapieczonych śrub.
B. demontażu łożysk.
C. montażu łożysk.
D. obróbki skrawaniem.
Na ilustracji pokazany jest klasyczny ściągacz do łożysk, czyli narzędzie przeznaczone właśnie do ich demontażu. Charakterystyczne elementy to ramiona zakończone haczykowatymi stopkami, które zaczepia się za pierścień łożyska lub koło pasowe, oraz śruba pociągowa z poprzecznym uchwytem. Podczas dokręcania śruby siła osiowa przenosi się na wał, a ramiona równomiernie ciągną łożysko na zewnątrz. Dzięki temu łożysko schodzi z czopa wału bez bicia młotkiem, bez przegrzewania i bez uszkadzania gniazda lub samego wału. W praktyce, przy serwisie silników elektrycznych, przekładni, pomp czy alternatorów, użycie takiego ściągacza jest podstawową dobrą praktyką warsztatową. Normy i instrukcje serwisowe producentów maszyn bardzo często wprost zabraniają zbijania łożysk przy pomocy przecinaków czy młotka, bo prowadzi to do mikropęknięć, odkształceń i późniejszych awarii. Moim zdaniem każdy elektryk utrzymania ruchu czy monter powinien mieć w warsztacie zestaw ściągaczy o różnych rozstawach ramion i długościach, a przy poważniejszych pracach stosować też ściągacze hydrauliczne. Warto pamiętać o kilku zasadach: ramiona muszą być ustawione symetrycznie, stopki powinny dobrze opierać się o pierścień łożyska, a śruba powinna być nasmarowana, żeby zmniejszyć tarcie i uzyskać płynny, kontrolowany nacisk. W ten sposób demontaż jest bezpieczny zarówno dla pracownika, jak i dla urządzenia elektrycznego, które serwisujemy.

Pytanie 4

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,00 Ω
B. 2,30 Ω
C. 3,83 Ω
D. 1,15 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 5

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
B. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
C. Silnik będzie pracował w stanie jałowym
D. Silnik będzie zasilany prądem przeciwnym
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 6

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
B. pomiar rezystancji uziemienia
C. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 7

Która z wymienionych lamp należy do żarowych źródeł światła?

A. Indukcyjna.
B. Rtęciowa.
C. Sodowa.
D. Halogenowa.
Poprawna odpowiedź to lampa halogenowa, ponieważ należy ona do grupy klasycznych źródeł żarowych. W lampie halogenowej mamy do czynienia z tym samym zjawiskiem co w zwykłej żarówce – świeci rozgrzany do wysokiej temperatury żarnik wolframowy, przez który płynie prąd elektryczny. Różnica polega na tym, że bańka jest wypełniona gazem halogenowym (np. jodem lub bromem), co powoduje tzw. cykl halogenowy. Dzięki temu wolfram, który odparowuje z żarnika, częściowo wraca z powrotem na jego powierzchnię. W praktyce oznacza to wyższą trwałość, mniejsze zaczernienie bańki i wyższą skuteczność świetlną w porównaniu ze starą żarówką tradycyjną. Z punktu widzenia elektryka i instalatora halogeny traktuje się jako typowe źródła żarowe: zasilane prądem przemiennym 230 V lub przez transformator elektroniczny 12 V, o charakterystyce praktycznie rezystancyjnej. Przy doborze osprzętu, przekrojów przewodów czy zabezpieczeń nadprądowych przyjmuje się, że obciążenie jest czysto omowe, bez istotnych prądów rozruchowych jak w świetlówkach czy oprawach wyładowczych. W oświetleniu technicznym halogeny były (i nadal czasem są) stosowane w reflektorach punktowych, w oświetleniu sceny, w lampach warsztatowych, w oświetleniu zewnętrznym przed wejściem czy nad bramą garażową, zwłaszcza tam gdzie wymagana była dobra oddawalność barw i skupiony snop światła. Moim zdaniem warto też pamiętać, że według aktualnych trendów i wymagań efektywności energetycznej halogeny są coraz częściej zastępowane przez LED-y, ale klasyfikacja fizyczna pozostaje ta sama: to dalej źródło żarowe, a nie wyładowcze ani indukcyjne.

Pytanie 8

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
D. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 9

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 5 do 10
B. 2 do 3
C. 3 do 5
D. 10 do 20
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 10

Na podstawie przedstawionego schematu oraz przedstawionych wyników pomiarów zlokalizuj usterkę typowego stycznika w układzie 1-fazowym, 230V.

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór odpowiedzi, w której wskazano na inne zestyki lub elementy układu, może wynikać z niepełnego zrozumienia podstaw działania stycznika oraz jego schematu. Uszkodzenie jednego z zestyków, jak zestyk 3-4, powoduje, że nie są one w stanie przełączać się w odpowiedni sposób, co prowadzi do niesprawności całego układu. Osoby, które wybrały inne odpowiedzi, mogą mylnie zakładać, że problem leży w innych zestyku, podczas gdy kluczem do rozwiązania jest skupienie się na rzeczywistych objawach, takich jak wynik pomiaru. Często takie błędne podejścia wynikają z braku znajomości zasad działania obwodów elektrycznych oraz interpretacji wyników pomiarów. Należy pamiętać, że pomiary rezystancji zestyków są kluczowe dla prawidłowego funkcjonowania urządzeń. Przykłady nieprawidłowego wnioskowania mogą obejmować pominięcie kontekstu schematu lub nieuwzględnienie specyfiki danego układu, co prowadzi do nieoptymalnych decyzji w zakresie diagnozowania usterek. Kluczem do skutecznej analizy jest nie tylko znajomość norm, ale także umiejętność ich stosowania w praktyce, co pozwala na skuteczne identyfikowanie i eliminowanie problemów w układach elektrycznych.

Pytanie 11

Ile par biegunów magnetycznych posiada stojan silnika pierścieniowego synchronizowanego, jeżeli jego prędkość obrotowa przy zasilaniu napięciem o częstotliwości 50 Hz wynosi 1 000 obr./min?

A. 3 pary. 
B. 1 parę.
C. 4 pary.
D. 2 pary.
Poprawnie – stojan tego silnika ma 3 pary biegunów magnetycznych. Wynika to bezpośrednio z zależności między prędkością synchroniczną a liczbą par biegunów. Dla silników synchronicznych i asynchronicznych obowiązuje wzór: n_s = 60·f / p, gdzie n_s to prędkość synchroniczna w obr./min, f – częstotliwość zasilania w Hz, a p – liczba par biegunów magnetycznych. Podstawiając dane z zadania: n_s = 1000 obr./min, f = 50 Hz, mamy 1000 = 60·50 / p, czyli 1000 = 3000 / p, stąd p = 3. To daje 3 pary biegunów, czyli łącznie 6 biegunów magnetycznych (3 północne i 3 południowe) rozmieszczone w stojanie. W praktyce ta zależność jest bardzo ważna przy doborze silników do napędów, np. w wentylatorach, pompach, przenośnikach czy mieszadłach. Jeżeli potrzebna jest niższa prędkość obrotowa bez użycia falownika, wybiera się silnik o większej liczbie par biegunów, np. 4P (2 pary), 6P (3 pary), 8P (4 pary) itd. Moim zdaniem każdy technik elektryk powinien ten wzór umieć przekształcić w obie strony, bo na budowie, w utrzymaniu ruchu czy przy modernizacji instalacji napędowych często trzeba „z marszu” ocenić, czy dany silnik przy 50 Hz będzie miał ok. 3000, 1500, 1000 czy 750 obr./min. W silniku pierścieniowym synchronizowanym, mimo specyficznej konstrukcji wirnika, prędkość synchroniczna nadal zależy tylko od częstotliwości i liczby par biegunów stojana. Uzwojenia wirnika i sposób rozruchu (np. przez rezystancję rozruchową) nie zmieniają tej podstawowej zależności wynikającej z pola wirującego. W praktyce przy przeglądach i diagnostyce dobrze jest porównać tabliczkę znamionową z obliczeniami z tego wzoru, bo od razu widać, czy ktoś np. nie podał błędnych danych lub czy silnik nie jest przystosowany np. do 60 Hz.

Pytanie 12

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę II
B. Klasę 0
C. Klasę III
D. Klasę I
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 13

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Ściągacz izolacji
B. Piła do metalu
C. Poziomnica
D. Młotek
Wybór młotka jako podstawowego narzędzia do montażu listew elektroinstalacyjnych może pokazywać pewne nieporozumienie co do samego procesu. Młotek faktycznie przydaje się do wbijania kołków, ale nie każdy montaż musi polegać na tym; w niektórych sytuacjach można używać wkrętów lub innych sposobów mocowania, które nie wymagają uderzenia. Z drugiej strony, poziomnica to narzędzie, które naprawdę ma znaczenie, bo pozwala sprawdzić, czy listwy są prosto zamocowane, co jest istotne dla wyglądu i skuteczności instalacji. Jej brak może skutkować problemami z prawidłowym ustawieniem listew, co potem może się odbić na reszcie instalacji elektrycznej. Co do piły do metalu – też może być kluczowa, jeśli listwy trzeba przyciąć, co zdarza się w czasie montażu. Czasami nie do końca wiadomo, które narzędzia są naprawdę niezbędne, co prowadzi do pośpiechu i niepotrzebnych opóźnień. Dlatego warto zrozumieć, jakie narzędzia w jakiej sytuacji są najlepsze.

Pytanie 14

Ochronnik oznaczony symbolem graficznym pokazanym na rysunku reaguje na

Ilustracja do pytania
A. upływ prądu.
B. przepięcie.
C. przeciążenie.
D. zwarcie doziemne.
Wybór odpowiedzi związanych z przeciążeniem, upływem prądu lub zwarciem doziemnym pokazuje niedostateczne zrozumienie funkcji ochronników w instalacjach elektrycznych. Przeciążenie polega na przekraczaniu maksymalnej dopuszczalnej wydajności prądowej, co prowadzi do przegrzewania się przewodów, ale ochrona przed tym zjawiskiem nie jest realizowana przez ochronnik przepięciowy, lecz przez inne urządzenia, takie jak wyłączniki nadprądowe. Upływ prądu dotyczy sytuacji, gdzie prąd elektryczny ucieka z obwodu do ziemi, co może być niebezpieczne, ale również nie jest bezpośrednio kontrolowane przez ochronniki przepięciowe. Z kolei zwarcie doziemne to awaria, w której przewód fazowy styka się z ziemią, co również nie jest zadaniem ochronników przepięciowych. Te pomyłki wynikają często z braku zrozumienia specyfiki działania różnych komponentów instalacji elektrycznej oraz ich roli w zapewnieniu bezpieczeństwa. Zastosowanie ochronników przepięciowych w odpowiednich miejscach, zgodnie z obowiązującymi normami, jak PN-EN 61643-11, jest kluczowe dla ochrony przed uszkodzeniami spowodowanymi przepięciami, a nie innymi rodzajami awarii, które wymagają innych rozwiązań.

Pytanie 15

Rysunek przedstawia schemat

Ilustracja do pytania
A. łącznika wielofunkcyjnego.
B. stycznika.
C. przekaźnika.
D. wyłącznika różnicowoprądowego.
Poprawna odpowiedź to stycznik, co znajduje potwierdzenie w charakterystycznym schemacie jego połączeń. Cewka stycznika oznaczona jako A1 i A2 służy do załączania i wyłączania obwodu elektrycznego zdalnie, co jest kluczowe w automatyce i sterowaniu. Styki L1, L2, L3, będące stykami głównymi, są przeznaczone do załączania obwodów mocy, co jest niezbędne w instalacjach elektrycznych o dużych obciążeniach. Styki pomocnicze T1, T2, T3 oraz NC (normalnie zamknięty) pozwalają na dodatkowe funkcje, takie jak sygnalizacja czy zabezpieczenia automatyczne. Zastosowanie styczników w automatyce przemysłowej jest szerokie; od prostych układów sterujących po złożone systemy automatyzacji, styczniki są niezbędnymi elementami w wielu aplikacjach. Zgodnie z normami IEC 60947, dobór stycznika powinien uwzględniać zarówno parametry elektryczne, jak i warunki pracy, co zapewnia bezpieczeństwo i niezawodność układów. Warto zauważyć, że stosowanie styczników zamiast przełączników ręcznych zwiększa komfort pracy i możliwość automatyzacji procesów.

Pytanie 16

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Prawidłowe wykonanie połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Na rysunku B, drut jest odpowiednio zagięty i umieszczony pod główką śruby, co pozwala na skuteczne zaciskanie i zapobiega jego wypadnięciu. W praktyce, ważne jest, aby drut był zagięty w odpowiedni sposób, co zapewnia pełne przyleganie do powierzchni styku, co z kolei minimalizuje ryzyko powstawania iskrzenia oraz przegrzewania połączenia. Zgodnie z normami PN-IEC 60947-7-1, zaleca się, aby połączenia były wykonywane w sposób, który zapewnia ich trwałość oraz odporność na wibracje. Dobrze wykonane połączenie zwiększa efektywność przesyłania energii elektrycznej oraz zmniejsza ryzyko awarii, co jest kluczowe w kontekście użytkowania złożonych systemów elektrycznych.

Pytanie 17

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja uziemienia jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. rezystancja izolacji miejsca pracy jest zbyt duża
D. impedancja sieci zasilającej jest zbyt niska
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektrycznych, szczególnie w układach TN-C. W przypadku, gdy impedancja pętli zwarcia jest zbyt duża, może to prowadzić do niewystarczającego prądu zwarciowego, co z kolei wpływa na czas zadziałania zabezpieczeń. W układach TN-C przy wartościach U<sub>0</sub> = 230 V oraz I<sub>a</sub> = 100 A, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić skuteczne wyłączenie w przypadku zwarcia. W praktyce, jeśli impedancja pętli zwarcia przekracza określone wartości, na przykład zgodnie z normą PN-EN 60364, czas reakcji wyłączników automatycznych może być zbyt długi, co stwarza potencjalne zagrożenie dla bezpieczeństwa użytkowników. Dlatego właściwe pomiary impedancji pętli zwarcia są niezbędne w każdym projekcie instalacji elektrycznej, aby upewnić się, że system będzie dostatecznie chronił przed porażeniem prądem elektrycznym. W przypadku wykrycia zbyt dużej impedancji, zaleca się poprawę uziemienia oraz optymalizację konfiguracji instalacji, aby zwiększyć skuteczność zabezpieczeń.

Pytanie 18

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,02 mA
B. ±0,35 mA
C. ±2,35 mA
D. ±0,37 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 19

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy instalacyjny nadprądowy
B. Dwubiegunowy podnapięciowy
C. Dwubiegunowy przepięciowy
D. Dwubiegunowy różnicowoprądowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 20

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H03VH-H
B. H03W-F
C. H05V-U
D. H05V-K
Analizując inne oznaczenia przewodów, warto zauważyć, że H03VH-H jest przeznaczone do pracy w warunkach, gdzie przewody są narażone na działanie wysokich temperatur i chemikaliów, jednak ich napięcie robocze wynosi jedynie 300/500 V, co powoduje, że nie spełniają one wymagań dla aplikacji, które wymagają większej odporności na obciążenia elektryczne. Oznaczenie H05V-K, z kolei, odnosi się do przewodów o mniejszej elastyczności, a ich konstrukcja nie jest przystosowana do zastosowań w trudnych warunkach, co ogranicza ich zastosowanie w porównaniu do H05V-U. Ostatnia z rozważanych opcji, H03W-F, również nie jest odpowiednia, ponieważ jest to typ przewodu wykorzystywanego głównie w instalacjach, gdzie odporność na działanie wilgoci lub substancji chemicznych jest priorytetowa. Wybór niewłaściwego oznaczenia często wynika z niepełnej wiedzy na temat specyfikacji technicznych lub mylenia cech przewodów z ich przeznaczeniem. Ważne jest, aby przy doborze przewodów kierować się nie tylko ich oznaczeniem, ale także specyfiką zastosowania, co pozwoli na długoterminową i bezpieczną eksploatację instalacji elektrycznych. Zrozumienie różnic pomiędzy poszczególnymi oznaczeniami jest kluczowe dla osób zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych.

Pytanie 21

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
B. Wyłączyć wszystkie wyłączniki nadprądowe.
C. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
D. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
Wyłączenie wszystkich wyłączników różnicowoprądowych lub nadprądowych przed wymianą uszkodzonego wyłącznika nadprądowego B16 może prowadzić do niezamierzonych konsekwencji. Wybierając tę opcję, wprowadza się ryzyko, że zasilanie w całym obwodzie zostanie przerwane, co może być nieodpowiednie w sytuacji, gdy inne urządzenia, takie jak płyta grzewcza czy piekarnik, również są zasilane z tej samej instalacji. Wyłączając wszystkie wyłączniki, nie tylko ryzykuje się utratę zasilania w lokalach, ale także narusza się zasady efektywności energetycznej i dobrych praktyk przy pracy z instalacjami elektrycznymi. Ponadto, wyłączanie wszystkich wyłączników jest nieefektywne i czasochłonne, co w praktyce staje się uciążliwe, zwłaszcza w obiektach komercyjnych, gdzie ciągłość zasilania jest kluczowa. W kontekście ochrony przeciwporażeniowej, wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyłączenie powinno być uzasadnione potrzebą konserwacji lub naprawy tylko w określonych obwodach. Z tego powodu, nieprzemyślane wyłączenie wszystkich zabezpieczeń narusza zasady bezpieczeństwa i efektywności w zarządzaniu instalacjami elektrycznymi.

Pytanie 22

Symbol graficzny którego przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. Fazowego.
B. Neutralnego.
C. Uziemiającego.
D. Ochronnego.
Odpowiedź wskazująca na przewód neutralny jest prawidłowa, ponieważ symbol przedstawiony na ilustracji jest zgodny z normami IEC (Międzynarodowej Komisji Elektrotechnicznej), które określają oznaczenia przewodów w instalacjach elektrycznych. Przewód neutralny, oznaczony symbolem 'N', pełni kluczową rolę w systemach zasilania, umożliwiając powrót prądu do źródła zasilania. W praktyce przewód neutralny jest stosowany w instalacjach jednofazowych oraz trójfazowych, gdzie jego obecność zapewnia stabilność pracy urządzeń elektrycznych. Ważnym aspektem jest również odpowiednie podłączenie przewodu neutralnego do uziemienia w rozdzielnicy, co zwiększa bezpieczeństwo użytkowania instalacji oraz minimalizuje ryzyko porażenia prądem. Wszelkie prace związane z instalacjami elektrycznymi powinny być przeprowadzane zgodnie z normami PN-IEC, a także z zasadami BHP, co podkreśla znaczenie właściwego rozpoznawania i stosowania symboli przewodów.

Pytanie 23

Na przedstawionej ilustracji wirnika silnika elektrycznego czarną strzałką wskazano

Ilustracja do pytania
A. uzwojenie wirnika.
B. pierścienie ślizgowe.
C. komutator.
D. przewietrznik.
Na ilustracji faktycznie widać pierścienie ślizgowe wirnika silnika elektrycznego. To elementy, które są osadzone na wale i mają postać współosiowych, gładkich pierścieni z metalu przewodzącego. Do tych pierścieni dociskają się szczotki, zwykle z grafitu lub miedzi z domieszkami, i w ten sposób doprowadza się prąd do uzwojeń wirnika w silnikach pierścieniowych lub synchronicznych. W odróżnieniu od komutatora, pierścienie są ciągłe, niepocięte na lamele, a prąd zmienia się w uzwojeniu dzięki zewnętrznemu układowi zasilania, a nie mechanicznej komutacji. W praktyce, przy pracy z silnikami pierścieniowymi np. w suwnicach, przenośnikach taśmowych czy dużych wentylatorach przemysłowych, technik bardzo często ma do czynienia właśnie z pierścieniami ślizgowymi: sprawdza stan powierzchni ślizgowej, dobór i zużycie szczotek, jakość połączeń z uzwojeniem wirnika. Z mojego doświadczenia wielu uczniów myli je z komutatorem, bo w obu przypadkach występują szczotki, ale różnica jest zasadnicza: komutator ma wiele wąskich segmentów izolowanych mikanitem, a pierścienie to zwykle 2–3 szerokie, gładkie powierzchnie. Z punktu widzenia dobrych praktyk eksploatacyjnych ważne jest, żeby pierścienie były czyste, nieprzepalone i miały równomierną, lekko matową powierzchnię – tak zalecają choćby instrukcje producentów silników i normowe wytyczne dotyczące eksploatacji maszyn elektrycznych. Wszelkie rowki, przypalenia czy nadmierne iskrzenie na szczotkach to sygnał do przeglądu. Znajomość budowy wirnika i rozróżnianie pierścieni ślizgowych od innych części bardzo ułatwia diagnozowanie usterek w praktyce serwisowej.

Pytanie 24

Prędkość obrotowa silnika w układzie przedstawionym na schemacie regulowana jest przez zmianę wartości

Ilustracja do pytania
A. rezystancji obwodu twornika.
B. prądu wzbudzenia.
C. częstotliwości napięcia zasilania.
D. napięcia twornika.
Odpowiedź 'napięcia twornika' jest poprawna, ponieważ regulacja prędkości obrotowej silnika elektrycznego w układzie z twornikiem opiera się na zmianach napięcia przyłożonego do twornika. W silnikach prądu stałego, na przykład w silnikach komutatorowych, zmiana napięcia na tworniku wpływa na moment obrotowy oraz prędkość obrotową. Wysokość napięcia kontroluje ilość energii dostarczanej do silnika, co bezpośrednio wpływa na jego wydajność oraz prędkość obrotową. W praktyce, regulacja napięcia twornika jest powszechnie stosowana w zastosowaniach przemysłowych, takich jak napędy elektryczne w maszynach i robotach, gdzie precyzyjna kontrola prędkości jest kluczowa. Dobrą praktyką jest stosowanie układów automatycznej regulacji napięcia, które zapewniają stabilność pracy silnika w różnych warunkach obciążenia, co jest zgodne z normami i standardami w dziedzinie automatyki i robotyki.

Pytanie 25

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjnych.
B. Żarowych.
C. Indukcyjnych.
D. Rtęciowych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 26

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 0,90 m
B. 1,4 m
C. 0,80 m
D. 1,5 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 27

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Tuleją redukcyjną
B. Podkładką sprężystą
C. Tuleją kołnierzową
D. Podkładką dystansową
Podkładka sprężysta jest kluczowym elementem w procesie zabezpieczania nakrętek przed odkręceniem, ponieważ jej konstrukcja została zaprojektowana w celu generowania siły, która przeciwdziała luzom mechanicznym. W praktyce, podkładki te wykorzystują swoją elastyczność, aby wypełnić mikrouszkodzenia na powierzchniach stykowych oraz dostarczyć dodatkowy opór przeciwko luźnieniu się połączenia w wyniku drgań, uderzeń czy zmian temperatury. Przykłady zastosowania obejmują szeroki zakres branż, od motoryzacji po budownictwo, gdzie mechanizmy narażone są na dynamiczne obciążenia. Zgodnie z normami ISO 7089 i ISO 7090, stosowanie podkładek sprężystych jest zalecane w połączeniach wymagających dużej niezawodności i trwałości, co czyni je istotnym elementem w projektowaniu konstrukcji. Dodatkowo, ich dostępność w różnych materiałach (np. stal nierdzewna, mosiądz) pozwala na dopasowanie do specyficznych warunków pracy, co zwiększa efektywność zabezpieczeń.

Pytanie 28

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Użycie odbiorników II klasy ochronności.
B. Połączenie wyrównawcze.
C. Separację odbiornika.
D. Samoczynne wyłączenie zasilania.
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 29

Przedstawiona na rysunku puszka rozgałęźna przeznaczona jestdo instalacji elektrycznej natynkowejprowadzonej przewodami

Ilustracja do pytania
A. na uchwytach.
B. na izolatorach.
C. w rurach winidurowych karbowanych.
D. w listwach elektroinstalacyjnych.
Prawidłowa odpowiedź to "na uchwytach", co jest zgodne z praktykami instalacji elektrycznych natynkowych. Puszki rozgałęźne przeznaczone do instalacji natynkowej muszą być montowane w sposób, który zapewnia łatwy dostęp do połączeń elektrycznych oraz ich właściwą ochronę. Montaż na uchwytach pozwala na stabilne osadzenie puszki, co jest kluczowe dla bezpieczeństwa instalacji. W przypadku instalacji natynkowych, elementy takie jak uchwyty są projektowane z myślą o prostym i szybkim montażu, co jest zgodne z normami budowlanymi i elektrycznymi. Dodatkowo, stosowanie uchwytów zmniejsza ryzyko uszkodzenia przewodów oraz ułatwia dalsze prace konserwacyjne. Przykładem praktycznego zastosowania puszek rozgałęźnych na uchwytach może być instalacja oświetlenia w pomieszczeniach, gdzie wymagana jest szybka interwencja w przypadku awarii. Warto również zaznaczyć, że według norm PN-IEC 60364, instalacje elektryczne powinny być projektowane z uwzględnieniem łatwego dostępu i bezpieczeństwa użytkowników.

Pytanie 30

Ile wynosi częstotliwość przebiegu przedstawionego wzorem?
$$ u(t) = 50 \sin\left(628t - \frac{\pi}{2}\right) V $$

A. 100 Hz
B. 50 Hz
C. 314 Hz
D. 628 Hz
Wzór na przebieg napięcia ma postać: u(t) = 50·sin(628t − π/2) V. Kluczowy jest tutaj współczynnik przy czasie t, czyli 628. To jest pulsacja, oznaczana zwykle grecką literą ω. Dla przebiegów sinusoidalnych zachodzi zależność: ω = 2πf, gdzie f to częstotliwość w hercach. Żeby policzyć częstotliwość, podstawiamy: 628 = 2πf. Stąd f = 628 / (2π). Ponieważ 2π ≈ 6,28, to 628 / 6,28 ≈ 100 Hz. Dlatego poprawna odpowiedź to 100 Hz. Amplituda 50 V nie ma wpływu na częstotliwość, określa tylko maksymalną wartość napięcia. Podobnie przesunięcie fazowe −π/2 zmienia jedynie punkt startu sinusoidy w czasie, a nie to, ile cykli na sekundę przebieg wykonuje. W praktyce taka analiza jest bardzo przydatna przy pracy z przemiennikami częstotliwości, zasilaczami impulsowymi czy układami sterowania silnikami. Gdy widzisz równanie z sinusem lub cosinusem, warto od razu wyłuskać trzy rzeczy: amplitudę (tu 50 V), pulsację ω (tu 628 rad/s) i fazę początkową (tu −π/2). Z mojego doświadczenia w technikum wiele zadań kręci się wokół prostego przekształcania wzoru ω = 2πf, więc dobrze to mieć w małym palcu. W sieci energetycznej w Polsce standardowo mamy 50 Hz, ale w elektronice, zasilaczach, filtrach czy układach audio często spotyka się 100 Hz, 1 kHz, 10 kHz i znacznie wyższe częstotliwości. Umiejętność szybkiego rozpoznawania częstotliwości z równania pozwala ocenić, z jakimi zjawiskami mamy do czynienia: czy to jeszcze klasyczna energetyka, czy już typowa elektronika wysokoczęstotliwościowa. W normach dotyczących kompatybilności elektromagnetycznej i jakości energii też operuje się właśnie częstotliwością i jej harmonicznymi, więc takie przekształcenia to po prostu chleb powszedni elektryka i elektronika.

Pytanie 31

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Schodowy
B. Świecznikowy
C. Krzyżowy
D. Dwubiegunowy
Wybór łączników schodowych, krzyżowych czy dwubiegunowych nie jest właściwy w kontekście niezależnego sterowania sekcjami źródeł światła w żyrandolu. Łączniki schodowe są używane głównie do włączania i wyłączania jednego źródła światła z dwóch różnych miejsc, co jest idealne na klatkach schodowych lub w długich korytarzach. Umożliwiają one jedynie podstawową funkcjonalność, nie pozwalając na kontrolę poszczególnych sekcji, co jest istotne w przypadku żyrandoli. Krzyżowe łączniki z kolei poszerzają możliwości sterowania w systemach z wieloma przełącznikami, ale również nie są przeznaczone do niezależnego zarządzania różnymi sekcjami oświetlenia. Ich zastosowanie ogranicza się do sytuacji, w których potrzeba włączania lub wyłączania jednego źródła światła z różnych lokalizacji. Dwubiegunowe łączniki są stosowane przede wszystkim w sytuacjach, gdzie wymagane jest przełączenie jednej linii zasilającej, co nie przekłada się na elastyczność potrzebną w żyrandolach z wieloma źródłami światła. Wybór niewłaściwego typu łącznika może prowadzić do ograniczeń w zakresie praktycznego użytkowania oświetlenia i zmniejszenia komfortu jego stosowania w codziennych sytuacjach.

Pytanie 32

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Tuleja kołnierzowa
B. Tuleja redukcyjna
C. Podkładka dystansowa
D. Podkładka sprężysta
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 33

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 34

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. P301 25A
B. P301 40A
C. S301 B16
D. S304 C25
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia roli wyłączników w instalacjach elektrycznych. Wyłącznik P301 25A oraz P301 40A to urządzenia delikatnie różniące się w zakresie wartości prądowych, jednak nie są one odpowiednie do rozwiązywania problemu prądu doziemienia. Odpowiedź P301 25A byłaby niewłaściwa, ponieważ przy prądzie 2,5 A wyłącznik różnicowoprądowy zadziałałby, ale jedynie w kontekście ochrony przed porażeniem, co nie jest wystarczające w przypadku większych wartości prądu. Wartości prądów znamionowych, takie jak 16A (S301 B16) czy 25A (S304 C25), dotyczą wyłączników nadprądowych, które innego rodzaju sytuacjach mogą być przydatne, lecz nie oferują odpowiedniej ochrony przed prądem różnicowym. W przypadku prądów doziemnych, kluczowe jest korzystanie z wyłączników różnicowoprądowych, które działają na zasadzie monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Wybór wyłącznika różnicowoprądowego zgodnie z odpowiednią normą, taką jak PN-EN 61008, jest kluczowy dla zapewnienia bezpieczeństwa elektrycznego. Ważne jest, aby nie mylić tych dwóch rodzajów wyłączników i ich zastosowania w praktyce, ponieważ prowadzi to do potencjalnych zagrożeń dla użytkowników instalacji elektrycznej.

Pytanie 35

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Przeciążenie jednej z faz.
B. Zawilgocenie izolacji jednej z faz.
C. Jednofazowe zwarcie doziemne.
D. Zwarcie międzyfazowe.
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 36

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H07V2-U
B. H03VV-F
C. H03VVH2-F
D. H07V-K
Wybór niewłaściwych typów przewodów, takich jak H07V-K, H03VVH2-F czy H07V2-U, może prowadzić do poważnych błędów w projektowaniu instalacji elektrycznych. H07V-K jest przewodem sztywnym, przeznaczonym do instalacji stacjonarnych, co czyni go nieodpowiednim do zastosowań wymagających elastyczności. Z kolei H03VVH2-F jest przewodem elastycznym, jednak jego parametry techniczne i zastosowanie są inne niż w przypadku H03VV-F. H03VVH2-F posiada dodatkową izolację, co czyni go bardziej odpornym na uszkodzenia, ale nie jest typowym rozwiązaniem dla niskonapięciowych urządzeń przenośnych. H07V2-U to kolejny przewód sztywny, co ogranicza jego zastosowanie. Wybierając niewłaściwy typ przewodu, można narazić urządzenia na uszkodzenie, a także stwarzać zagrożenie pożarowe lub porażenia prądem. Zrozumienie różnic pomiędzy tymi typami przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby zwracać uwagę na konkretne parametry przewodów oraz ich zastosowanie zgodnie z aktualnymi normami branżowymi.

Pytanie 37

Na podstawie przedstawionego schematu ideowego instalacji oświetlenia klatki schodowej sterowanej za pomocą przekaźnika bistabilnego określ zakres oględzin instalacji.

Ilustracja do pytania
A. Usunięcie uszkodzeń w instalacji przez osobę uprawnioną.
B. Naprawa łączników i mycie kloszy lamp.
C. Wykonanie pomiarów rezystancji izolacji przewodów.
D. Sprawdzenie umocowania i stanu łączników oraz kloszy lamp.
Odpowiedź dotycząca sprawdzenia umocowania i stanu łączników oraz kloszy lamp jest poprawna, ponieważ oględziny instalacji oświetleniowej powinny koncentrować się na wizualnej i manualnej ocenie stanu elementów instalacji. Kluczowym aspektem tego procesu jest ocena bezpieczeństwa oraz funkcjonalności wszystkich komponentów systemu oświetleniowego. Sprawdzając umocowanie łączników, można zapobiec potencjalnym problemom, takim jak zwarcia czy uszkodzenia wywołane luźnymi połączeniami. Dobrą praktyką jest także ocena stanu kloszy lamp, ponieważ ich uszkodzenia mogą prowadzić do nieefektywnego rozpraszania światła lub nawet stwarzać zagrożenie pożarowe. Zasady przeprowadzania oględzin instalacji elektrycznych są określone w normach, takich jak PN-IEC 60364, które podkreślają znaczenie regularnych inspekcji w celu zapewnienia bezpieczeństwa użytkowników oraz długotrwałej funkcjonalności systemów oświetleniowych. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem.

Pytanie 38

Który z przedstawionych wyłączników nie zapewni skutecznej ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S 230/400 V, w którym zmierzona wartość impedancji zwarcia L-PE wynosi 1 Ω?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wyłącznik przedstawiony na obrazku C jest wyłącznikiem różnicowoprądowym, który działa na zasadzie monitorowania różnicy prądu pomiędzy przewodem fazowym a przewodem neutralnym. Jego głównym celem jest ochrona przed porażeniem elektrycznym, co odbywa się poprzez szybkie odłączenie obwodu w przypadku wykrycia różnicy w prądzie, która może wskazywać na upływność. Jednakże, w przypadku obwodów zasilanych z sieci TN-S, gdzie impedancja zwarcia L-PE wynosi 1 Ω, wyłącznik różnicowoprądowy nie jest wystarczający do ochrony przeciwporażeniowej. W sytuacji, gdy wystąpią zwarcia lub przeciążenia, wyłącznik ten nie będzie w stanie przerwać dużych prądów zwarciowych, co może prowadzić do poważnych uszkodzeń instalacji lub zagrożenia dla życia osób. Dlatego do ochrony w takich przypadkach zaleca się stosowanie wyłączników nadprądowych, które skutecznie odcinają obwód w momencie wykrycia zbyt dużego prądu.

Pytanie 39

Parametry techniczne którego stycznika z tabeli odpowiadają stycznikowi przedstawionemu na ilustracji?

StycznikZnamionowy prąd pracyLiczba styków NOLiczba styków NC
1.31 A40
2.31 A31
3.40 A31
4.40 A40
Ilustracja do pytania
A. Stycznika 1.
B. Stycznika 4.
C. Stycznika 2.
D. Stycznika 3.
Odpowiedzi niepoprawne wynikają z kilku powszechnych błędów myślowych, które mogą prowadzić do mylnych wniosków. Wiele osób może sugerować, że inne styczniki z tabeli mają podobne parametry, jednak kluczowe jest dokładne zwrócenie uwagi na oznaczenia i specyfikacje techniczne. Przykładowo, stycznik 2 ma inny prąd nominalny, co czyni go niewłaściwym wyborem. Jest to częsty błąd w ocenie, gdzie koncentruje się wyłącznie na liczbie styków, a nie na ich charakterystyce oraz innych istotnych parametrach, takich jak prąd roboczy czy napięcie. Podobne pomyłki można zauważyć przy ocenie stycznika 1 i 4, które również różnią się specyfikacjami od stycznika przedstawionego na ilustracji. W takich przypadkach warto zwrócić uwagę na szczegóły, które odgrywają kluczową rolę w zapewnieniu optymalnego działania urządzeń. W kontekście projektowania instalacji elektrycznych, znajomość dokładnych parametrów styczników oraz ich zgodności z normami, takimi jak IEC 60947, jest niezbędna do osiągnięcia bezpiecznych i efektywnych rozwiązań. Pominięcie tych kryteriów może prowadzić do awarii systemu oraz zwiększenia ryzyka uszkodzeń sprzętu.

Pytanie 40

Silnika klatkowego, którego fragment tabliczki znamionowej przedstawiono na ilustracji, nie należy zasilać napięciem międzyfazowym o wysokości

Ilustracja do pytania
A. 400 V, gdy jego uzwojenia skojarzy się w gwiazdę.
B. 400 V, gdy jego uzwojenia skojarzy się w trójkąt.
C. 230 V, gdy jego uzwojenia skojarzy się w gwiazdę.
D. 230 V, gdy jego uzwojenia skojarzy się w trójkąt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 400 V, gdy jego uzwojenia skojarzy się w trójkąt jest poprawna, ponieważ w przypadku silników klatkowych, tabliczka znamionowa dostarcza istotnych informacji na temat dopuszczalnych warunków zasilania. W sytuacji, gdy uzwojenia są połączone w trójkąt (Δ), zasilanie napięciem 400 V może prowadzić do uszkodzenia silnika, gdyż jest to napięcie przeznaczone do połączenia w gwiazdę (Y). Warto zauważyć, że przy połączeniu w gwiazdę, napięcie zasilające wynosi 400 V, natomiast przy połączeniu w trójkąt napięcie to wynosi 230 V, co oznacza, że silnik musi być zasilany odpowiednim napięciem, aby pracować bezawaryjnie. Przestrzeganie tych zasad jest kluczowe, aby uniknąć przegrzania uzwojeń oraz innych poważnych uszkodzeń, które mogą prowadzić do znacznych kosztów napraw oraz przestojów w pracy maszyn. Dlatego ważne jest, aby technicy i inżynierowie dobrze rozumieli różnice w połączeniach uzwojeń i ich wpływ na parametry pracy silników.